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Curves and Surfaces

• Polynomial curves from constraints: Hermites.

• Basis functions: Beziers, BSplines.

• Coons Interpolation: Coons patches.

• Desirable curve properties.

• Other curve formulations: clothoids.
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Parametric Polynomial Curves

Recall a linear curve (line) is: p(t) = a1t+a0

A cubic curve is similarly:

…or     p(t) = d3t
3+d2t

2 +d1t+d0 , where di = [ai, bi, ci,]
T

Cubics are commonly used in graphics because: 

• curves of lower order have too little flexibility (only planar, no curvature control). 

• curves of higher order are unnecessarily complex and easily wiggle.



Polynomial curves from constraints

p(t) = TA , where T is powers of t. for a cubic T=[t3  t2  t1 1].

Written with geometric constraints p(t) = TMG, 
where M is the Basis matrix of the curve, G the design constraints.

An example of constraints for a cubic Hermite for eg. are
end points and end tangents. i.e. P1,R1 at t=0 and P4,R4 at t=1.
Plugging these constraints into p(t) = TA we get.

H
p(0) = P1 = [ 0 0 0 1 ] A 
p(1) = P4 = [ 1 1 1 1 ] A              TA=TMG &
p'(0)= R1 = [ 0 0 1 0 ] A     =>      G=HA => H=M-1

p'(1)= R4 = [ 3 2 1 0 ] A



Bezier Basis Matrix

A cubic Bezier can be defined with four points where:
P1,R1 at t=0 and P4,R4 at t=1 for a Hermite.
R1 = 3(P2-P1) and R4 = 3(P4-P3).

We can thus compute the Bezier Basis Matrix by finding the 
matrix that transforms [P1 P2 P3 P4 ]T into [P1 P4 R1 R4 ] T i.e.

B_H =  [ 1 0 0 0 ]
[ 0 0 0 1]
[-3 3 0 0]
[ 0 0 -3 3]

Mbezier=Mhermite * B_H



Bezier Basis Functions

[ -1 3 -3 1 ]
[  3 -6 3 0 ] 
[ -3 3  0 0 ] 
[  1  0  0 0 ]

The columns of the Basis Matrix form Basis Functions such that:
p(t)= B1(t)P1 + B2(t)P2 + B3(t)P3 + B4(t)P4.

From the matrix:

Bi+1(t) = (
n
) *(1-t)(n-i)

*t
i

i    

…also called Bernstein polynomials.
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B2

B2

B3



Basis Functions

Basis functions can be thought of as an influence weight that each
constraint has as t varies.

Note: actual interpolation of any constraint only happens if its Basis
function is 1 and all others are zero at some t.

Often Basis functions for design curves sum to 1 for all t.
This gives the curve some nice properties like affine invariance
and the convex hull property when the functions are additionally
non-negative. 



Bezier Patches

Using same data array P=[pij] as with interpolating form:

Patch lies in

convex hull

p(u,v) = Si Sj Bi(u) Bj(v) pij = uT B P BT v



Coons Patches: only boundary curves

b0

b3

b2b1

interpolate(b0,b2)

interpolate(b1,b3)

bilinear
interpolation



Traditional Splines



BSpline Basis Functions

• Can be chained together.
• Local control (windowing).



Bezier vs. BSpline

Bezier

BSpline



Representing a conic as a polynomial

• <x(t),y(t)> = < cos(t), sin(t) >

• Taylor series for sin(t)= t -t3/3! + t5/5! …

• u=sin(t/2)

• <x(u),y(u)> = < (1-u2)/(1+u2) , 2u/(1+u2) >

• Rational Bspline’s are defined with homogeneous 
coordinates using w(t).

• NURBS additionally adds non-uniform knots.  



Curve Design Issues

• Continuity (smoothness, fairness and neatness).

• Control (local vs. global).

• Interpolation vs. approximation of constraints.

• Other geometric properties (planarity, invariance).

• Efficient analytic representation.
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Smooth curves

• Fairness: “curvature continuous curves with a small 
number of segments of almost piecewise linear 
curvature” [Farin et al. 87].

• Lines, circles and clothoids are the simplest primitives in 
curvature space.
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Clothoids

Sketch curves often represent gestural 
information or capture design intent where the 
overall stroke appearance (fairness) is more 
important than the precise input. 

[McCrae & Singh, Sketching Piecewise Clothoid Curves, SBIM 2008]
http://www.dgp.toronto.edu/~mccrae/clothoid/

http://www.dgp.toronto.edu/~mccrae/clothoid/
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What are Clothoids?

• Curves whose curvature changes linearly with arc-length.

• Described by Euler in 1774, a.k.a. Euler spiral.

• Studied in diffraction physics, transportation engineering 
(constant lateral acceleration) and robot vehicle design 
(linear steering). 
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Comparative approaches to fairing
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Approach
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Approach

Segment
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Approach

Segment Assemble
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Approach

Segment

Align

Assemble



Piecewise Linear Curvature Fit

• Any discrete curvature estimator can be used 
to obtain curvature space points



Piecewise Linear Curvature Fit

• Find a small number of connected line 
segments that minimize fit error.



Piecewise Linear Curvature Fit

• Dynamic programming (cost of fit matrix M):

Efit(a,b) is the fitting error of a line to points a..b.

Ecost is the penalty incurred to increment the 
number of line segments.



Piecewise Linear Curvature Fit

Ecost = 0.01

Ecost = 0.02

Ecost = 0.035

Ecost = 0.05

Ecost = 0.08



Assembly

• To assemble piecewise clothoid curve:

• Map each curvature space line segment to a unique 
line, circle or clothoid curve segment.

