Introduction to spagetti and meatballs
Course web site (includes course information sheet):

http://www.dgp.toronto.edu/~karan/courses/418/

Instructors:

L0101, W 12-2pm
Karan Singh
BA 5258
978-7201
karan@dgp.toronto.edu

office hours: W 2-4pm
or by appointment.

L0201, T 3-5pm
Alec Jacobson
BA 5266
946-8630
jacobson@dgp.toronto.edu

office hours: T 5-7pm
or by appointment.

Textbooks: Fundamentals of Computer Graphics
OpenGL Programming Guide & Reference

Tutorials: (first tutorial next week)
This is a Green Course!

Your instructor has committed to reducing this course’s environmental impact.

sustainability.utoronto.ca #greenerUofT
Today’s Topics

0. Introduction: What is Computer Graphics?

1. Basics of scan conversion (line drawing)

2. Representing 2D curves
Topic 0.

Introduction:
What Is Computer Graphics?
What is Computer Graphics?

Computers:
accept, process, transform and present information.

Computer Graphics:
accept, process, transform and present information in a visual form.
Ok but... what is the course really about?

The science of turning the rules of geometry, motion and physics into (digital) pictures that mean something to people

What its not about?

Photoshop, AutoCAD, Maya, Renderman, Graphics APIs.

...**wow**, heavy math and computer science!!
Movies define directions in CG
Set quality standards
Driving medium for CG
Games

Games emphasize the interactivity and AI
Push CG hardware to the limits (for real time performance)
CG for prototyping and fabrication
Requires precision modeling and engineering visualization
Scientific and Medical Visualization, Operation

Requires handling large datasets
May need device integration
Real-time interactive modeling & visualization
GUIs, AR/VR, scanners...

Interaction with software & hardware, I/O of 3D data

Emphasis on usability
Computer Graphics: Basic Questions

• Form (modeling)
 How do we represent (2D or 3D) objects & environments?
 How do we build these representations?

• Function, Behavior (animation)
 How do we represent the way objects move?
 How do we define & control their motion?

• Appearance (rendering)
 How do we represent the appearance of objects?
 How do we simulate the image-forming process?
What is an Image?

Image = distribution of light energy on 2D “film”
Digital images represented as rectangular arrays of pixels
Form & Appearance in CG

- Camera
- Pixel array
- Illumination
- Shape/surface geometry & reflectance
The Graphics Pipeline

- Modeling
 - Geometry: points, curves, & surfaces
 - Scene Objects: parts, relations, & pose
 - Texture and reflectance (e.g., color, diffusivity, opacity, refractions)
 - ...

- Animation
 - Key-frame, motion capture, inverse kinematics, dynamics, behaviors, motion planning, ...

- Rendering
 - Visibility
 - Simulation of light (e.g., illuminants, emissive surfaces, scattering, transmission, diffraction, ...)
 - Special effects (e.g., anti-aliasing, motion blur, non-photorealism)
How do we represent an object geometrically on a computer?
Graphics Pipeline: Animation

Key-Framing

Physical simulation

Behavior rules
Graphics Pipeline: Rendering

Input: Scene description, lighting, camera
Output: Image that the camera will observe... accounting for visibility, clipping, projection,...
Course Topics

Principles

Theoretical & practical foundations of CG
(core mathematics, physics, modeling methods)

CG programming (assignments & tutorials)

• Experience with OpenGL (industry-standard CG library)
• Creating CG scenes
What You Will Take Away …

#1: yes, math IS useful in CS !!

#2: how to turn math & physics into pictures.

#3: basics of image synthesis

#4: how to code CG tools
Grading:

- 50%: 3 assignments handed out in class (25% 15% 10%).
- 50%: 1 test in class (15%) + 1 final exam (35%).
- First assignment: on web in two weeks.
- Wooden Monkey assignment on web now!
- Check web for schedule, dates, more details & policy on late assignments.

Tutorial sessions:

- Math refreshers, OpenGL tutorials, additional topics.
- Attendance STRONGLY encouraged since I will not be lecturing on these topics in class.

Lecture slides & course notes, already on web.
Topic 1.

Basic Raster Operations: Line Drawing

• A simple (but inefficient) line drawing algorithm
• Line anti-aliasing
2D Drawing

Common geometric primitives:

When drawing a picture, 2D geometric primitives are specified as if they are drawn on a continuous plane.

Drawing command:
Draw a line from point (10,5) to point (80,60)
In reality, computer displays are arrays of **pixels**, not abstract mathematical continuous planes.

