
Locomotion Synthesis Methods for Humanoid Characters

by

Jack Meng-Chieh Wang

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright© 2010 by Jack Meng-Chieh Wang



ii



Abstract

Locomotion Synthesis Methods for Humanoid Characters

Jack Meng-Chieh Wang

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2010

This thesis introduces locomotion synthesis methods for humanoid characters. Motion

synthesis is an under-constrained problem that requires additional constraints beyond

user inputs. Two main approaches to introducing additional constraints are physics-based

and data-driven. Despite significant progress in the past 20 years, major difficulties still

exist for both approaches. In general, building animation systems that are flexible to user

requirements while keeping the synthesized motions plausible remain a challenging task.

The methods introduced in this thesis, presented in two-parts, aim to allow animation

systems to be more flexible to user demands without radically violating constraints that

are important for maintaining plausibility.

In the first part of the thesis, we address an important subproblem in physics-based

animation — controller synthesis for humanoid characters. We describe a method for

optimizing the parameters of a physics-based controller for full-body, 3D walking. The

objective function includes terms for power minimization, angular momentum minimiza-

tion, and minimal head motion, among others. Together these terms produce a number of

important features of natural walking, including active toe-off, near-passive knee swing,

and leg extension during swing. We then extend the algorithm to optimize for robust-

ness to uncertainty. Many unknown factors, such as external forces, control torques,

and user control inputs, cannot be known in advance and must be treated as uncertain.

Controller optimization entails optimizing the expected value of the objective function,

iii



which is computed by Monte Carlo methods. We demonstrate examples with a variety

of sources of uncertainty and task constraints.

The second part of this thesis deals with the data-driven approach and the problem of

motion modeling. Defining suitable models for human motion data is non-trivial. Simple

linear models are not expressive enough, while more complex models require setting

many parameters and are difficult to learn with limited data. Using Bayesian methods,

we demonstrate how the Gaussian process prior can be used to derive a kernelized version

of multilinear models. The result is a locomotion model that takes advantage of training

data addressed by multiple indices to improve generalization to unseen motions.

iv



Acknowledgements

I will be forever grateful to my advisors Aaron Hertzmann and David Fleet for their

guidance and support over the past six years. I learned from Aaron to be ambitious, be

ready to cross field boundaries, and that “it’s not research if you already know how to

do it.” David showed me how it is actually possible to be a great researcher, teacher,

and family man all at the same time. Most importantly, the results presented in this

thesis would not have been possible without both of their deep involvement and crucial

contributions.

Many thanks go to the rest of my committee: Eugene Fiume, Karan Singh, and external

examiner Jessica Hodgins for their feedbacks and comments to improve this document,

as well as their availability to meet on short notice for numerous checkpoints.

Thanks to John Hancock for all the technical support over the years. I’m indebted

to Peter O’Donovan for his tireless video production efforts for the SIGGRAPH Asia

submission, and Martin de Lasa and Igor Mordatch for inspiring technical discussions.

Thanks to Nikolaus Troje for providing the ground truth motion capture data used

in Chapters 3 and 4, Michiel van de Panne and KangKang Yin for providing detailed

information regarding SIMBICON, and Nikolaus Hansen for his publicly available CMA

implementation. Early discussions between Zoran Popović and Aaron Hertzmann help

inspired Chapter 4. The motion capture data used in Chapters 5 and 6 were obtained

from the CMU motion capture database.

I have personally been funded by the Natural Sciences and Engineering Research Council

of Canada (NSERC), in the form of a Postgraduate Scholarship and a Canada Gradu-

ate Scholarship. Additionally, this research has been supported in part by the Alfred

P. Sloan Foundation, Canadian Foundation for Innovation, Canadian Institute for Ad-

vanced Research, Microsoft Research, NSERC, and the Ontario Ministry of Research and

Innovation.

I want to acknowledge many more faculties, postdocs, visitors, and students I had the

pleasure to meet during graduate school, including Anand Agarawala, Ravin Balakrish-

nan, Xiaojun Bi, Simon Breslav, Marcus Brubaker, Gerry Chu, Fanny Chevalier, Patrick

Coleman, Mike Daum, Pierre Dragicevic, Irene Fung, Tovi Grossman, Sam Hasinoff,

v



Allan Jepson, Alex Kolliopoulos, Kyros Kutulakos, Joe Laszlo, Christian Lessig, Noah

Lockwood, Shahzad Malik, Nigel Morris, Tomer Moscovich, Matthew O’Toole, Faisal

Qureshi, Abhishek Ranjan, Ryan Schmidt, Leon Sigal, Patricio Simari, Eron Steger,

Huixuan Tang, Khai Truong, Raquel Urtasun, Koji Yatani, and Jian Zhao. Their in-

fluences on me through lectures or countless discussions over (lunch/dinner/coffee/beer)

have been immeasurable. Thanks in particular to Koji for sharing my habit of having

lunch on Spadina and dinner on Bloor pretty much every day for the longest time. Ab-

hishek, Alex, and Eron were fellow co-founders of DAG, which will always have a special

place in my heart.

Thanks to my friends from undergrad (it’s been almost 10 years!) who have settled

down in Toronto: Vince Chan, Jimmy Chen, Rachel Lin, and Richard Lin for their

lasting friendships. Thanks to Bryan Chan, who has always been a source of inspiration.

Thanks also to Kevin Chang and Jonathan Lee, who have become fellow travelers in

academia, for sharing their experiences and frustrations from elsewhere.

Raymond Gardener, Emidio Iacobucci, Shawn Oh, Bala Sachithananthan, and Thiru

Siva have been my close friends since high school (15 years!!). I owe my adaptation to

the Canadian life style and whatever success I may have had afterwards to their company.

Finally, thanks as always to my family — my sister Jenny, for always being a friend and

having to share an apartment with me for many years, her husband Stéphane and his

brother Jean-Nicolas. My deepest thanks go to Mom, Dad and Grandma, without whom

this degree would never have been finished, for their full support and confidence in me.

vi



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Optimizing Physics-based Walking Controllers 7

2 Physics-based Motion Synthesis and Control 9

2.1 Forward simulation and control . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Controller synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Trajectory optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Covariance matrix adaptation . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Optimizing for a Human-like Gait 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Character model and controllers . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Controller optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Optimizing for Robustness to Uncertain Environments 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Optimal control under uncertainty . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Deterministic simulation and optimization . . . . . . . . . . . . . 47

vii



4.3.2 The return function . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Random environments and optimal control . . . . . . . . . . . . . 50

4.3.4 Evaluation and optimization . . . . . . . . . . . . . . . . . . . . . 52

4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 External disturbances . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Interactive user control . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 Motor noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.4 Recovery controllers . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.5 Transition between speeds . . . . . . . . . . . . . . . . . . . . . . 62

4.4.6 Composing many controllers at run-time . . . . . . . . . . . . . . 63

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

II Gaussian Process Models for Human Motion 65

5 Data-driven Prior Models of Human Motion 67

5.1 Motion databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Gaussian process dynamical models . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 GPDM learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 A Gaussian Process Extension of Multilinear Models 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Multifactor Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.2 A simple two-factor model . . . . . . . . . . . . . . . . . . . . . . 87

6.2.3 General multifactor models . . . . . . . . . . . . . . . . . . . . . 88

6.3 A model for human motion . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.2 Motion synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.1 A special case for fast matrix inversion . . . . . . . . . . . . . . . 98

III Conclusion 101

7 Conclusion and Future Work 103

Bibliography 107

ix



x



Chapter 1

Introduction

The creation of character animation, or motion synthesis, is central to applications rang-

ing from the production of feature films to interactive computer games. In particular, a

long-standing goal is to create interactive characters that can walk, jump, play soccer,

and perform other everyday motor skills that humans take for granted. For this to be

accomplished, the creation of character animation must be as effortless and intuitive for

users as possible, which places a limitation on the amount of information a good system

can expect as input. For example, it is desirable to minimize the amount of keyframes

required to generate a given animation. The actual range of user inputs differs depend-

ing on the specific application. In the most extreme case, autonomous characters with

behavior models are expected to function without inputs. Players of interactive games

give high-level commands such as “walk forward”, “stop”, or “turn left”. On the other

hand, animators working on feature productions specify highly specific constraints on the

motion; such as “place the character’s hand at coordinate (5.5, 3.2, 10.0) at frame 25.”

A character’s motion is typically described by a sequence of poses, which is a time-

series of high-dimensional vectors. Even in the most specific case, user constraints are

not enough to uniquely specify the motion. Though the specific requirements of an

animation system vary based on the application, fundamentally, it needs to solve the

under-constrained problem of mapping user requirements to full-body motion. Hence,

the animation system needs to select between many possible solutions, some of which

are stylistically more appealing and physically more plausible than others. The key to

recovering good solutions is to design algorithms that account for our prior knowledge

1



2 Chapter 1. Introduction

about the motion being recovered.

Two promising sources of prior knowledge are from the laws of physics combined with

biomechanics, and empirical observations of human motion. Correspondingly, they have

been referred to as physics-based and data-driven approaches, and have been the two

main paradigms of research in character animation. Physics-based animation relies on

limiting the solutions to ones that, among other things, satisfy equations of motion given

a biomechanically plausible simplified character model, whereas data-driven approaches

typically restrict solutions to ones that are near observed motion capture (mocap) data.

The two approaches are by no means mutually exclusive. For example, everyday activities

that are difficult to simulate can often be easily performed in a mocap studio, whereas the

dangerous motion of a character falling down stairs can be generated through simulation.

A more specific point is that, if one wants to play an animation clip without the need for

interaction, and clips containing very similar poses are available in the form of motion

capture data or previously created animation, then a data-driven approach is sufficient.

On the other hand, if environmental interaction or other forms of generalization to unseen

poses and motions are desired, then additional physics-based constraints are likely needed

to ensure the plausibility of the generalizations. It is natural to argue that an effective

animation system should make use of both approaches. Indeed, hybrid systems, proposing

different forms of integration, have been receiving increasing attention in the research

literature [18,60,71,94,112,139]. We take the point of view that active research in both

physics-based and data-driven methods of motion synthesis are important, as future

systems are likely to depend on elements of both approaches.

In general, a trade-off that needs to be considered by animation systems is between flexi-

bility and plausibility — being flexible to user requirements while keeping the synthesized

motions plausible. The incorporation of physics-based and data-driven constraints is par-

ticularly important for addressing the issue of plausibility. For example, by adopting a

physics-based forward simulation and control approach, the synthesized motion is guaran-

teed to satisfy equations of motion. Similarly, from the data-driven point of view, one can

also restrict solutions to be only from available mocap data. However, despite impressive

demonstrations such as autonomous creatures learning to move in physically consistent

ways [28,29,76,99,117,118] and interactive systems built upon motion graphs [5,44,52,93],

generating motions to satisfy specific user constraints remain difficult.



3

The primary issue is that, by maintaining plausibility with hard constraints, the anima-

tion system becomes highly inflexible in the motions it is able to synthesize. Indeed, it

could be argued that an ideal system for motion synthesis is one that is able to satisfy

any reasonable user demands with only motions that satisfy plausibility constraints. This

issue manifests itself in different ways depending on the approach taken. For physics-

based simulation and control, the hard constraints are in theory not overly restrictive, but

motion synthesis for even mundane desired actions is difficult. For example, a controller

intended for walking could easily make the character fall to the ground, or generate gaits

that appear robotic and unnatural. On the other hand, while it is not too difficult to

obtain mocap data of human walking, we are highly constrained by amount of available

data relative to the range of possible human motion. Namely, it is difficult to modify

or interact with the mocap data in a reasonable way. We introduce methods to address

problems in both domains in a two-part thesis. Though the techniques we introduce

in the parts are disjoint, the problems we address are all aimed to allow the animation

system to be more flexible to user demands, without radically violating constraints that

are important for maintaining plausibility.