• Attach segments so they are position/tangent 
continuous

• Resulting curve has G2 continuity



Align

Find a rigid transform that minimizes the sum of squared 
distance between arc-length corresponding points on the 
input polyline and piecewise clothoid curve. [Horn 1987]



Curve Alignment: Translation

• Translation is difference between the centroids 
of the points along both curves



Curve Alignment: Rotation

• Rotation minimizes weighted squared distances:

• Optimal A given by:

• Rotation R extracted as
,where
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Case Studies

• Drive

• ILoveSketch.

• Teddy, Fibermesh.

• MeshMixer.  
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Model creation categories

• Suggestive systems

• Input compared to template objects

• symbolic or visual memory

• Constructive systems

• Input directly used to create object

• perceptual or visual rules
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Suggestive systems

• User draws complete or gestural sketch.

• Sketch matched against object database or 
known primitives.

Funkhouser et al., A Search Engine for 3D Models, Proc. of SIGGRAPH’03, 2003.
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Suggestive systems (matching 2D to 3D)

• Extract several contours for each object.

• Create feature vector

• Direct comparison, eg. Euclidean distance.

Funkhouser et al., A Search Engine for 3D Models, Proc. of SIGGRAPH’03, 2003.
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Constructive systems

• Rules and constraints rather than templates:

• Restricting application domain (eg. sketching roads). 

• Restricting object type (eg. mechanical or organic).

• Restricting task (eg. smoothing, cutting or joining).

M. Masry and H. Lipson, A Sketch-Based Interface for Iterative Design and Analysis of 3D Objects, EG SBIM’05, 2005.

T. Igarashi et al., Teddy: A Sketching Interface for 3D Freeform Design, Proc. of SIGGRAPH’99, 1999.



Drive: single-view sketching

A sketch-based system to create conceptual 
layouts of 3D path networks.



Drive features

 Elegant interface:   

open stroke = path

closed stroke = selection-action menu. 

 Piecewise clothoid path construction.

 Crossing paths.

 Break-out lens. (single-view context)

 Terrain sensitive sketching.

[McCrae & Singh, Sketching based Path Design, Graphics Interface 2009]



Drive

[McCrae & Singh, Sketching based Path Design, Graphics Interface 2009]
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Teddy

• Teddy inflates a closed 2D stroke like blowing 
up a balloon.

T. Igarashi et al., Teddy: A Sketching Interface for 3D Freeform Design, Proc. of SIGGRAPH’99, 1999.
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Inflation

• Offset surface proportionally to distance from 
spine of the contour 

• Produces smooth blobby objects

Igarashi et al., Teddy: A Sketching Interface for 3D Freeform Design, SIGGRAPH’99, 1999.
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Skeleton extraction

• Delaunay triangulation

• Chordal axis transform

Igarashi et al., Teddy: A Sketching Interface for 3D Freeform Design, SIGGRAPH’99, 1999.

Polygon 
approximation

Delaunay

Skeleton
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Trouble with contours and silhouettes

• Rarely planar.

• Can contain T-junctions and cusps.

• Occlusion.
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3D Curve networks: surface optimization

• Surface results from solving non-linear system

• 3D curves defines geometric constraints

• Smoothness constraints

A. Nealen et al., FiberMesh: Designing Freeform Surfaces with 3D Curves, Proc. of SIGGRAPH’07, 2007.
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FiberMesh

• User can specify additional curves on the 
surface

• Further constraints that define the surface

• Sharp features

A. Nealen et al., FiberMesh: Designing Freeform Surfaces with 3D Curves, Proc. of SIGGRAPH’07, 2007.
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Case Studies

• Drive

• Teddy, Fibermesh.

• ILoveSketch.

• MeshMixer.  
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ISKETCH (multi-view sketching)

A corpus of research in sketch based modeling 
exists without a single such system in practical 
use… 

Why?

• No clear overall user workflow.

• Insufficient vocabulary and quality of 3D curves.

• Poor transition from 2D sketching  practice.
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ISKETCH: multi-view sketching
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ISKETCH: multi-view sketching

A judicious leap from 2D to 3D.

• Presents a virtual 2D sketchbook with simple paper 
navigation and automatic rotation for ergonomic 
pentimenti style 2D sketching.

• Seamless transition to 3D with a suite of multi-view 
curve sketching tools with context switching based 
on sketchability.

[Bae, Balakrishnan & Singh, ILoveSketch: As-natural-as-possible

sketching system for creating 3D curve models. UIST 2008]
www.ilovesketch.com

http://www.ilovesketch.com/
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ISKETCH

Geom-independent 
gestures

Geom-dependent 
gestures

Multi-stroke
input

3D curve

Bimanual paper 
navigation

Bimanual space 
navigation

Virtual 
sketchbook

2D paper

3D space

2D curve

Sketchability
Axis widget

(a) (b) (c)(a) (b) (c)
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ISKETCH : epi-polar symmetry
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ISKETCH (at SIGGRAPH 09 eTech)

100 models created over 4 days (made public for research)
http://www.dgp.toronto.edu/~shbae/ilovesketch_siggraph2009.htm

http://www.dgp.toronto.edu/~shbae/ilovesketch_siggraph2009.htm
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Meshmixer: 3D model composition

Composing Details: 
Mesh Clone Brush

Composing Parts: 
Mesh Drag-and-Drop
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MeshMixer
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Parametric boundary based deformation
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Two main tasks

1. Parameterize Local Region

Improved Discrete Exponential Map 

2. Deform Part based on boundary

COILS geometric deformer

Our “Upwind-Average” DEM
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Next Lecture…

Meshes, Discrete Differential Geometry, features.