In graphics, the conversion from continuous to discrete 2D primitives is called **scan conversion** or **rasterization**.
• **Scan conversion:** Given a pair of pixels defining the line’s endpoints & a color, paint all pixels that lie on the line.

• **Clipping:** If one or more endpoints is out of bounds, paint only the line segment that is within bounds.

• **Region filling:** Fill in all pixels within a given closed connected boundary of pixels.
Line Scan Conversion: Key Objectives

Accuracy:
pixels should approximate line closely.

Speed:
line drawing should be efficient

Visual Quality:
No discernable “artifacts”.

Digital line
Equation of a Line

Explicit: \(y = mx + b \)

Parametric:

\[x(t) = x_0 + (x_1 - x_0)*t \]
\[y(t) = y_0 + (y_1 - y_0)*t \]

\(P = P_0 + (P_1-P_0)*t \)
\(P = P_0*(1-t) + P_1*t \) (weighted sum)

Implicit: \((x-x_0)dy - (y-y_0)dx = 0 \)
Algorithm I

DDA (Digital Differential Analyzer)

Explicit form:
\[y = \frac{dy}{dx} \times (x-x_0) + y_0 \]

```c
float y;
int x;
dx = x1-x0; dy = y1 - y0;
m = dy/dx;
y = y0;
for ( x=x0; x<=x1; x++)
{
    setpixel (x, round(y));
    y = y + m;
}
```
Algorithm I (gaps when m≥1)

DDA (Digital Differential Analyzer)
Explicit form:

\[y = \frac{dy}{dx} (x-x_0) + y_0 \]

```c
float y;
int x;
dx = x1-x0; dy = y1 - y0;
m = dy/dx;
y= y0;
for ( x=x0; x<=x1; x++)
{
    setpixel (x, round(y));
    y= y + m;
}
```
Aliasing

Raster line drawing can produce a “jaggy” appearance.

• Jaggies are an instance of a phenomenon called \textit{aliasing}.
• Removal of these artifacts is called \textit{anti-aliasing}.
Anti-Aliasing

How can we make a digital line appear less jaggy?

Main idea: Rather than just drawing in 0’s and 1’s, use “in-between” values in neighborhood of the mathematical line.

Aliased line

Anti-aliased line

Intensity proportional to pixel area covered by “thick” line
Anti-Aliasing: Example

Aliased line

Anti-aliased line
2D Curve Representations

- Explicit representation
- Parametric representation
- Implicit representation
- Tangent & normal vectors
Curve represented by a function f such that:

$y=f(x)$

Line: $y=mx+b$

$f(a)$
Curve represented by a function f
such that:

$$y = f(x)$$
Parametric Curve Representation: Definition

Curve represented by two functions f_x, f_y
And an interval $[a, b]$
such that:

$$(x, y) = (f_x(t), f_y(t))$$

are points on the curve for t in $[a, b]$

A curve is closed when ??
Parametric Representation of a Line Segment

\[p(t) = p_0 + (p_1 - p_0) \times t, \quad 0 \leq t \leq 1 \]

\[0 \leq t \leq \infty : \text{ray from } p_0 \text{ through } p_1 \]
\[-\infty \leq t \leq \infty : \text{line through } p_0 \text{ and } p_1 \]

In general if \(p(t) = a_0 + a_1 t \), how do you solve for \(a_0, a_1 \)?
Line Segment as interpolation

\[p(t) = a_0 + a_1 t \]
Curve as interpolation (Catmull-Romm)

\[p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \]
Polygons

Polygon: A continuous piecewise linear closed curve.

Simple polygon: non-self intersecting.

Convex: all angles less than 180 degrees.

Regular: simple, equilateral, equiangular.

\[p_i = r(\cos(2\pi i/n), \sin(2\pi i/n)), \quad 0 \leq i < n \]
Representations of a Circle

Parametric:

\[p(t) = r(\cos(2\pi t), \sin(2\pi t)) , \quad 0 \leq t \leq 1 \]

Implicit:

\[x^2 + y^2 - r^2 = 0 \]
Representations of an Ellipse

Parametric:

\[p(t) = (a \cos(2\pi t), b \sin(2\pi t)), \ 0 \leq t \leq 1 \]

Implicit:

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \]
Curve tangent and normal

Parametric:

\[p(t) = (x(t), y(t)). \quad \text{Tangent: } (x'(t), y'(t)). \]

Implicit:

\[f(x, y) = 0. \quad \text{Normal: } \text{gradient}(f(x, y)). \]

Tangent and normal are orthogonal.