The first part of this thesis deals with the physics-based approach. In particular, we

will define controllers for 3D human-like characters. Controllers are mappings from the

current state of the character to force outputs by virtual muscles, which are joints in our

case, such that desired activities can be achieved in a forward physical simulation. This

approach to motion synthesis has the potential to generate virtual characters that can

react to environmental or interactive disturbances without relying on prerecorded motion

data. However, controllers are extremely difficult to specify. For example, a reliable way

to define robust and stylistically appealing walking controllers still remains elusive, and

is the main problem addressed in this thesis.

A fundamental problem in manually designing locomotion controllers is that while there

exists principles such as the zero-moment point criterion [124] and other heuristics from

humanoid robotics for increasing stability and robustness, their implementation typically

require high-gain, precise joint trajectory tracking that is beyond the capability of human

muscles and require much higher energy [15]. As a result, the motion styles resulting from

these controllers are typically robotic and unnatural. Compared to mainstream humanoid

robots, people move in ways that are inherently more passive and less cautious, yet we

do not easily trip or fall. On the other hand, except for highly simplified low-dimensional



4 Chapter 1. Introduction

models, automatic controller synthesis methods have not shown promise in 3D humanoid

locomotion so far.

In Chapters 2 to 4, we provide evidence to support the main thesis that, without relying

on existing motion data, an automatic optimization technique can be used to synthesize

walking controllers for 3D humanoid virtual characters that are both robust to environ-

mental disturbances and captures important features of human walking. We first demon-

strate the viability of this idea by generating straight walking controllers for characters

of varying body shapes and different speeds and step lengths. We then incorporate envi-

ronmental and other disturbances in the optimization process to increase the robustness

of the solutions to specific types of disturbances.

The second part of this thesis deals with the data-driven approach and the problem of

motion modeling. Fitting a model to data is a principled method to generalize from

available motion data, and has the added benefit of being able to evaluate the likelihood

of new motions, as oppose to just synthesis. The latter feature makes motion modeling

useful to motion analysis applications beyond computer animation. However, finding

suitable models for human motion data is non-trivial. Simple models such as linear

dynamical systems are not expressive enough, while more complex models require setting

many parameters and are difficult to learn with limited data. In Chapters 5 and 6, we

present a Bayesian approach to modeling existing motion data. We demonstrate how the

Gaussian process prior can be used to derive a kernelized version of multilinear models.

The result is a locomotion model that takes advantage of training data addressed by

multiple indices to improve generalization to unseen motions.

1.1 Contributions� We describe a method for optimizing the parameters of a physics-based controller

for full-body, 3D walking. The objective function includes biomechanically mo-

tivated terms for power, angular momentum, and head movement minimization.

These terms produce a number of important features of natural walking, such as

active toe-off, near-passive knee swing, and leg extension (Chapter 3).� Many factors such as external forces, control torques, and user control inputs cannot



1.1. Contributions 5

be known in advance and must be treated as uncertain when designing controllers.

We show that controllers can be optimized with respect to an expected return func-

tion approximated with Monte Carlo methods. The optimization under uncertainty

increases robustness, produces interesting variations in style, and can be applied to

build transition controllers for the problem of controller composition (Chapter 4).� Chapters 3 and 4 together demonstrate the viability of automatic optimization

for 3D walking controller synthesis from a set of simple biomechanical principles.

Previous work in control optimization have dealt with much lower dimensional

creatures, required reference motion data, or assumed the availability of a stable

initial controller.� We propose an extension of multilinear models using Gaussian processes. By taking

advantage of data addressed by multiple indices (e.g., identity, style, gender), the

proposed multifactor model improves the generalization ability of existing Gaussian

process models of human motion. We demonstrate the approach using time-series

prediction, and by synthesizing novel animation from the model (Chapter 6).

Contributions in the aforementioned chapters have been previously published in the ACM

Transactions on Graphics (Proceedings of SIGGRAPH and SIGGRAPH Asia) [128,129],

and at the International Conference on Machine Learning [126]. We refer to accompany-

ing videos containing important illustrations of results throughout the thesis. Specifically,

they can be found in the following websites:

http://www.dgp.toronto.edu/~jmwang/optwalk/

http://www.dgp.toronto.edu/~jmwang/optuie/

http://www.dgp.toronto.edu/~jmwang/gpsc/ .



6 Chapter 1. Introduction



Part I

Optimizing Physics-based Walking

Controllers

7





Chapter 2

Physics-based Motion Synthesis and

Control

In this chapter, we provide background for Chapters 3 and 4. We first give an example

of how motions satisfying the equations of motion can be formulated and solved as an

initial value problem and how controllers can influence the solutions. Related work

on methods for controller synthesis, and automatic methods of trajectory optimization

are then reviewed. Finally, we describe covariance matrix adaptation (CMA) [31], the

derivative-free optimization algorithm used extensively in subsequent chapters.

2.1 Forward simulation and control

A character’s pose can be described by a high-dimensional vector, and a sequence of such

vectors describes the character’s motion. It is not difficult to see that out of all possible

motions, only a very small portion is physically plausible. Therefore, simply restricting

the motion to satisfy the laws of physics removes a significant portion of unlikely motions.

Additional hard/soft constraints can be placed on the forces used to drive the simulation,

either in the form of a limited control parameterization or a preference for small forces.

We model a humanoid character as a collection of rigid bodies connected by joints. The

motion satisfies physical constraints if the trajectories of all of the rigid bodies follow

Newton’s equations of motion, subject to contact and joint constraint forces.

9



10 Chapter 2. Physics-based Motion Synthesis and Control

z

y

x

Figure 2.1: The humanoid model and joint degrees
of freedom (DOF). The values and derivatives of 30
joint DOFs plus six global DOFs form a 72 dimen-
sional state vector.

Let y denote the state vector describing the position and velocities of rigid bodies in the

simulation at a given instant. The equations of motion can be written as a first order

ordinary differential equation in the form of

ẏ = f(y, t) . (2.1)

Given y0, the simulation state at t = 0, finding future values of y is a standard initial

value problem, and can be solved numerically. For example, Euler’s method entails

recursively computing

y(t+ h) = y(t) + hf(y(t), t) , (2.2)

where h is the simulation step size, and y(t) is the state at time t. The resulting state

trajectory, corresponding to a character’s motion, satisfies physical constraints up to the

accuracy of the numerical solution.

The evolution of the state over time is dictated by f , as shown by (2.1). To see how

control forces influence f , we will consider a simple example. For a single rigid body, the

state vector y must describe both its position and orientation, and the translational and



2.1. Forward simulation and control 11

angular velocities. One standard choice is to let

y =















x

R

p

L















, (2.3)

where x ∈ R
3 is the position of the body’s center of mass, R is a 3 by 3 rotation matrix1

about x. p ∈ R
3 is the body’s linear momentum, and L ∈ R

3 is the angular momentum.

The momenta variables encode the velocity information of the rigid body. In order to

compute them, we need to specify two additional quantities: the total mass of the body

M and the object space inertia tensor Iobj . These quantities relate the linear and angular

momenta of the body to its velocities, and remain constant throughout the simulation:

p =Mv (2.4)

L = Iω , (2.5)

where v is the velocity of the center of mass, ω = [ωx, ωy, ωz]
T is the angular velocity.

The direction of ω indicates the axis of rotation, while its magnitude gives the angular

speed. The body’s angular velocity and its angular momentum are related by the inertia

tensor, defined as

I =

∫

x

∫

y

∫

z

ρ(x, y, z)









y2 + z2 −xy −xz
−yx x2 + z2 −yz
−zx −zy x2 + y2









dxdydz , (2.6)

where ρ(x, y, z) is the mass density of the object at a point (x, y, z), expressed relative

to x, and δij is the Kronecker delta function. The specific form of I depends on the

choice of coordinate frame, which changes as the body rotates during the simulation. In

fact, if we define Iobj as what is given by (2.6) at the start of the simulation, it can be

shown that I = RIobjR
T , which means the inertia tensors during simulation can always

be computed from the initial object space inertia tensor.

In particular, since I is real and symmetric, there exists a coordinate frame such that I

1We abuse the notation and assume R is flattened to a column vector when placed in y.



12 Chapter 2. Physics-based Motion Synthesis and Control

is diagonal. For example, a solid cylinder centered at the origin, aligned with the z-axis

with radius r, height h, and mass m has inertia tensor:

I =









1
12
m(3r2 + h2) 0 0

0 1
12
m(3r2 + h2) 0

0 0 1
2
mr2









. (2.7)

The diagonal elements are called moments of inertia, and are rotational analogs of mass

about the x, y, and z-axis, respectively. Notice that increasing the height of the cylinder

does not change the cylinder’s tendency to rotate about the z-axis. In practice, the object

space coordinate frame is often chosen such that the inertia tensor Iobj is diagonal.

To form the differential equation, the time derivatives of the state variables need to

be computed. The center of mass velocity can simply be computed from the linear

momentum ẋ = v = p

M
. The angular velocity can be computed from angular momentum

ω = I−1L, and can then be used to compute the derivative of the orientation matrix.

Specifically, let

Ω =









0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0









, (2.8)

then it can be shown that Ṙ = ΩR. Finally, derivatives of linear and angular momenta

are the external force (f) and torque (τ ) applied to the center of mass, as can be derived

from the equations of motion. The differential equation (2.1) can be written as

ẏ =















v

ΩR

f

τ















. (2.9)

It should be clear that other than changing the initial conditions, the only way to influence

the resulting motion (while keeping the rest of the simulation parameters fixed) is through

changing f̂ = [f , τ ] over time, which we can further decompose as f̂ = f̂e + f̂i. The

f̂e component of force results from environmental interactions such as gravity, ground

contact, and forces due to other constraints. Setting f̂ = f̂e is sufficient if we are simulating

a purely passive scenario, such as a brick falling under gravity. On the other hand, if the



2.1. Forward simulation and control 13

brick has a motor attached to it, then finding a f̂i trajectory (subject to the limitations

of the motor) such that the brick reaches a particular location is an example of a control

problem. A controller is an algorithm that determines the motor outputs over time,

which in turn is mapped to f̂i, and is the only way to influence the rigid body’s motion

during the simulation.

The rigid body example serves as an illustration of how forces influence the solution to the

initial value problem, which is in part based on Witkin and Baraff’s course notes [130].

We refer the interested readers to these notes for a more extensive and general tutorial on

physics-based modeling. The problem of simulating and controlling a humanoid character

is more complex, but similar in spirit. Since the character is modeled as rigid bodies

connected by joints, the equations of motion need to also ensure the connections do not

break apart during the simulation. Conceptually, this can be done by expanding (2.9)

to include all the body parts and apply the correct f̂e’s to maintain the joint constraints.

In practice, simultaneously solving for all correct constraint forces is non-trivial, and a

re-derivation of the equations of motion based on for example the principle of virtual

work is necessary [25].

Alternatively, the state vector of the system can be re-parameterized in terms of general-

ized coordinates, which implicitly define the constraints. For example, the character can

be parameterized in terms of its joint angles instead of the position and orientation of

each of the parts. Methods of Lagrangian mechanics [108] can be used to derive the equa-

tions of motion in this case. The use of generalized coordinates is mathematically more

elegant and guarantees that constraints are satisfied exactly, but a new set of equations

must be derived whenever the kinematic structure of the character changes.

