Introduction to spagetti and meatballs

CSC 418/2504: Computer Graphics

Course web site (includes course information sheet):
http://www.dgp.toronto.edu/~karan/courses/418/fall2015

Instructor: Karan Singh
Office: BA 5258
Phone: 978-7201
Email: karan@dgp.toronto.edu
Hours: W 2-4 (or by appointment)

Textbooks: Fundamentals of Computer Graphics
OpenGL Programming Guide & Reference

Tutorials: (first tutorial next week)

Today’s Topics

0. Introduction: What is Computer Graphics?
1. Basics of scan conversion (line drawing)
2. Representing 2D curves

What is Computer Graphics?

Computers:
accept, process, transform and present information.

Computer Graphics:
accept, process, transform and present information in a visual form.

Topic 0.

Introduction:
What Is Computer Graphics?
<table>
<thead>
<tr>
<th>Ok but... what is the course really about?</th>
<th>Movies</th>
</tr>
</thead>
<tbody>
<tr>
<td>The science of turning the rules of geometry, motion and physics into (digital) pictures that mean something to people</td>
<td>Movies define directions in CG</td>
</tr>
<tr>
<td>What its not about?</td>
<td>Set quality standards</td>
</tr>
<tr>
<td>Photoshop, AutoCAD, Maya, Renderman, Graphics APIs.</td>
<td>Driving medium for CG</td>
</tr>
<tr>
<td>...wow, heavy math and computer science!!</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Games</th>
</tr>
</thead>
<tbody>
<tr>
<td>Games emphasize the interactivity and AI</td>
</tr>
<tr>
<td>Push CG hardware to the limits (for real time performance)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG for prototyping and fabrication</td>
</tr>
<tr>
<td>Requires precision modeling and engineering visualization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scientific and Medical Visualization, Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires handling large datasets</td>
</tr>
<tr>
<td>May need device integration</td>
</tr>
<tr>
<td>Real-time interactive modeling & visualization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GUIs, AR/VR, scanners...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction with software & hardware, I/O of 3D data</td>
</tr>
<tr>
<td>Emphasis on usability</td>
</tr>
</tbody>
</table>
Computer Graphics: Basic Questions

• Form (modeling)
 How do we represent (2D or 3D) objects & environments?
 How do we build these representations?

• Function, Behavior (animation)
 How do we represent the way objects move?
 How do we define & control their motion?

• Appearance (rendering)
 How do we represent the appearance of objects?
 How do we simulate the image-forming process?

What is an Image?

Image = distribution of light energy on 2D “film”
Digital images represented as rectangular arrays of pixels

Form & Appearance in CG

The Graphics Pipeline

Modeling — Animation — Rendering

• Geometry: points, curves, & surfaces
• Scene Objects: parts, relations, & pose
• Texture and reflectance (e.g., color, diffusivity, opacity, refractions)
• …

• Key-frame, motion capture, inverse kinematics, dynamics, behaviors, motion planning, …

• Visibility
• Simulation of light (e.g., illuminants, emissive surfaces, scattering, transmission, diffraction, …)
• Special effects (e.g., anti-aliasing, motion blur, non-photorealism)

Graphics Pipeline: Modeling

How do we represent an object geometrically on a computer?

Graphics Pipeline: Animation

Physical simulation

Key-Framing

Behavior rules
Graphics Pipeline: Rendering

Input: Scene description, lighting, camera
Output: Image that the camera will observe... accounting for visibility, clipping, projection,...

Course Topics

Principles
Theoretical & practical foundations of CG (core mathematics, physics, modeling methods)

CG programming (assignments & tutorials)
- Experience with OpenGL (industry-standard CG library)
- Creating CG scenes

What You Will Take Away ...

#1: yes, math IS useful in CS !!
#2: how to turn math & physics into pictures
#3: basics of image synthesis
#4: how to code CG tools

Administrivia

Grading:
- 50%: 3 assignments handed out usually on WEDNESDAY (25% 15% 10%)
- 50%: 1 test in class (15%) + 1 final exam (35%)
- First assignment: on web in two weeks
- Wooden Monkey assignment on web!
- Check web for schedule, dates, more details & policy on late assignments

Tutorial sessions:
- Math refreshers, OpenGL tutorials, additional topics
- Attendance STRONGLY encouraged since I will not be lecturing on these topics in class

Lecture slides & course notes, already on web.

Topic 1.

Basic Raster Operations: Line Drawing

- A simple (but inefficient) line drawing algorithm
- Bresenham’s algorithm
- Line anti-aliasing

2D Drawing

Common geometric primitives:

When drawing a picture, 2D geometric primitives are specified as if they are drawn on a continuous plane

Drawing command:
Draw a line from point (10,5) to point (80,60)
In reality, computer displays are arrays of pixels, not abstract mathematical continuous planes. In graphics, the conversion from continuous to discrete 2D primitives is called scan conversion or rasterization.

Line Scan Conversion: Key Objectives

- **Accuracy:** pixels should approximate line closely.
- **Speed:** line drawing should be efficient
- **Visual Quality:** No discernable "artifacts".

