Topic 9: Visibility

- Elementary visibility computations:
 - Clipping
 - Backface culling
- Algorithms for visibility determination
 - Z-Buffer
 - Painter’s algorithm
 - Space partitions: BSP, AABB, OBB, octrees
Visibility Problem

What is NOT visible?
Visibility Problem

What is NOT visible?

primitives outside of the field of view
back-facing primitives
primitives occluded by other objects closer to the camera
Polygon Clipping (wrt to a single plane)

Input edge \((p_k, p_{k+1})\)
- in, in
- in, out
- out, out
- out, in

Output
- \(p_{k+1}\)
- \(p_{\text{intersect}}\)
- \(p_{\text{intersect}}, p_{k+1}\)
Polygon Clipping (wrt to a volume)

Clip with respect to each plane of the volume in sequence!

Does the order of the planes matter?

Does it work for concave polygons?

Does it work for concave volumes?
Polygon Clipping (when to clip?)

object → modeling transform → world → viewing transform → camera → projection transform → canonical view vol. 4D

screen → viewport transform → cannonical 2D → cartesianize perspective divide
Backface culling
Backface culling
Backface culling
N.V > 0 is a back face?
Backface culling

\[\mathbf{N} \cdot (\mathbf{P} - \mathbf{E}) > 0 \]
Backface culling (when to cull?)

Where in the graphics pipeline can we do backface culling?

@alec: Would be nice to redo this image
Does backface culling always determine visibility completely for a single object?
Occluded faces

In typical scenes some polygons will overlap, we must determine which portion of each polygon is visible to eye!
Painters Algorithm

Sort primitives in Z.

Draw primitives back to front (CBA).
Painters Algorithm

Problems

• Large faces
• Intersecting faces
• Cycles
BSP tree
AABB tree
Octree
Visibility Problem: Z-buffer, A-buffer

Z-buffer: rasterize each polygon in the scene, keeping track of the polygon closest to the eye at each pixel.

A-buffer: accumulate pixel contribution to handle transparent polygons.
Visibility Algorithms

Image space algorithms
- Operate in display terms pixels.
- Visibility resolved to display resolution
- Examples: Z-buffer, ray-tracing
- \(O(n \times \text{resolution}) \)

Object Space algorithms
- Analytically compute visible fragments
- Examples: painters algorithm, BSP
- \(O(n^2) \)