Regardless of the simulation methods, a controller for a typical humanoid character is

only allowed to generate torques at the joints as an abstraction to more realistic muscle

models.2 Since arbitrary forces can not be applied directly to any body part, the system

is underactuated. In particular, the global position and orientation of the character can

only be controlled indirectly. For example, taking a step forward requires the correct

joint torques to generate the correct ground reaction forces that moves the torso forward.

It should be clear that, unlike data-driven animation methods based on motion capture

2Allowing for forces to be directly applied to the torso would be akin to letting the character carry
a jetpack.



14 Chapter 2. Physics-based Motion Synthesis and Control

(mocap) data, where it is challenging to generalize to new motions, the main difficulty

with physical constraints is to control the generated motions. Fundamentally, determin-

ing effective control algorithms to satisfy user constraints, often defined in pose space, is

extremely challenging for human motion.

2.2 Controller synthesis

Animation researchers have tried to design controllers for specific activities such as loco-

motion for virtual characters [87], human athletics [39], and swimming [134]. Somewhat

surprisingly, the most basic form of human locomotion – walking, has proven to be one of

the most challenging control algorithms to design. Full-body walking controllers in graph-

ics have been mostly based on hand-tuned state machine models [22, 48, 137]. Perhaps

the most important such model is the recent SIMBICON controller by Yin et al. [137].

While remarkably robust, and capable of producing several styles, it produces motions

that differ in several key ways from human walking. For example, it relies significantly

on the hip to generate forward momentum, while normal human walking relies heavily

on the ankle, with a near-passive knee [78]. As a consequence, SIMBICON produces a

marching-like gait.

While most efforts in controller synthesis have been devoted to basic motor skills (e.g.,

walking, running, reaching, etc.), complex motions can be executed if the basic skills can

be composed and transitioned to each other in a sensible way. Impressive complex ani-

mations can be generated by constructing a graph structure connecting basic hand tuned

controllers [22, 137]. Successful transitioning is ensured by requiring basic controllers to

specific pre and post conditions on the state space. Coros et al. [16] learn optimal control

policies to transition between low-level controllers to accomplish different tasks. These

methods assume that the low-level controllers, and hence the motion style, are specified

in advance and fixed. Our approach in the following chapters complements these, as we

focus on learning low-level controllers, including those capable of making transitions.

Controller synthesis is a fundamental problem in robotics. While the real world intro-

duces additional complexities, many of the design goals for control algorithms are shared

by animation researchers. The control strategy should be robust, reliable, and ideally

look natural. Indeed, Raibert and Hodgins used their work on legged robots [38, 86] as



2.2. Controller synthesis 15

a starting point, in some of the most important early work on applying controllers to

animation [87]. Burridge et al. [11] demonstrated a funneling approach for controller com-

position on a paddle robot. The recently developed humanoid robots such as Honda’s

ASIMO [36], as well as robots at Waseda University [79] and KAIST [40], have com-

parable physical complexity and degrees of freedom to virtual humanoids of interest in

animation. They require sophisticated control algorithms that could potentially be useful

for animation as well. However, the walking gaits produced by these humanoid robots to-

date are still highly distinct from humans. One glaring difference is the constant bending

of the knee during walking, which is still being addressed by ongoing research [41, 79].

It has been observed in the early robotics literature that simple bipeds without motors,

called passive dynamic walkers, can be designed to walk downhill indefinitely [68]. Con-

trollers based on passive dynamics have been used to predict observed properties of human

walking [46], and building powered bipedal robots that can walk on level ground [15].

They have also been used as basis for 3D human tracking [10]. These models share

an energy consumption pattern similar to human beings [15], but are highly specific to

walking. This is in contrast with the mainstream humanoid robots mentioned previously,

where the control is largely based on precise tracking of joint trajectories generated to

say, satisfy the zero-moment point criterion [124], which require much more energy. In-

corporating elements of passive dynamics into controlling more complex motions, passive

or not, remains an interesting open problem.

The design of controllers is time consuming, and is usually limited to highly specific tasks.

Therefore the potential of using learning techniques to automatically generate controllers

is extremely attractive. Reinforcement learning problems deal with decision making in an

uncertain environment [104]. In this context, the character being simulated is an agent

operating in a physical environment, attempting to make decisions that will maximize a

scalar reward function. The reward function could correspond to for example, a function

of distance moved in and energy consumed. The decisions are related to the amount of

torque applied to the joints at each timestep (i.e., the controller). We demonstrate an

application of reinforcement learning to synthesize walking controllers with respect to an

uncertain environment in Chapter 4. In particular, we optimize the parameters of the

controller with respect to the expected reward function.

The original control optimization methods in animation were applied to low-dimensional



16 Chapter 2. Physics-based Motion Synthesis and Control

virtual characters [76, 99, 117, 118], where the search space is much smaller than full-

body locomotion. Grzeszczuk et al. [28, 29] demonstrate control optimization for high-

dimensional marine animals, where smooth dynamics without ground contacts lead to

smoother objective functions than for ground-based locomotion. Sharon and van de

Panne [96] optimize planar humanoid characters to match the style of reference motion,

but their results suggest that this approach has advantages and disadvantages similar to

Yin et al. [137].

For 3D humanoid models, Hodgins and Pollard [37] adapt stable controllers from one

character to different characters by searching over a small number of high-level con-

trol parameters. More recently, optimization-based methods are used to adapt walking

controllers for more difficult tasks [136], or to create solutions for constrained terrain

navigation [17]. In both cases, a hand-tuned robust walker is available as initialization,

only a relatively small subset of task-relevant parameters are optimized, and the basic

style of motion is not modified from the initial controller. In Chapters 3 and 4, we show

how to significantly improve walking style and robustness from a manually initialized

rough, unstable controller.

All previous work in controller optimization for character animation assumes completely

deterministic dynamics. As robotic controllers must account for uncertain conditions,

optimization under uncertainty has been used for several low-dimensional robotic con-

trollers. For example, Tedrake et al. [106] optimize the control of a low-dimensional

passive-based humanoid walker. This walker is designed to be very stable even in the ab-

sence of control, thereby reducing greatly the role of uncertainty. Abbeel et al. [1] demon-

strate impressive controllers for helicopter stunts, another system with low-dimensional

dynamics but no ground-contact discontinuities. Peters and Schaal [82] apply policy

gradient methods to train a robot arm (holding a bat) to hit a stationary baseball. Mo-

rimoto and Atkeson [70] improve the stepping and walking performances of a humanoid

robot with reinforcement learning.

Another approach is to employ mocap data to define the desired controller [18, 71, 101,

112]. This frees the designer from specifying the style of the motion, only requiring the

maintenance of balance. The use of mocap data allows for high-quality human-like results

to be simulated, as recently demonstrated by Muico et al. [71] on an impressive array

of locomotion skills. However, such methods are limited in their ability to generalize to



2.3. Trajectory optimization 17

situations where no mocap data are available. Furthermore, since the resulting motion

style is defined by the mocap data, such techniques cannot be used to investigate effects

of the environment or body mass distribution on style.

2.3 Trajectory optimization

Trajectory optimization aims to optimize some measure of energy or error from user

constraints with respect to a trajectory (of pose, torque, or muscle excitation) over time.

These techniques can often be viewed as a form of inverse dynamics, and are of in-

terest to researchers in both animation and biomechanics. While animation researchers

employ relatively simplified human models (i.e., model muscles using joint actuators), re-

searchers in biomechanics build models to analyze individual muscle usage under hypoth-

esized objective functions. Perhaps most well-known to animation researchers, Anderson

and Pandy [4] recover muscle excitation trajectories during a walk cycle by minimizing

metabolic energy over distance traveled.

The main difference between trajectory optimization and optimization approaches dis-

cussed in the previous section is that optimal control in our sense aims to recover con-

trollers that work beyond the duration for which they were optimized, possibly subject

to minor environmental disturbances. In contrast, the recovered forces from trajectory

optimization are not generally robust to any change in environmental interactions if used

to control new simulations.

Another difference is that approaches discussed in the previous section enforce physi-

cal constraints through forward simulation, and the only way to control the character

is by adjusting muscle/joint outputs. This makes satisfying specific user constraints

(e.g., keyframes) extremely difficult. The spacetime constraints formulation [131] mini-

mizes physical quantities such as power and torque, and can be formulated to make the

satisfaction of user constraints straightforward. Instead of aiming to recovering torque

trajectories, which ensures the equations of motion are followed; the motion itself is re-

covered, which ensures user constraints are satisfied. Impressive results were achieved

on a simple Luxo lamp model, and an interactive animation system with similar model

complexity has been built [14].



18 Chapter 2. Physics-based Motion Synthesis and Control

A large part of subsequent efforts have centered on extending the technique to com-

plex articulated figures: by using a different state space [63], focusing on high-energy

motions [62], or identifying computationally efficient objective functions [23]. Another

route has been to employ trajectory optimization in the simpler, but important problem

of motion editing. Given mocap clips, physics can be used to transition between clips [90],

or to modify constraints such as footsteps [83].

By directly controlling the motion trajectory, specific user constraints can be met in the

spacetime constraints framework. However, the optimization process might not converge

to a physically realistic motion in practice. Moreover, most demonstrations of spacetime

constraints are on high-energy motions, where power or torque minimization could lead

to good solutions. For low-energy motions such as walking, the optimization problem is

more difficult. The reason is that while high-energy motions are largely constrained by

the combination of physics and animator constraints, low-energy motions contain more

stylistic elements. For example, there are many physically valid ways to walk through a

series of footstep constraints.

One way of addressing the problem of applying spacetime constraints to low-energy mo-

tions is to employ more complex objective functions that contain local optima at the

desired style. However, it is unclear how one could approach specifying such objectives.

Liu et al.’s [60] work on inverse optimization from motion capture data begins to address

this issue, but the learning process is expensive, and requires more detailed physical mod-

eling of characters. Another problem within the spacetime constraints framework that is

beginning to receive attention is the interaction of multiple characters [61]. More recently,

Wampler and Popović [125] combine traditional spacetime constraints with CMA [31], to

generate plausible locomotion gaits for a variety of virtual creatures. CMA is also used

in this thesis, and is described in the next section.

2.4 Covariance matrix adaptation

As discussed above, we take an optimization approach to controller synthesis. We repre-

sent the control algorithm with a number of real-valued parameters, and then optimize

these parameters with respect to an objective function. Naturally, selecting a suitable

optimization algorithm is crucial to solving the problem. Most numerical optimization



2.4. Covariance matrix adaptation 19

algorithms rely on gradient information to iteratively approach a local minimum. Specific

algorithms [77] range from steepest descent methods, which directly follow the gradient,

to Newton’s method, which requires the Hessian. In between the two extremes are quasi-

Newton methods such as L-BFGS [138], which approximates the inverse Hessian using

gradient information.

Since evaluating our objective function requires running a forward simulation involving

collision detection, joint limits, and other non-smooth constraints, we cannot compute

the gradient of the objective analytically. Finite difference methods can be used to ap-

proximate the gradient, but require at least as many evaluations of the objective function

as the number of variables being optimized, which is intolerable given the dimensionality

of our problem. Moreover, most gradient-based methods are only concerned with ap-

proaching a nearby local minimum quickly, often leading to unacceptable solutions for

non-smooth objective functions with many local minima.

There are well-known optimization algorithms that are derivative-free, such as the Nelder-

Mead downhill simplex method [74], used to implement the fminsearch function in

MATLAB, and simulated annealing [42], which has seen a number of applications in

graphics [2, 28, 133]. In this thesis, we adopt CMA [31], a more recently developed

method from the evolutionary computation literature. The algorithm is selected both

due to its empirical effectiveness, and that it is easily parallelizable.

