CSC418 Computer Graphics

- Display Technology
- 2D modeling primitive equations
- Drawing lines

Raster Displays I

Raster Displays II

Gamma correction

Raster Displays II

Gamma correction

Display Architecture

Display Architecture

Display Architecture II

True Color Frame Buffer : 8 bits per pixel RGB

Display Architecture II

Indexed Color Frame Buffer : 8 bit index to color map

Display Devices II

Holographic

Plasma

Head-mounted

Volumetric

Line Drawing

What is the best line line we can draw?

Line Drawing

What is the best line line we can draw?

The best we can do is a discrete approximation of an ideal line.

Important line qualities:

- Continuous appearence
- Uniform thickness and brightness
- Accuracy (Turn on the pixels nearest the ideal line)
- Speed (How fast is the line generated)

Equation of a Line

Explicit : y = mx + b

Parametric :

 $x(t) = x_0 + (x_1 - x_0)^* t$ $y(t) = y_0 + (y_1 - y_0)^* t$

 $P = P_0 + (P_1 - P_0)^* t$ $P = P_0^* (1 - t) + P_1^* t$ (weighted sum)

Implicit : $(x-x_0)dy - (y-y_0)dx = 0$

Algorithm I

Algorithm I

Explicit form: y= dy/dx * (x-x_0) + y_0

```
float y;
int x;
dx = x1-x0; dy = y1 - y0;
m = dy/dx;
y= y1 + 0.5;
for ( x=x0; x<=x1; x++)
{
   setpixel (x, floor(y));
   y= y + m;
}
```


Algorithm I

DDA (Digital Differential Analyzer)

```
float y;
int x;
dx = x1-x0; dy = y1 - y0;
m = dy/dx;
y= y1 + 0.5;
for ( x=x0; x<=x1; x++)
{
  setpixel (x, floor(y));
  y = y + m;
```


Algorithm II

Bresenham Algorithm

- Assume |line slope <1
- Slope is rational (ratio of two integers). m = (y1 y0) / (x1 x0)
- The incremental part of the algorithm never generates a new y that is more than one unit away from the old one (because the slope is always less than one) y_{i+1} = y_i + m

Algorithm II

Bresenham Algorithm Geometric Interpretation

Distance of midpt from line = dy- ½*dx

Algorithm II

Bresenham Algorithm

Implicit View

$$F(x,y) = (x-x0)dy - (y-y0)dx$$

F(x+1,y + 0.5) = F(x,y) + dy -0.5 dx

2 F(x+1,y+0.5) = d = 2F(x,y) + 2dy - dx

 $\begin{array}{ll} F(x+1,y) = F(x,y) + dy & d' = d + 2dy \\ F(x+1,y+1) = F(x,y) + dy - dx & d' = d + 2dy - 2dx \end{array}$

CSC418 Computer Graphics

Next Lecture....

- Polygons
 - Triangulation
 - Scan conversion
 - Convex/Concave
 - clipping)
- 2D affine transformations and properties, Homogeneous coordinates