Introduction to spagetti and meatballs
CSC 418/2504: Computer Graphics

Course web site (includes course information sheet):

http://www.dgp.toronto.edu/~karan/courses/418/fall2015

Instructor: Karan Singh

Office: BA 5258
Phone: 978-7201
Email: karan@dgp.toronto.edu
Hours: W 2-4 (or by appointment)

Textbooks: Fundamentals of Computer Graphics
OpenGL Programming Guide & Reference

Tutorials: (first tutorial next week)
This is a Green Course!

Your instructor has committed to reducing this course’s environmental impact.

sustainability.utoronto.ca #greenerUofT
Today’s Topics

0. Introduction: What is Computer Graphics?

1. Basics of scan conversion (line drawing)

2. Representing 2D curves
What is Computer Graphics?

Computers:

accept, process, transform and present information.

Computer Graphics:

accept, process, transform and present information in a visual form.
Ok but... what is the course really about?

The science of turning the rules of geometry, motion and physics into (digital) pictures that mean something to people.

What its not about?

Photoshop, AutoCAD, Maya, Renderman, Graphics APIs.

...wow, heavy math and computer science!!
Movies define directions in CG
Set quality standards
Driving medium for CG
Games

Games emphasize the interactivity and AI
Push CG hardware to the limits (for real time performance)
Design

CG for prototyping and fabrication
Requires precision modeling and engineering visualization
Scientific and Medical Visualization, Operation

Requires handling large datasets
May need device integration
Real-time interactive modeling & visualization
GUIs, AR/VR, scanners...

Interaction with software & hardware, I/O of 3D data

Emphasis on usability
Computer Graphics: Basic Questions

- **Form (modeling)**
 How do we represent (2D or 3D) objects & environments?
 How do we build these representations?

- **Function, Behavior (animation)**
 How do we represent the way objects move?
 How do we define & control their motion?

- **Appearance (rendering)**
 How do we represent the appearance of objects?
 How do we simulate the image-forming process?
What is an Image?

Image = distribution of light energy on 2D “film”

Digital images represented as rectangular arrays of pixels
Form & Appearance in CG

- Camera
- Pixel array
- Illumination
- Shape/surface geometry & reflectance
The Graphics Pipeline

- Geometry: points, curves, & surfaces
- Scene Objects: parts, relations, & pose
- Texture and reflectance (e.g., color, diffusivity, opacity, refractions)
- ...

- Key-frame, motion capture, inverse kinematics, dynamics, behaviors, motion planning, ...

- Visibility
- Simulation of light (e.g., illuminants, emissive surfaces, scattering, transmission, diffraction, ...)
- Special effects (e.g., anti-aliasing, motion blur, non-photorealism)
How do we represent an object geometrically on a computer?
Graphics Pipeline: Animation

- Key-Framing
- Physical simulation
- Behavior rules
Input: Scene description, lighting, camera
Output: Image that the camera will observe... accounting for visibility, clipping, projection,...
Course Topics

Principles

Theoretical & practical foundations of CG
(core mathematics, physics, modeling methods)

CG programming (assignments & tutorials)

• Experience with OpenGL (industry-standard CG library)
• Creating CG scenes
What You Will Take Away ...

#1: yes, math IS useful in CS !!

#2: how to turn math & physics into pictures

#3: basics of image synthesis

#4: how to code CG tools
Grading:
- 50%: 3 assignments handed out usually on WEDNESDAY (25% 15% 10%)
- 50%: 1 test in class (15%) + 1 final exam (35%)
- First assignment: on web in two weeks
- Wooden Monkey assignment on web!
- Check web for schedule, dates, more details & policy on late assignments

Tutorial sessions:
- Math refreshers, OpenGL tutorials, additional topics
- Attendance STRONGLY encouraged since I will not be lecturing on these topics in class

Lecture slides & course notes, already on web.
Topic 1.

Basic Raster Operations: Line Drawing

- A simple (but inefficient) line drawing algorithm
- Bresenham’s algorithm
- Line anti-aliasing
2D Drawing

Common geometric primitives:

- Line
- Circle
- Triangle
- Arc

When drawing a picture, 2D geometric primitives are specified as if they are drawn on a continuous plane.

Drawing command:
Draw a line from point (10,5) to point (80,60)
2D Drawing

In reality, computer displays are arrays of **pixels**, not abstract mathematical continuous planes.

In graphics, the conversion from continuous to discrete 2D primitives is called **scan conversion** or **rasterization**.
1. Scan conversion

Given a pair of pixels defining the line’s endpoints & a color, paint all pixels that lie on the line

2. Clipping

If one or more endpoints is out of bounds, paint only the line segment that is within bounds

3. Region filling
Line Scan Conversion: Key Objectives

Accuracy:
pixels should approximate line closely.

Speed:
line drawing should be efficient

Visual Quality:
No discernable “artifacts”.