Like gradient-based methods, CMA is an iterative algorithm that attempts to improve the

objective function based on its local geometry. However, instead of iteratively improving

a single candidate solution, it estimates a Gaussian distribution over the parameter space,

so that samples from each Gaussian tend to have better objective function values as the

number of iterations increases. These samples are also used to “improve” the Gaussian

distribution for the next iteration. In particular, consider M samples drawn from the

Gaussian at the i-th iteration:

x
(i+1)
k ∼ N

(

m(i),C(i)
)

, (2.10)

where k = 1 . . .M . The core of the CMA algorithm is in defining the Gaussian distri-

bution for the next iteration by specifying m(i+1),C(i+1) from the samples x
(i+1)
k . In our

problem, each sample represents running a forward simulation of the type described in



20 Chapter 2. Physics-based Motion Synthesis and Control

Section 2.1, and sample evaluation is the bottleneck of the algorithm. Fortunately, CMA

does not require a large number of samples to be effective. Indeed, we will see below that

the use of a small cluster of computers to evaluate the samples in parallel is critical to

arriving at a solution to our problem within a reasonable time.

We will denote y1 . . .yN as a permutation of x
(i+1)
1 . . .x

(i+1)
N , such that E(y1) < · · · <

E(yN) and E is the objective function being minimized. The update rule for the mean

is straightforward:

m(i+1) =
1

M

M
∑

j=1

wjyj , (2.11)

where 1 ≤ M ≤ N , w1 ≥ w2 ≥ · · · ≥ wM > 0,
∑M

j=1wj = 1. In other words, the

mean of the next Gaussian is a weighted average of the M best samples from the current

Gaussian. Typically, M is set to be roughly half of N , and wj is set to be proportional

to log
(

M
j

)

.

More care must be taken to update the covariance matrix. A natural choice is the sample

covariance of y1 . . .yM , i.e.,

C(i+1) =
1

M

M
∑

j=1

(

yj −m(i+1)
) (

yj −m(i+1)
)T
. (2.12)

However, in typical settings (i.e., Figure 2.2), these samples only cover a local neigh-

bourhood that does not include the minimum. Furthermore, the better samples tend

to occupy a much smaller neighbourhood than the full set of samples. Consequently,

(2.12) tends to decrease the variance of the distribution as the algorithm progresses. The

overly aggressive, often exponential, shrinking of the distribution leads to premature con-

vergence (i.e., the variance of the Gaussian becomes too small to make progress, before

reaching a local minimum).

A key observation in the CMA algorithm is to replace (2.12) with the following:

C(i+1) =
1

M

M
∑

j=1

(

yj −m(i)
) (

yj −m(i)
)T
, (2.13)

where m(i) is the mean of the Gaussian in the current iteration. We can see that the

difference between (2.13) and (2.12) is minimized when the mean of the best M samples



2.4. Covariance matrix adaptation 21

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

Figure 2.2: Optimizing the objective function E = −xTx. The ellipse represent one standard
deviation of the Gaussian, solid points are the M “better” samples used to improve the dis-
tribution. The true minimum at (0, 0) is labeled by the cross. Top: The first seven iterations
(left to right, top to bottom) and the final solution when the covariance matrix is updated
by (2.12). Bottom: The same information for the CMA strategy (2.13). Note that the naive
update strategy (top) quickly converges to an incorrect solution due to the fast decrease in
variance. On the other hand, CMA (bottom) increases variance in the gradient direction and
locates the correct solution.



22 Chapter 2. Physics-based Motion Synthesis and Control

stops moving between successive iterations, which should happen upon convergence. In

particular, m(i+1)−m(i) is analogous to the gradient of the objective function. Therefore

during a typical iteration, (2.13) tends to stretch the Gaussian in the general gradient

direction, which allows more samples to be generated to explore that direction. This is

not the case for (2.12), in fact, it often decreases the variance of the Gaussian along the

gradient direction.

Figure 2.2 demonstrate the difference between the two update rules on a simple 2D

quadratic function (E = −xTx). We see that following (2.12) quickly converges to an

incorrect solution due to the fast decrease in variance. On the other hand, (2.13) makes

progress in the gradient direction and converges to the correct solution.

We have focused on giving a high-level intuition for CMA in this section and omitted

many details. In particular, M is typically too small to give a reliable estimate of the

covariance matrix, and matrices from previous iterations are used to aid in the estimation.

Moreover, a separate scalar parameter, which scales C(i+1) is also adapted to explicitly

control the “stepsize” of the optimization algorithm. For details of the exact update

rules, as well as how various internal parameters are chosen, we refer interested readers

to Hansen’s tutorial [32].



Chapter 3

Optimizing for a Human-like Gait

This chapter describes a method for optimizing the parameters of a physics-based con-

troller for full-body, 3D walking. A modified version of the SIMBICON controller [137]

is optimized for characters of varying body shape, walking speed and step length. The

objective function includes terms for power minimization, angular momentum minimiza-

tion, and minimal head motion, among others. Together these terms produce a number of

important features of natural walking, including active toe-off, near-passive knee swing,

and leg extension during swing. We explain the specific form of our objective criteria, and

show the importance of each term to walking style. We demonstrate optimized controllers

for walking with different speeds, variation in body shape, and in ground slope.

3.1 Introduction

Locomotion is an essential skill for simulated characters, but one for which designing

controllers is particularly difficult. The control space is high-dimensional, the dynamics

are nonlinear and discontinuous due to contact, and infeasible controllers (i.e., that trip

and fall) are all too common. While robust walking controllers have recently been de-

signed [40,137], they produce gaits that appear unnatural. Indeed, it remains extremely

challenging for either humans or computers to define robust controllers for natural-looking

walking.

This chapter introduces a parameter optimization procedure for full-body, 3D walking

23



24 Chapter 3. Optimizing for a Human-like Gait

controller synthesis. Controllers may be optimized for characters of varying body shape,

and, optionally, to achieve user-specified walking speeds and/or step lengths. The re-

sulting gaits exhibit key properties of natural walking, including, for example, energy

efficiency, a strong toe-off as support is transferred from one foot to the other, a nearly

passive knee during leg swing, leg extension prior to heel-strike, torso lean, and the anti-

symmetric phase of arm swing. We advance the state-of-the-art by demonstrating results

that both capture these important features and are robust enough to tolerate minor en-

vironmental disturbances. Unlike many previous methods, the system does not require

any mocap data or reference trajectories.

The control parameterization is a version of SIMBICON [137], with modifications to allow

more realistic motion. The objective function is a weighted sum of several terms, many

of which are inspired by biomechanical properties of human walking. We demonstrate

how each of these terms contributes to creating human-like qualities of motion. The

optimization is initialized with a walker that is unstable, but roughly captures observed

features of human walking. Because the approach does not rely on mocap data, there is

no restriction that the styles of walking follow any particular mocap database.

3.2 Character model and controllers

The character model has 30 internal degrees-of-freedom (DOFs), seen in Figure 2.1, 28

of which are identical to Yin et al. [137]. We add toe blocks, which are connected to

the feet by hinge joints. Toes provide more flexibility during landing and ankle push-off

(also called toe-off). The link locations and mass distributions are based on Wooten

and Hodgins [132]. We scale the links and masses according to the dimensions of the

character skeleton, and apply reasonable joint limits.

Single-state controller. As in SIMBICON, the walking controller is a finite-state

machine. Each state contains proportional-derivative (PD) controllers for each joint

and a balance feedback controller. The controller for each joint DOF includes gain and

damping coefficients (kp, kd), as well as a target angle (θd). At each simulation time-step,



3.2. Character model and controllers 25

Left Foot

State # 0 1 2 3

Right Foot Stance Heel-off

Stance Heel-off

Swing Swing

Swing Swing

C
o

n
ta

ct

C
o

n
ta

ct

Figure 3.1: The state machine
for the walking controller con-
sists of four states, correspond-
ing to ground contact and swing
phases.

a torque (τ) for each joint DOF is generated according to

τ = kp (θd − θ)− kdθ̇ , (3.1)

where θ and θ̇ are the current joint angle and angular velocity.

The input angles (θ) to the PD controllers are expressed in local coordinate systems,

except for the hip and ankle. The hip angles operate in the world frame and are mapped

to control the torso orientation, adjusted by balance feedback parameters (cd, cv) [137].

Since the stance hipz DOF serves to rotate the body towards the desired facing angle, we

only enable it when the stance foot is firmly planted (more than three points in contact

on the foot or toe), otherwise it is servoed to zero. The world frame orientation of a

body part is defined by measuring angles of their up and forward vectors projected in

the coronal, sagittal, and transverse planes. Unlike SIMBICON, our controllers servo the

ankles in the world frame, since world orientation is crucial for ensuring ground clearance

after toe-off, as well as for landing at a good angle to allow weight transfer.

We couple the target angle of the arm DOF in the sagittal plane to the hip angles in the

sagittal plane, so that the target angle is

θlarm = αarm(θrhip − θlhip) (3.2)

θrarm = −θlarm , (3.3)

where αarm is a scale factor. This allows the model to synchronize arm swing with the

legs, but good arm swing still depends on a good selection of αarm and arm spring-damper

constants.

State machine and transitions. The finite state machine contains four states, cor-

responding to basic phases of walking (Figure 3.1). State 0 begins at foot strike, and



26 Chapter 3. Optimizing for a Human-like Gait

Start State
DOF q0 q̇0

globposx free 1.3
lhipy -0.4 0.3
lkneey 1.35 0.1
lankley 0.35 -15
rhipy -0.4 1.0
rkneey 0.6 2.0
rankley -0.2 -9

Controller
State 0 1
DOF kp θd kp θd

neck xyz 100 0 100 0
larmxz 30 0 30 0
larmy 30 n/a 30 n/a

lelblowyz 30 0 30 0
rarmxz 30 0 30 0
rarmy 30 n/a 30 n/a

relblowyz 30 0 30 0
back xyz 300 0 300 0
rhipxz 1000 0 1000 0
rhipy 1000 -1 1000 -0.65
lkneey 300 -1.3 50 -0.55
lanklex 30 0 50 0
lankley 300 3 300 -0.35
torsoxyz 1000 0 1000 0
rkneey 150 0.4 500 -0.5
ranklex 100 0 100 0
rankley 300 -0.2 300 0.75
ltoey 20 0 20 0
rtoey 20 0 20 0.6

Table 3.1: Left: Initialization of position/angle, velocity in the start state. Unspecified DOFs
are initialized to zero. Right: Initialization of PD control parameters. Dampers kd are initialized
to 0.1kp in all cases.

continues as the swing leg lifts off and swings forward. The transition to State 1 occurs

when the signed horizontal distance (in the sagittal plane) between the center-of-mass

(COM) of the body and the ankle of the stance foot exceeds a threshold ctrans . This is

motivated by our observations of when stance ankle push-off appears to occur. Notably,

this differs from SIMBICON, which uses a time-based transition.

During State 1, the swing leg prepares for landing, and the stance ankle push-off begins.

The transition to State 2 occurs when the swing foot makes contact with the ground,

provided that the swing ankle global orientation (in the sagittal plane) exceeds 0.1 radi-

ans. Without this condition, the controller must lift the swing leg to an artificial height

to ensure ground clearance. State 0 may also transition directly to State 2 if contact

occurs (although this usually indicates a poor controller). States 2 and 3 are left/right

reflected versions of States 0 and 1, with mirrored parameters.



3.3. Controller optimization 27

Start state. The start state of the physical simulation is specified by six global DOFs,

30 joint DOFs, and their generalized velocities (72 DOFs in total). The start state is

optimized along with the controller, and is manually initialized (see Table 3.1) to when

the left leg is in the middle of its swing phase, prior to the transition from State 0 to

State 1.