Equation of a Line

- **Explicit:** \(y = mx + b \)
- **Parametric:**
 \[
 x(t) = x_0 + (x_1 - x_0)t \\
 y(t) = y_0 + (y_1 - y_0)t
 \]
 \[
 P = P_0 + (P_1-P_0)t \\
 P = P_0*(1-t) + P_1*t \quad \text{(weighted sum)}
 \]
- **Implicit:** \((x-x_0)dy - (y-y_0)dx = 0 \)

Algorithm I

DDA (Digital Differential Analyzer)

Explicit form:
\[
y = dy/dx * (x-x_0) + y_0
\]

```c
float y; int x;
dx = x1-x0; dy = y1-y0; m = dy/dx; y0 = y0 + 0.5;
for (x=x0; x<=x1; x++)
{
  setpixel(x, floor(y));
  y = y + m;
}
```

Algorithm I

DDA (Digital Differential Analyzer)

Explicit form:
\[
y = dy/dx * (x-x_0) + y_0
\]

```c
float y; int x;
dx = x1-x0; dy = y1-y0; m = dy/dx; y0 = y0 + 0.5;
for (x=x0; x<=x1; x++)
{
  setpixel(x, floor(y));
  y = y + m;
}
```
Algorithm II

Bresenham Algorithm

Slope is rational (ratio of two integers), \(m = \frac{y_1 - y_0}{x_1 - x_0} \).
Assume line slope \(<1\) (first quadrant), implying that in \(y_{i+1} = y_i + m \), \(y_{i+1} \) is never more than one unit away from \(y_i \).
If we only maintained the fractional part of \(y \), we could draw a line by incrementing \(y \) when this fraction exceeded one.

\[\text{fraction} += m; \quad \text{if} \ (\text{fraction} >= 1) \ {\Rightarrow} \ y = y + 1; \quad \text{fraction} -= 1; \]

If we initialize \(\text{fraction} \) with 0.5, then rounding off is handled.

Bresenham Algorithm: Implicit View

\[f(x,y) = x \cdot dy - y \cdot dx \]

\(f(x,y) < 0 \) // below the line
\(f(x,y) > 0 \) // above the line

\[\begin{align*}
\text{if } f(x+1,y) &= f(x,y) + dy - dx & \text{err'} &= \text{err} + 2dy - 2dx \\
\text{if } f(x+1,y+1) &= f(x+1,y) + dy - dx & \text{err'} &= \text{err} + 2dy - 2dx \\
\text{if } f(x+1,y+0.5) &= f(x,y) + dy - 0.5dx & \text{err'} &= \text{err} + 2dy \end{align*} \]

Aliasing

Raster line drawing can produce a “jaggy” appearance.

Jaggies are an instance of a phenomenon called aliasing. Removal of these artifacts is called anti-aliasing.

Anti-Aliasing

How can we make a digital line appear less jaggy?

Main idea: Rather than just drawing in 0’s and 1’s, use “in-between” values in neighborhood of the mathematical line.

Anti-Aliasing: Example

2D Curve Representations

- Explicit representation
- Parametric representation
- Implicit representation
- Tangent & normal vectors
Explicit Curve Representations: Definition
Curve represented by a function \(f \) such that:
\[
y = f(x)
\]
line: \(y = mx + b \)

Explicit Curve Representations: Limitations
Curve represented by a function \(f \) such that:
\[
y = f(x)
\]

Parametric Curve Representation: Definition
Curve represented by two functions \(f_x, f_y \)
And an interval \([a,b]\)
such that:
\[
(x,y) = (f_x(t), f_y(t))
\]
are points on the curve for \(t \) in \([a,b]\)

Parametric Representation of a Line Segment
\[
p(t) = p_0 + (p_1 - p_0) t, \quad 0 \leq t \leq 1
\]
\[
\theta \leq t \leq \infty : \text{ray from } p_0 \text{ through } p_1
\]
\[
-\infty \leq t \leq \infty : \text{line through } p_0 \text{ and } p_1
\]
In general if \(p(t) = a_0 + a_1 t \), how do you solve for \(a_0, a_1 \)?

Line Segment as interpolation
\[
p(t) = a_0 + a_1 t
\]

Curve as interpolation (Catmull-Rommm)
\[
p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3
\]
Polygons

Polygon: A continuous piecewise linear closed curve.

Simple polygon: non-self intersecting.

Convex: all angle less than 180 degrees.

Regular: simple, equilateral, equiangular.

\[n \text{-gon: } p_i = (\cos(2\pi i/n), \sin(2\pi i/n)) \text{, } 0 \leq i < n \]

```
  p0
  |   |
  |   |
  |   p1
  |   |
  |   |
  |   p2
```

Representations of a Circle

Parametric:
\[p(t) = (\cos(2\pi t), \sin(2\pi t)) \text{, } 0 \leq t \leq 1 \]

Implicit:
\[x^2 + y^2 - r^2 = 0 \]

```
  r
```

Representations of an Ellipse

Parametric:
\[p(t) = (a \cos(2\pi t), b \sin(2\pi t)) \text{, } 0 \leq t \leq 1 \]

Implicit:
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \]

```
  b
  |
  |
  |
  |
  a
```

Curve tangent and normal

Parametric:
\[p(t) = (x(t), y(t)) \text{. } \text{Tangent: } (x'(t), y'(t)) \text{. } \]

Implicit:
\[f(x, y) = 0 \text{. } \text{Normal: } \nabla f(x, y) \text{. } \]

\[f(x, y) = 0 \text{. } \text{Normal: } \nabla f(x, y) \text{. } \]