Digital line
Equation of a Line

Explicit: \(y = mx + b \)

Parametric:
\[
\begin{align*}
 x(t) &= x_0 + (x_1 - x_0) \cdot t \\
 y(t) &= y_0 + (y_1 - y_0) \cdot t
\end{align*}
\]

\[P = P_0 + (P_1 - P_0) \cdot t \]
\[P = P_0 \cdot (1-t) + P_1 \cdot t \quad \text{(weighted sum)} \]

Implicit: \((x-x_0)dy - (y-y_0)dx = 0 \)
Algorithm I

DDA (Digital Differential Analyzer)

Explicit form:
\[y = \frac{dy}{dx} \times (x-x_0) + y_0 \]

float y;
int x;
dx = x_1 - x_0; dy = y_1 - y_0;
m = dy/dx;
y = y_0 + 0.5;
for (x=x_0; x<=x_1; x++)
{
 setpixel (x, floor(y));
 y = y + m;
}
DDA (Digital Differential Analyzer)

Explicit form:
\[y = \frac{dy}{dx} \times (x-x_0) + y_0 \]

```c
float y;
int x;
dx = x1-x0; dy = y1 - y0;
m = dy/dx;
y = y0 + 0.5;
for ( x=x0; x<=x1; x++)
{
    setpixel (x, floor(y));
    y = y + m;
}
```
Bresenham Algorithm

Slope is rational (ratio of two integers). \(m = (y_1 - y_0) / (x_1 - x_0) \).
Assume line slope <1 (first quadrant), implying that in \(y_{i+1} = y_i + m \),
\(y_{i+1} \) is never more than one unit away from \(y_i \).
If we only maintained the fractional part of \(y \), we could draw a line by incrementing \(y \) when this fraction exceeded one.

\[
\text{fraction} += m; \text{if (fraction} >= 1) \{ \text{y} = \text{y} + 1; \text{fraction} -= 1; \}
\]

If we initialize fraction with 0.5, then rounding off is handled
Bresenham Algorithm: *Implicit View*

\[f(x,y) = x dy - y dx = 0 \] // for points on the line
\[> 0 \] // below the line
\[< 0 \] // above the line

\[f(x+1,y + 0.5) = f(x,y) + dy - 0.5 dx \]
\[f(1,0.5) = dy - 0.5 dx \]

-ve: pick (1,0)
+ve: pick (1,1)

\[\text{err} = 2f(x+1,y + 0.5) = 2f(x,y) + 2dy - dx \] // getting rid of the float

-ve: \[2f(x+1,y) = 2f(x,y) + 2dy \]
+ve: \[2f(x+1,y+1) = f(x,y) + dy - dx \]
\[\text{err} = \text{err} + 2dy \]
\[\text{err'} = \text{err} + 2dy - 2dx \]
Aliasing

Raster line drawing can produce a “jaggy” appearance.

- Jaggies are an instance of a phenomenon called **aliasing**.
- Removal of these artifacts is called **anti-aliasing**.
How can we make a digital line appear less jaggy?

Main idea: Rather than just drawing in 0’s and 1’s, use “in-between” values in neighborhood of the mathematical line.
Anti-Aliasing: Example

Aliased line

Anti-aliased line
Topic 2.

2D Curve Representations

- Explicit representation
- Parametric representation
- Implicit representation
- Tangent & normal vectors
Curve represented by a function f such that:

$y = f(x)$

line: $y = mx + b$
Curve represented by a function f
such that:

\[y = f(x) \]
Parametric Curve Representation: Definition

Curve represented by two functions \(f_x, f_y \)

And an interval \([a, b]\)

such that:

\[(x, y) = (f_x(t), f_y(t)) \]

are points on the curve for \(t \) in \([a, b]\)

A curve is closed when??

Parametric Representation of a Line Segment

\[p(t) = p_0 + (p_1 - p_0) \times t, \quad 0 \leq t \leq 1 \]

\[0 \leq t \leq \infty : \text{ray from } p_0 \text{ through } p_1 \]

\[-\infty \leq t \leq \infty : \text{line through } p_0 \text{ and } p_1 \]

In general if \(p(t) = a_0 + a_1 \times t \), how do you solve for \(a_0, a_1 \) ?
$p(t) = a_0 + a_1 t$
Curve as interpolation (Catmull-Romm)

\[p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \]
Polygons

Polygon: A continuous piecewise linear closed curve.

Simple polygon: non-self intersecting.

Convex: all angle less than 180 degrees.

Regular: simple, equilateral, equiangular.

\[n\text{-gon}: p_i = r(\cos(2\pi i/n), \sin(2\pi i/n)), \quad 0 \leq i < n \]
Representations of a Circle

Parametric:

\[p(t) = r(\cos(2\pi t), \sin(2\pi t)), \ 0 \leq t \leq 1 \]

Implicit:

\[x^2 + y^2 - r^2 = 0 \]
Representations of an Ellipse

Parametric:

\[p(t) = (a \cos(2\pi t), b \sin(2\pi t)), \quad 0 \leq t \leq 1 \]

Implicit:

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \]
Curve tangent and normal

Parametric:

\[p(t) = (x(t), y(t)). \quad \text{Tangent: } (x'(t), y'(t)). \]

Implicit:

\[f(x,y) = 0. \quad \text{Normal: } \text{gradient}(f(x,y)). \]