In principle, the start state and the controller parameters total over 200 DOFs in the

system. However, since we focus on straight walking in the positive x direction in this

chapter, we fix DOFs and other parameters that are unlikely to contribute to the task.

More specifically, joint DOFs (including PD control target angles) that rotate with re-

spect to the local x and z axis are fixed to zero, to discourage unnecessary motion in

the coronal and transverse planes. The back joint is an exception, where rotation with

respect to z-axis is free to be optimized, which is necessary for trunk rotation in the gait.

The target angles for the toe joints are fixed to zero except for the stance foot during

States 1 and 3. For the global DOFs in the start state, x and y positions can naturally

be set to any value. Since the controller would not be walking straight if it deviates

away from the y-z plane, we fix the start state global rotation (and angular velocity)

with respect to x and z axis, as well as velocity in the y-direction to zero. With these

constraints, the start state and the control parameters comprise a 184 dimensional search

space.

3.3 Controller optimization

Optimizing a controller involves searching for control parameters and a start state that

together produce good character simulations. The quality of the generated motion is

measured with an objective function that evaluates simulations of duration 10 seconds

(T simulation time-steps). The duration is selected to balance between computational

costs and the need to ensure a basic level of robustness. For example, if we set the

duration to only two seconds, the resulting controllers often fail shortly beyond the two-

second mark even without external disturbances. The objective function comprises a

weighted combination of terms motivated by task constraints and biomechanical features

of human walking.



28 Chapter 3. Optimizing for a Human-like Gait

3.3.1 Objective function

An obvious way to define an objective function is with a weighted sum of quadratic

penalty terms on quantities such as total power consumption and deviation from a tar-

get speed. In practice, finding suitable weights for such terms is extremely difficult. For

example, if chosen poorly, then even when the target speed is nearly achieved, optimiza-

tion might continue to ignore the energy term in favor of imperceptible speed refinements.

Instead, we employ a weighted combination of objectives that do not penalize small dif-

ferences from targets. Specifically, we define a thresholded quadratic as

Q(d; ǫ) =







d2, if |d| > ǫ

0, otherwise .
(3.4)

This objective assigns a penalty of zero when the distance d is below a threshold ǫ, but

applies steep penalties beyond this threshold. This formulation is akin to specifying

hard constraints on the motion to optimize power and stability related terms, subject to

constraints that speed and other quantities fall within ǫ of target values. Unlike hard

constraints, however, including the soft penalty component allows us to avoid the difficult

problem of finding a feasible initialization (and ensuring that it exists).

User gait constraints. A user may specify high-level requirements on the average

forward speed (vx) or step length (s) of the simulation. This is done by penalizing the

differences between these values and user-specified targets (v̂x, ŝ, respectively):

Euser = Q(vx − v̂x; ǫvel) +Q(s− ŝ; ǫstep) . (3.5)

Both of these terms are optional.

Required gait constraints. There are several properties of gait that we find essential

to the style and stability of the simulated walking motions. First, because we optimize

for walking in the positive x direction, significant deviations in the y and z directions of

motion are undesirable. Accordingly, they are penalized with the following objective:

Evel = Q(vy; ǫvel) + λvel [Q(v0x − vx; ǫvel) +Q(vz ; 2ǫvel)] , (3.6)



3.3. Controller optimization 29

where vy and vz are the average simulation velocities (per second) of the COM in the

y and z directions, respectively, and v0x is the velocity of the start state in the +x

direction. This constraint encourages vy and vz to be small, and the start velocity v0x to

be similar to the average x velocity of the simulated motion.1 The constant λvel reflects

our preference that deviations in the y direction are penalized more heavily.

Since we only optimize the controller for simulations of a fixed duration (10 seconds),

we need to encourage solutions that are more likely to lead to stable walk cycles when

simulated beyond that duration. Two major sources of instability are swing foot toe-

stubbing and toe-off before the stance foot is firmly planted on the ground. We discourage

these situations with the following objective:

Eland =
1

T

T
∑

t=1

(stancet + stubbed t) , (3.7)

where the summation is over all simulation steps t. If, during States 1 or 3 (toe-off),

neither the stance toe nor the stance foot have 3 or more points of contact with the

ground, then stancet = 1; it is set to zero otherwise. We set stubbed t = 1 at any time

when the top of the swing toe is in contact with the ground.

Similarly, we define

Efail =
1

T

T
∑

t=1

failed t , (3.8)

where for all states, if the COM falls below 0.7 m (i.e., the simulated character has fallen

down) then failed t = 1. With the exception of character “long arm” (see Figure 3.2),

which fails if the COM falls below 0.4 m.

Our fourth gait objective encourages left-right symmetric timing of the controller, i.e.,

Esym = Q(∆t0 −∆t2; ǫt) +Q(∆t1 −∆t3; ǫt) , (3.9)

where ∆ti is the average duration of State i during the walk. This term, Esym, requires

left and right strides to have approximately the same duration. This helps to avoid

spurious local minima producing asymmetric gaits.

1We replace vx with v̂x if the latter is available, since we optimize vx to be equal to v̂x in (3.5).



30 Chapter 3. Optimizing for a Human-like Gait

Head and body constraints. The angular momentum of the body about its COM is

typically very small in human walking [35], and has been shown to assist with balancing

[45, 65]. In particular, a mechanical effect of arm swing is to reduce torso torques about

the vertical axis induced by the lower body [59]. Motivated by this, we include the

following objective:

avgL =
1

T

T
∑

t=1

L̇2
t (3.10)

Eang = Q(
√

avgL;
√
ǫang) , (3.11)

where L̇t is the normalized torque (time-derivative of the normalized angular momen-

tum [35]) about the COM in the vertical direction at time step t, computed using finite

differences. We find that this term helps to prevent unnatural arm swing, where the arms

and legs are badly out of phase.

In natural human walking, the lateral and vertical motions of the head are typically

smooth with small amplitudes. This helps to stabilize the visual and vestibular sys-

tems [84]. We include an objective that encourages the head to exhibit a fixed orienta-

tion and a constant forward velocity. Let Θi = [θcor, θsag, θtrans] represent the head world

frame orientation at simulation step i. The objective to stabilize the head motion is then

Ehead = Q(
√
σhead;

√
ǫhead ) +

λhead
T

T
∑

t=1

orient t , (3.12)

where σhead is the standard deviation of the head velocity in the x direction during the

walk, orient t is a binary variable which is set to 1 when ‖Θt‖2 > 0.1.

Efficiency and power terms. One notable biomechanical property of human walking

is its efficiency [3, 15]. Indeed, the nearly passive nature of leg and arm swing is charac-

teristic of a natural walking gait. To encourage an efficient gait, we penalize the sum of

the squared torques over the duration of the simulation:

Epower =
1

T

T
∑

t=1

m
∑

j=1

τ 2tj , (3.13)



3.3. Controller optimization 31

where τtj is the torque output at time step t for joint DOF j. If the target velocity is

unspecified, we replace Epower with Epower

vx
, to approximate the cost of transport [15].

It is also well known that, unlike human running, human walking is powered more by

the ankle than the hip [78]. To encourage a natural distribution of torques in the hip,

knee and ankle, we encourage the ratio of power outputs from these joints to match those

observed in humans. Specifically, let ~r be the relative magnitudes of the power output

from the hip, knee, and ankle, produced by the controller; i.e.,

~r =
[Phips , Pknees , Pankles ]

Phips + Pknees + Pankles

, (3.14)

where

PDOF =
1

T

T
∑

t=1

∑

j∈DOF

τ 2tj . (3.15)

We penalize the deviation of ~r from the empirical power ratio (hip to knee to ankle),

~rwalk = [0.43, 0.04, 0.53] observed in humans [78]:

Eratio = ‖~r − ~rwalk‖2 . (3.16)

Note that this term encourages a nearly passive knee.

Complete objective. The complete objective function for walking is given by

E =
∑

s

wsEs , (3.17)

where s ∈ {user , vel , land , fail , sym, ang , head , power , ratio}. We use the following pa-

rameters for all experiments: wuser = 100, wvel = 100, wland = 1.2, wfail = 120000,

wsym = 100, wang = 10, whead = 100, wpower = 10−5(70/mass), wratio = 1, λvel = 0.01,

λhead = 0.012, ǫvel = 0.025 m/s, ǫstep = 0.025 m, ǫt = 0.025 s, ǫang = 0.05 /s2,

ǫhead = 0.1 m/s.



32 Chapter 3. Optimizing for a Human-like Gait

3.3.2 Simulation

Simulation is performed using the Open Dynamics Engine (ODE, version 0.9)2; with a

simulation frequency of 2400Hz. Ground contact is modeled using the default collision

detector with a maximum of four points on the toe and four points on the foot. Both the

toe and foot are modeled as boxes, and the ground is modeled as a plane. The contact

parameters are adjusted to simulate a spring-damper system with kp = 75000, kd = 2000.

We set the coefficient of friction to µ = 10, which is higher than physically realistic, but

necessary to prevent lateral slipping during toe-off.

3.3.3 Optimization algorithm

The optimization problem is high-dimensional, discontinuous, and subject to many local

minima. Moreover, each function evaluation involves a simulation in ODE, which runs

in approximately real-time. It is important for the method to use as few function eval-

uations as possible, without the need to evaluate gradients. We tested several different

optimization algorithms, and found CMA [31] to work best.

As discussed in Section 2.4, CMA is an iterative algorithm that maintains a Gaussian

distribution over parameter vectors. The Gaussian is initialized with a mean and a

spherical covariance matrix with diagonal elements equal to σ2, where σ is a problem-

dependent step size parameter. M random samples are drawn from the Gaussian, and

the objective function is evaluated for each. A new Gaussian is constructed using the

best N samples, based on a function of these samples and the old mean. The process

is repeated, as the Gaussian converges to a low-objective region. It is assumed that the

parameters are scaled to lie roughly between 0 and 1.

We chose σ = 0.0025 experimentally. For the number of samples, we use default param-

eters that are automatically chosen by CMA based on the dimension of our optimization

problem. In particular, M = 19, N = 9. The 19 simulations are computed in parallel

using a cluster of 19 Intel Xeon 3.8GHz CPUs. In total, 1000 CMA iterations take ap-

proximately 3 hours. Heuristically, we stop the optimization either when no better values

are discovered for 300 iterations, or when the total number of iterations exceeds 3000.

2http://www.ode.org



3.4. Experiments 33

Figure 3.2: Characters used in the chapter. From left to right: “long arm” (127 cm, 65 kg)
, “thin” (165 cm, 41 kg), “short” (165 cm, 57 kg), “stocky” (165 cm, 70 kg), “overweight”
(161 cm, 86 kg), “tall” (196 cm, 79 kg).

We initialize the CMA optimization with a hand-tuned controller that generates signifi-

cant ankle push-off in the stance leg during States 1 and 3. The parameters for the initial

simulation state (start state) and the PD controllers are included in Table 3.1. Addi-

tionally, the coronal balance feedback parameters are initialized to cd = 0.2, cv = 0.2, the

sagittal ones are initialized to zero. The arm swing and state transition parameters are

initialized to αarm = 1.0, ctrans = 0.01. Note that this controller is only tuned to take a

few steps in one of the character skeletons (“stocky” in Figure 3.2). It is not stable and

does not walk in a straight line, but is sufficient for initialization. The initial values of

kp and kd are scaled for very heavy and light characters, in proportion to the character’s

weight ratio relative to the default character.

3.4 Experiments

We now describe experiments that demonstrate the approach and test the effects of its

various elements; results can be seen more clearly in the accompanying video. Characters

used are depicted in Figure 3.2.

Features of human walking. Our model captures a number of features of normal

human walking. Figure 3.3 shows images of a walking human, frames from a walker gen-

erated with our system, and frames from our implementation of SIMBICON [137], which

represents the state-of-the-art in full-body controllers without mocap. The SIMBICON

model employs a hip push-off strategy, whereas our model uses an ankle push-off more



34 Chapter 3. Optimizing for a Human-like Gait

Left Heel-Strike Right Toe-Off

Figure 3.3: Comparison of our
model to human and SIMBICON
from the left heel-strike to right
toe-off stages of walking. Top:

Man walking, taken from Muy-
bridge [72]. Middle: One of our
optimized controllers. Bottom:

Our implementation of SIMBI-
CON. Note the more conservative
style in the bottom row, which
keeps the right foot relatively flat,
whereas our result and the human
show significant rotation. Also
note that the left leg in the left
column does not reach full exten-
sion in the bottom row.

similar to human walking. The body synchronization approximates that of the human

as well: stance foot heel-off occurs just before swing foot heel-strike. Furthermore, our

model captures the passive knee and leg extension of the swing leg, as well as the foot

rotation.

Effects of individual terms. Next we compare optimizing our walker with and with-

out various energy terms. For example, we optimize the “short” character (Figure 3.2)

to walk in 1.0 m/s without a specified step length. Figure 3.4 compares the model op-

timized with and without the power ratio term (Eratio). Without this term, the power

ratio between hip, knee, and ankle in the resulting motion is [0.38, 0.21, 0.41]; the knee



3.4. Experiments 35

Figure 3.4: Top: Optimization of “short” (Figure 3.2) walking in 1.0 m/s. Bottom: Opti-
mization without Eratio . The lack of the power ratio term leads to a semi-crouching style.

takes a much heavier load than in human walking. This effect can be observed in the

animation as a semi-crouching style, which appears unnatural and tiring. In contrast,

our model discovers a more relaxed gait, with a power ratio of [0.43, 0.05, 0.52], close to

our optimization target.

Figure 3.5 shows our model optimized with and without the angular momentum objective

(Eang). In this example, we optimized the “stocky” character (Figure 3.2) to walk at

1.8 m/s with a step length of 0.7 m. The resulting motion correctly exhibits in-phase

arm-swing, with the arms counter-oscillating with respect to the legs. Without the

angular momentum term, the arms are in-phase with the wrong legs, and the walker is

unstable. Indeed, the controller does not walk successfully much beyond the optimized

duration of 10 seconds, whereas the controller learned with Eang walks for at least 100

seconds.

We find that optimizing without the head stabilization term (Ehead ) leads to jerky upper-

body motion (see video). We test optimizing without the Elanding term, which prefers

the stance foot to be stably planted before push-off. Without this term, foot landing

and roll is jerky and abrupt, whereas including the Elanding term makes the foot land and



36 Chapter 3. Optimizing for a Human-like Gait

Figure 3.5: Top: Optimization of “stocky” (Figure 3.2) walking in 1.8 m/s, step length 0.7 m.
Bottom: Optimization without Eang . Note the difference in arm swing.

roll forward smoothly. The Epower term serves to constrain DOFs that are not directly

influenced by the other terms to behave in a relaxed fashion. This is particularly relevant

to the upper body; as shown in the video, omitting this term leads to jerky arm motion.

Comparison with motion capture data. We further evaluate our results by com-

paring our optimized controller output with mocap data3. The data comprise a manually

segmented walk cycle from each of 115 subjects, all asked to walk at a comfortable speed.

Figure 3.6 compares the thigh orientation, knee flexion/extension, and foot orientation

for seven of our optimized controllers and the mean curve from the mocap dataset. The

mean curves (solid lines) were computed by uniformly sampling 100 locations on the

walk cycle, then taking the mean over all subjects on each location. The standard de-

viation curves (orange regions) were computed in the same fashion. Dashed blue and

red curves represent seven optimized walkers and SIMBICON, respectively. We see that

the minimum hip orientation (Figure 3.6a) in the mocap data is smaller than both of

the physically simulated gaits. A similar, though less pronounced, effect occurs in the

3The capturing method is as described in Troje [111].



3.4. Experiments 37

(a)

(b)

(c)

% Walk Cycle

Figure 3.6: Sagittal plane angle
versus percentage walk cycle plots.
(a) Thigh orientation w.r.t. down
vector. (b) Angle between thigh
and shin. (c) Ankle orientation
w.r.t. front vector. Thanks to
Nikolaus Troje for providing the
mocap data.

knee flexion/extension plot (Figure 3.6b) as well, where the optimized controllers tend to

both flex and extend less than the mocap average. Figure 3.7 visually compares one of

the optimized controllers with a similar mocap walk cycle. The smaller range of hip and

knee motions seem to lead to a smaller step length. Two major differences between our

optimized controllers and SIMBICON are knee extension at heel-strike (i.e., Figure 3.6b

at 0 and 100%), and the foot trajectories plotted in Figure 3.6c. In both cases, motions

generated by the optimized controllers are much closer to mocap. However, the foot

orientation plot shows our optimized controllers tend to push-off with the ankle earlier

than the mocap.

Optimizing SIMBICON. In order to separate the effects of our objective function

from those of our body model, we apply our optimization to the SIMBICON body model

and parameterization. The set of control parameters that generated the bottom row

of Figure 3.3 is used as initialization. We do not specify the target speed. Instead we

penalize the approximate cost of transport (Epower

vx
) in the objective. We find that our



38 Chapter 3. Optimizing for a Human-like Gait

Figure 3.7: Visual comparison between mocap data (rows 1,3) and motion generated by
character “tall” (Figure 3.2) with no user gait constraints (rows 2,4) for a full walk cycle.



3.4. Experiments 39

Figure 3.8: Controller tall (Table 3.2) reacting to a 200 N, 0.4 s push to the torso in the (0,1)
direction. Our optimized controllers tend to be more robust to pushes from the side, than to
pushes from front and back.

optimization process improves the motion in two ways. First, the optimization discovers

anti-symmetric arm swing, even though this control parameterization does not explicitly

couple arm swing to leg motion as our model does. Second, the character makes some

use of ankle push-off. However, compared to our results, the swing leg does not extend

as far, and the ankle push-off is still lacking. Despite the low percentage of knee torque

output in the lower body, the knee still appears active.

We note that with the same optimization specification (same character, objective) using

our model and initialization, we are able to discover a gait with Epower = 12059, much

lower than the SIMBICON solution’s Epower = 33392. Moreover, our solution walks with

a faster speed of 1.48 m/s versus 1.36 m/s.

Variation in body shape. Our optimization can be used to generate controllers for

a wide rage of body types. We minimize the approximate cost of transport (Epower

vx
) to

generate walks for all characters in Figure 3.2, without specifying target speed and step

length. This allows the walker to identify its preferred speed and step length. As shown

in the accompanying video, the results retain the qualities of human walking discussed

above. A natural relationship between body shape, speed and gait emerges; that is, the

tall subject’s preferred gait is much faster (1.79 m/s) than those of the shorter subjects.

The overweight subject appears to walk with a more lumbering gait, and the long-armed



40 Chapter 3. Optimizing for a Human-like Gait

direction short overweight tall short2 stocky simbicon

(1,0) 75 1 20 10 50 225
(1,1) 75 1 20 10 65 150
(0,1) 100 25 200 50 125 250
(-1,1) 50 50 70 40 75 100
(-1,0) 60 75 120 75 50 120
(-1,-1) 40 40 70 40 50 100
(0,-1) 100 20 200 75 125 275
(1,-1) 75 1 20 10 50 125

Table 3.2: Maximum disturbance force components (in newtons) tolerance for some of our
controllers and our implementation of SIMBICON, where (1,0) is the forward direction. Con-
troller overweight is optimized for a step length of 0.8 m, short2 for a step length of 0.65 m,
and stocky for a step length of 0.7 m and a speed of 1.8 m/s. The others are optimized without
user gait constraints.

humanoid keeps its heavy arms still in order to maintain balance.

Robustness. We quantify the robustness of some of our controllers via a pushing ex-

periment (see e.g., Figure 3.8). For each controller, we simulate forward for 40 seconds,

and apply a push force (Fx, Fy) for 0.4 seconds to the torso COM once every four seconds

(to allow for recovery time). The controller passes the experiment if it is still walking

forward (direction (1, 0)) after 40 seconds. The maximum amounts of tolerable push

from 8 directions are summarized in Table 3.2. We observe that the robustness of our

controllers varies greatly. The overweight controller is unstable when pushed from the

back, but is fairly robust to pushes from the front and sides. All of the optimized con-

trollers tend to be more robust to pushes from the side, than to pushes from the front

and back. The experiment also shows that these controllers are less robust than our

implementation of SIMBICON, which can stand more than twice as much force than

the optimized controllers in some cases. Note that SIMBICON has been reported to

withstand force components between 190 N and 340 N [137] in a related experiment.

We suspect fine-tuning our implementation of it can lead to results approaching those

numbers as well.

Changing terrain. In the spirit of Yin et al. [136], we obtained uphill walkers for

slopes of up to 12 degrees (see Figure 3.9) by optimizing for a sequence of walkers. This

began with optimization for a 3-degree slope, initialized with a walker on flat ground,



3.5. Discussion 41

Figure 3.9: The short2 controller (Table 3.2) adapted to walk up a 12-degree slope.

although it was not run to convergence. For both the uphill walker and initialization,

the target step length was set to 0.65 m. We then repeated this process for a sequence of

walkers, increasing the slope until 12 degrees. The controller successfully walks up the

slopes, leaning into the slope in a natural way, whereas the level-ground walker fails at

the 3-degree slope. Similarly, we optimized a walker for a plane with a lower coefficient of

friction. Beginning with an initial walker, we optimized for µ = 0.8, and then optimized

for µ = 0.3. The resulting controller walks more gingerly, at a slower rate.

Other variations. As shown in the accompanying video, we can create controllers to

walk at specified speed and/or step lengths via Euser , including specifying atypical speed

and step length combinations. Alternatively, either speed or step length or both can be

determined automatically. Our initial walker in Figure 3.9 is generated by specifying a

target step length of 0.65 m without a target velocity. The accompanying video shows

more examples of controllers synthesized in this fashion as well as results obtained by

altering other terms in the objective function. If we redefine the cost of transport term

as 1/vx, thereby omitting the penalty for total torque, then the objective function prefers

motions that walk as fast as mechanically possible, without regard to energy consumption,

yielding extremely fast walking.

3.5 Discussion

We have demonstrated a method for optimizing full-body 3D walking control that cap-

tures important features of natural walking without relying on mocap data. While the



42 Chapter 3. Optimizing for a Human-like Gait

basic idea of optimizing controllers is an old one, our results show that achieving good

walking control requires careful choice of body parameterization, controller parameter-

ization, and objective function. In particular, the results illustrate the importance of

angular momentum minimization, relative magnitudes of lower-body joint torques, and

head stabilization, among others. We believe these observations will be useful for design-

ing more sophisticated controllers and objective functions, especially since our objective

function and optimizer are independent of the choice of control parameterization. Our

work also illustrates how subtle details in control parameterization — especially at the

foot — can make a significant impact on the style of motion.

There are a number of limitations of our method that provide opportunities for future

work. Our method requires an expensive optimization procedure, and depends on a

reasonable initialization. As our goal in this chapter is natural-looking human locomotion,

the controllers we produce are not as stable as SIMBICON. The difference is most likely

due to the more conservative, less human-like strategy taken by SIMBICON that keeps

the feet orientated parallel to the ground during the entire gait (Figure 3.6c), making toe-

stubbing less likely. Another difference is that, while the balance parameters are tuned

for robustness in Yin et al. [137], our objective function does not explicitly encourage

robustness beyond the requirement of walking for 10 seconds. We explicitly address the

robustness problem in the next chapter.

As is evident from comparison with mocap data, the motion generated by our controller

still differs from human motion in noticeable ways. Figure 3.6 indicates that the thigh

and knee rotation do not straighten as much as the data, especially when the stance leg

is behind the COM. Note that when we only specified desired speed without desired step

length, the resulting walker typically takes shorter steps than mocap data. This might

be explained by the lack of hind leg stretching in our controllers.

Finally, our method does require some parameter tuning in order to achieve reasonable

gaits and to achieve the desired style. We believe that adjusting energy parameters will be

more intuitive than manually adjusting control parameters. Furthermore, we anticipate

that it may be possible to learn the parameters from mocap data.



Chapter 4

Optimizing for Robustness to

Uncertain Environments

We introduce methods for optimizing physics-based walking controllers for robustness to

uncertainty. Many unknown factors, such as external forces, control torques, and user

control inputs, cannot be known in advance and must be treated as uncertain. These

variables are represented with probability distributions, and a return function scores

the desirability of a single motion. Controller optimization entails maximizing the ex-

pected value of the return, which is computed by Monte Carlo methods. We demonstrate

examples with different sources of uncertainty and task constraints. Optimizing control

strategies under uncertainty increases robustness and produces natural variations in style.

4.1 Introduction

When designing controllers for character locomotion, one cannot know with certainty all

factors that will influence the character’s motion at run-time. Many unknown factors,

such as external forces due to strong winds, interactive user inputs, or noise in the motor

control system, can be significant and must be treated as uncertain. One might try to

cope with such uncertainty by making the controller stiff and deliberate. However, it

would be more desirable for the control strategy to adapt to different scenarios, much

as humans do. For example, when walking on a slippery surface of variable roughness,

43



44 Chapter 4. Optimizing for Robustness to Uncertain Environments

(a) (b) (c)

(d) (e)

Figure 4.1: Walking controllers optimized for different environments with uncertainty. (a)
Walking can be relaxed in a deterministic environment, without random external perturbations.
(b) Under gusty conditions, the gait is more aggressive, with a wider stance. (c) On a slippery
surface with internal motor noise, the gait is cautious with arms extended for balance. (d)
Walking on a narrow wall on a windy day produces a narrower gait with small steps. (e) With
internal motor noise, carrying hot beverages requires a slow gait with steady arms.

one might improve stability with a lower COM, outstretched arms, and smaller steps.

Alternatively, when experiencing extreme gusty winds, one might walk more stiffly with

a widened stance to avoid being blown over.

This chapter introduces a technique for automatically learning robust control strategies

under different scenarios and various sources of uncertainty. We consider four sources

of uncertainty. First, we incorporate unknown, varying external forces acting on the

body, like wind on a gusty day. Second, we incorporate uncertainty due to user inputs.



4.1. Introduction 45

When designing controllers for interactive simulation, a priori one cannot know a user’s

run-time control inputs, e.g., to change a character’s heading or speed. A third source

of uncertainty arises when transitions occur between controllers, where the start state

for one controller depends on the state produced by the previous controller at the point

of transition. Any variability in the timing of the transition, or in the motion produced

by the first controller, will produce start states for the second controller that cannot be

known a priori. The fourth source of uncertainty we consider is motor noise. In humans,

it is believed that neuronal motor noise influences motor strategies, e.g., in the coordi-

nation of eye saccades, finger pointing, and in line drawing [33,43,109]. Accordingly, the

inclusion of motor noise may help to produce human-like control strategies under differ-

ent environmental conditions. Noise is also a convenient way to capture a wide range of

otherwise unmodeled, complex sources of uncertainty that might significantly influence

a character’s motion.

Learning different control strategies is formulated in terms of optimizing 3D locomotion

controllers in the presence of unknown environmental variables and controller inputs.

We use a probabilistic formulation in which all prior beliefs over unknown quantities are

modeled by probability distributions. Together with a controller and dynamics, they

define a probability distribution over motions. A return function scores the quality of a

given motion. Our goal then is to optimize a controller to maximize the expected return,

a quantity not computable in closed-form. We use Monte Carlo methods to approximate

the expected return. This approximation is optimized by CMA [31]. As a result, the

character’s control strategy and style of movement are determined automatically as a

function of stochastic variables and the return function.

Our controllers exhibit increased robustness compared to baseline controllers that are

optimized for scenarios where all significant factors are known a priori. For example, the

amount of unexpected external force that a given walking controller can withstand can

be greatly increased. Furthermore, the type and degree of robustness can be controlled

through the specification of probability distributions over the unknowns. Different tasks

and types of uncertainty together lead to different styles of movement. For example, a

character walking on a slippery surface with increased motor noise tends to extend his

arms and bend his knees for balance and stability. In contrast, a controller walking on a

narrow beam with uncertain external forces will be conservative, taking relatively small

steps with a narrow gait width to avoid stepping too close to the edge.



46 Chapter 4. Optimizing for Robustness to Uncertain Environments

Optimization under uncertainty is also useful when composing controllers. In general,

switching between controllers is unreliable, unless the controllers are highly robust, or

they operate in similar regions of state space. We find that controllers optimized under

uncertainty are generally more robust and therefore more tolerant to state variability at

transitions. We also show that controllers optimized with uncertain start states can be

used to create transition and recovery controllers to facilitate composition.

The approach we advocate here is conceptually intuitive and broadly applicable, sup-

porting an extremely general class of uncertainty. Given a basic controller and CMA,

this method is also very simple to implement. Optimization under uncertainty is expen-

sive, often requiring overnight computations. Nevertheless, once optimized, the resulting

controllers run at real-time rates.

4.2 Related work

As briefly discussed in Chapter 2, previous work in optimal control for physics-based ani-

mation assumed deterministic dynamical systems. The previous chapter is no exception;

we optimized full-body locomotion controllers in deterministic settings. These controllers

are robust only to limited external disturbances, and do not exhibit stylistic variation

as a function of uncertainty. We extend this approach to stochastic environments and

user inputs, and show that different sources of uncertainty lead to stylistically different

control strategies.

Reinforcement learning has been used for control in kinematic motion graphs [53, 54,

64, 110]. These techniques assume completely deterministic systems. McCann and Pol-

lard [67] proposed the use of a probability distribution over user inputs, and maximize

expected return with respect to this distribution. Motion graph control is significantly

different from low-level physical control, however, because actions in motion graphs are

discrete and low-dimensional. Motion graph methods do not explicitly handle the possi-

bility of control failure, such as tripping and falling.



4.3. Optimal control under uncertainty 47

4.3 Optimal control under uncertainty

Our approach to controller design combines probabilistic modeling of uncertain (i.e.,

unknown) quantities, and optimization under uncertainty. We begin with the formulation

of the deterministic case.

4.3.1 Deterministic simulation and optimization

An articulated rigid-body character at time t is represented by a state vector st, com-

prising joint angles, root position and root orientation. Articulated rigid-body dynamics

and integration provides a function for mapping the state st at time t to the state at the

next time instant st+1:

st+1 = f(st, τ t, et) . (4.1)

This mapping is a function of state st, the internal joint torques τ t produced by the

character controller, and the relevant world parameters et, such as external forces (e.g.,

wind) acting on the character.

The control torques τ t are determined by a controller. A controller, π, defines a mapping

from the current state, st, to the desired control signal:

τ t = π(st, ct; w) , (4.2)

where w is a vector of control parameters, and ct is a vector of user inputs at time t.

Given a start state s1, the control parameters w, any user inputs c1:T and environmental

parameters e1:T , a deterministic simulation is performed by recursively applying (4.2) to

determine τ t, and then (4.1) to compute st+1 for each time-step 1 ≤ t < T . This yields

an animation sequence s1:T .

We formulate the optimal control problem with the specification of a return function

(e.g., see [104]), denoted R(s1:T ), which measures the quality of a simulation. In the

deterministic case, optimal control seeks the control parametersw which produce motions

that maximize the return function [28, 117]. The return function is based on the energy

function from the previous chapter. We use the term return here instead of energy for

consistency with the policy search literature.



48 Chapter 4. Optimizing for Robustness to Uncertain Environments

A controller optimized for a specific run-time environment without uncertainty can some-

times be robust to moderate perturbations, but typically not to large perturbations,

changes in environmental conditions, or variations in start state that might occur when

controllers are composed. For example, a carefully chosen w that allows the character

to walk in a straight line may fail when the character is pushed in the chest, or when a

user attempts to change the heading or the speed of the character.

Character and controller details. Our character model is identical to that of Chap-

ter 3, with the same set of DOFs. However, the mass distributions are computed from

an automatically generated mesh [34] that approximates a male with height 180 cm, and

weight 70 kg. The controller has four states, each with linear PD joint control combined

with SIMBICON-like balance control. The control parameterization π(st, ct;w) is like

that in the previous chapter, but with several minor differences. First, the target angles

that rotate the shoulders in the coronal plane are not manually specified; instead they

are optimized. Second, to reduce the number of optimized parameters, and to encourage

smoothness of the body’s motion, several control parameters are constrained to share the

same value in all four controller states. These include the damping and stiffness constants

for each upper body DOF, and the target values for the elbow angles and the shoulder

angle of rotation in the coronal plane.

We make one final change to the controller. Although the target angle for the stance hip

in the transverse plane (θt) can be specified as a user input to control the character’s

heading direction [137], direct manipulation of this parameter, e.g., by the user, can easily

lead to failure. Instead, we define an additional time-varying target heading direction θd,

which determines the change in θt from one time-step to the next, and is better suited to

be a user input. If the new θd is close to the current target heading, θc, we immediately

change the target angle to θd. When θd differs significantly from θc, the target stance hip

angle is adjusted gradually, to reduce instability. In particular, it is updated from one

time-step to the next using

θt+1 = αhip(θd − θt) + (1− αhip)(θc − θt) + θt , (4.3)

where θt is the stance hip target angle at time t, and αhip is a weight parameter. Each

controller state has two values for αhip, for when θc > θd or θc < θd, respectively. All



4.3. Optimal control under uncertainty 49

these parameters are optimized along with the other controller parameters.

4.3.2 The return function

The complete return function, for motion s1:T , is the sum of rewards over time, plus terms

Epower, Eratio to encourage power usage similar to human walking:

R(s1:T ) =

(

∑

t

r(st)

)

− (wpEpower + wrEratio) , (4.4)

where r is a scalar reward function of the current state, wp = 10−5(200/mass), wr = 5.

In practice, there’s no need to compute rewards at the frequency of the simulation. We

set r(st) = 0 except for when t is a multiple of 20, or when a state switch due to ground

contact occurred at time t (the end of a stride). The reward is defined as the negative

sum of a number of energy terms (i.e., r(st) = −∑iEi). The energy terms are similar to

those defined in Chapter 3, with a few minor but important differences. In what follows,

we will redefine the Ei terms in a more general and simplified fashion.

We have optional user gait constraints as in (3.5),

Euser = Q(vx − v̂x; 0.05) +Q(s− ŝ; 0.05) , (4.5)

where the average velocity and step length parameters are computed with respect to the

target heading direction. This change is important for enabling optimization for scenarios

with heading direction changes. If neither is specified, then we use

Estep = Q(s− ŝ; 0.05) , where ŝ = l
(

vx/
√

gl
)0.42

, (4.6)

and l is the leg length of the character. This helps to ensure the resulting gait has a

human-like speed to step-length ratio [46].

The target heading direction may be time-varying, with energy

Efacing = Q(vy; 0.05) + 0.005Q(θd − θ, 0.1) , (4.7)



50 Chapter 4. Optimizing for Robustness to Uncertain Environments

where vy is the average simulation velocity (in m/s) of the COM in the y direction in the

current stride, θd, is the desired heading, θ is the current heading, and vx, vy are both

computed by with respect to θd.

As in the previous chapter, small angular momenta are also preferred:

Eang = Q(Lx; 0.04) +Q(Ly; 0.05) +Q(Lz ; 0.01) , (4.8)

where Lxyz are the maximum normalized angular momenta about the COM in the pre-

vious stride. Note that unlike (3.10), since our arm swing is no longer restricted to the

sagittal plane in this chapter, we prefer small angular momenta about all three axes. The

thresholds for the quadratic penalties are selected based on empirical data [35].

Finally, we include the following terms for head stability, stable foot contact, and penalty

for falling:

Ehead = Q(vhead; 0.25) + 0.001(orientt) (4.9)

Eland = 0.001(stancet + stubbed t) (4.10)

Efail = 100(failed t) , (4.11)

where the binary variables are as defined in Section 3.3.1. We only compute the following

terms at the end of every stride: Euser, Estep, Eang, Q(vy; 0.05), Q(vhead; 0.25).

4.3.3 Random environments and optimal control

When user inputs and environmental variables are uncertain, we do not have specific

values for ct and et a priori. Rather, we characterize our limited prior knowledge by

specifying a probability distribution over each unknown variable. As examples, here we

consider four general types of uncertainty. First, environmental uncertainty is represented

by p(e); this might represent, for example, the distribution over wind forces applied to

the character’s torso. User inputs, such as commands to change the character’s heading,

are also unknown a priori. We therefore include a distribution over possible user inputs

p(c). Third, the precise initial state of a controller is often unknown during run-time

applications. For example, we may wish to compose controllers where transitions from

one controller to another occur at variable time instants. Accordingly, we can specify



4.3. Optimal control under uncertainty 51

a distribution over start states for a given controller with a second distribution p(s1).

Finally, human motor neurons are subject to signal-dependent noise [21], which is thought

to play a significant role in human motion planning [33]. We incorporate motor noise

by perturbing the joint torques produced by the controller. To this end we specify a

distribution over joint torques, τ , given the parameters of the controller, the current

state, and the user inputs, i.e., τ t ∼ p(τ |st, ct,w).

Together, these sources of uncertainty and noise, in combination with the dynamics (4.1),

define a probability distribution over animations p(s1:T |w). Despite the complexity of

this distribution, it is rather straightforward to draw fair samples from it. To sample

an animation sequence from p(s1:T |w), one first samples a start state s1 ∼ p(s1). Then,

for each time-step t, the environmental variables e and the user inputs c, if desired, are

sampled from their distributions: et ∼ p(e) and ct ∼ p(c). Joint torques τ t are sampled

as τ t ∼ p(τ |st, ct,w). Finally, the next state st+1 is computed according to the dynamics

(4.1).

Note that even for a deterministic system, simulations of multiple walk cycles will exhibit

small deviations from perfect gait periodicity. Controllers optimized for long simulations

will therefore be somewhat more robust than those optimized for short durations. But

with random variables, we can no longer optimize the return of a single scenario, and

then expect the controller to work during another simulation for which random variables

take on different values. Instead, we optimize the expected return. The expected return

of a controller, with control parameters w, is

V (w) ≡ Ep(s1:T |w) [R(s1:T )]

=

∫

p(s1:T |w)R(s1:T ) ds1:T . (4.12)

The optimal control problem is to select w to maximize this expected return. By optimiz-

ing the expected return, we aim to find a controller that will work well, on average, with

plausible values for the uncertain quantities. The same principles have been effective in

modeling human motor control [43, 109].



52 Chapter 4. Optimizing for Robustness to Uncertain Environments

4.3.4 Evaluation and optimization

Due to nonlinear dynamics and non-Gaussian noise, the expected return (4.12) cannot

be computed analytically; hence we use Monte Carlo methods [104]. Specifically, N

animation sequences are sampled, as described above. The approximation V̂ (w) is then

computed as the average return on these sequences:

V̂ (w) =
1

N

N
∑

i=1

R(s
(i)
1:T ) , (4.13)

where s
(i)
1:T ∼ p(s1:T |w) .

For example, suppose the only source of randomness is an external force, f , applied

to the character’s torso at time t, where the direction and magnitude of the force are

uniformly distributed. We run the simulation N times, each time applying different forces

drawn at random from the uniform distribution. To optimize V̂ (w), we use the CMA

algorithm [31].

Note that, because new motions are sampled for each evaluation, V̂ (w) is a random

quantity. Hence, even if w is fixed, one obtains a different result each time V̂ (w) is

evaluated. This can cause problems for optimization algorithms. One issue is as follows.

Suppose, when comparing two controllers w1 and w2, we obtain estimates for which

V̂ (w1) > V̂ (w2). We cannot tell whether this is because w1 is really better than w2,

or if the random forces sampled for the second evaluation were more challenging than

those for the first. We address this by using the method of common random numbers

(CRN) [102], also known as PEGASUS [75]. In CRN, one reuses the same random seed

each time V̂ (w) is evaluated. This makes V̂ (w) deterministic: for the example above,

the same sample of N random forces would be used in each evaluation. This resolves

difficulties with many optimizers, and, under certain conditions, can be shown to yield

better results with high probability. We find that effective controllers can be optimized

with small values of N (e.g., see Figure 4.4).

With each application, the controllers are optimized using the method of CRN with

N = 10 simulations, and CMA. Following the previous chapter, the simulator frequency

is 2400 Hz (time-steps are about 0.00042 s), each simulation run is 10 s long, and we run

19 CMA samples in parallel per iteration. The optimization here is, however, more expen-



4.3. Optimal control under uncertainty 53

(a)

(b)

(c)

Figure 4.2: Comparison of base-
line controllers to motion capture
data. (a) Thigh orientation w.r.t.
down vector. (b) Angle between
thigh and shin. (c) Ankle orien-
tation w.r.t. front vector. Thanks
to Nikolaus Troje for providing the
mocap data.

sive, because each evaluation of the return function requires N simulations. Convergence

typically requires a few hundred iterations. Running the optimizations overnight on a

cluster of 20 CPUs is usually sufficient. Further parallelization of the N independent

samples is possible.

Because the optimization is nonconvex, a good initial guess is required and local minima

are problematic. We first optimize a controller with no uncertainty, as in Section 4.3.1.

This baseline controller is then used as the initial guess for controller optimization under

uncertainty. When uncertainty or variability in environmental conditions is extreme, it

is easy for the optimization to get trapped in poor local minima. In these cases, we first

optimize controllers for smaller noise levels or perturbations (often with early stopping).

These are then used to initialize optimizations for higher levels of noise. We find that

incremental optimization, while slowly changing conditions from baseline controllers to

the desired scenarios, typically produces effective controllers.



54 Chapter 4. Optimizing for Robustness to Uncertain Environments

4.4 Applications

To demonstrate the impact and generality of optimization under uncertainty, we consider

several applications where different environment conditions and sources of uncertainty

combine to produce different strategies for robustness. These controllers are compared

against their corresponding baseline controllers to evaluate the significance of uncertainty.

The baseline controllers are similar to those described in the previous chapter, but with

small differences in control parameterization, objective function, and mass distribution,

the gaits produced by baseline controllers appear more natural. Many features, such

as knee angle (Figure 4.2b) and foot orientation (Figure 4.2c) behave as before, while

others, such as the thigh orientation trajectory (Figure 4.2a) bear greater similarity to

mocap data. The dotted curves and orange regions represent the mean and standard

deviation of walk cycles previously depicted in Figure 3.6. Dashed blue and red curves

represent the mean of optimized controllers from the previous chapter and SIMBICON,

respectively. Solid lines represent baseline controllers: optimized with no user constraints

and the 1.6 m/s controller described in Section 4.4.4.

In general, however, the motion trajectories generated by our controllers (including ones

from the previous chapter) are not as smooth as typically observed in motion capture

data. For example, note the discontinuous change in the first derivative, which occurs

between 65% and 70% of the walk cycle. It can most clearly be seen in Figure 4.2b, but is

also apparent in Figure 4.2a. This is an artifact of state transition from 0/2 to 1/3, and

can possibly be alleviated by interpolating the target angles between states. To the keen

observer, the lack of smoothness also manifests itself visually in the generated motions.

Indeed, qualifying the remaining gap between walking motions created by our controllers

and motion capture data is an open problem, and the removal of state-switching artifacts

would certainly reduce the gap.

4.4.1 External disturbances

We begin with a scenario in which external forces are applied to the torso of the character,

but with unknown timing and direction, such as gusts of wind. Other quantities are

assumed known: the generation of internal joint torques is deterministic (4.2), there are

no user inputs c, and the start state s1 is optimized along with the control parameters.



4.4. Applications 55

Figure 4.3: Controller success
rate vs. F , averaged over 100 tri-
als at each magnitude F . Con-
trollers optimized with larger
forces (see legend) are more ro-
bust to a wider range of pushes.

Walking under random pushes to the chest. Consider a baseline controller opti-

mized for walking in a fixed direction, efficiently and with a human-like speed to step-

length ratio (Chapter 3). While such controllers produce gaits that appear loose and

relaxed (e.g., Figure 4.1a), they are not particularly robust. Strong pushes to the chest

can easily make the character fall. Conversely, controllers optimized under uncertainty,

where p(e) represents random pushes to the chest, are significantly more robust. Fur-

ther, the robustness of the resulting controllers increases with the magnitude of the pushes

during optimization (see Figure 4.3).

To model pushes to the chest, forces of magnitude F newtons from random directions

parallel to the ground are applied to the torso COM. During optimization and testing,

they are applied with uniformly distributed directions over (0, 2π]. At each simulation

time instant, a force lasting 0.4 s is initiated with probability 0.025% (approximately

6 pushes in a 10 s simulation). Controllers were optimized in sequence, with those for

smaller force magnitudes F used to initialize optimizations for larger F . We learned

controllers with F = 100, 200, 300, 350, and 400, all of which differ significantly from

the baseline controller. The knee swings are less passive, making each step appear more

deliberate. The arm swings are more pronounced, making gaits appear more energetic.

At F = 200, the upper body leans forward slightly, resulting in a fast gait (e.g., see Figure

4.1b). At F = 400, the upper body is bent almost parallel to the ground, lowering the

average COM from 1.02 m (baseline) to 0.96 m. We also find that, as F increases, the

average squared torque over time Epower (3.13), grows quickly from 34671 (baseline) to

194847 (F = 400).

Figure 4.3 shows the success rate for different controllers under different force magnitudes

during simulation, where a simulation trial is deemed successful if the character does not

fall within 10 s. Controllers optimized for larger forces are clearly more robust. Table 4.1



56 Chapter 4. Optimizing for Robustness to Uncertain Environments

direction 0 N (baseline) 100 N 200 N 300 N 350 N 400 N

(1, 0) 125 175 275 375 350 425
(1,±1) 75 125 225 275 300 325
(0,±1) 75 125 325 375 425 475
(−1,±1) 25 100 175 225 250 275
(−1, 0) 75 200 350 325 375 375

Table 4.1: Maximum force (in newtons) tolerance for controllers pushed in different directions.
Each column represents a controller trained for a particular F .

reports the maximum force tolerated by each controller from 8 directions. Following

Chapter 3, we apply pushing forces to the torso once every 4 s. A controller succeeds if

the character does not fall within 40 s.

Walking on a narrow beam. When walking on a narrow beam high above the ground

(e.g., see Figure 4.1d), the consequence of even a slight misstep can be catastrophic. If

the environment is deterministic and known, one’s gait on the beam might not differ

from that used on the ground plane. In the presence of uncertain forces applied to the

body, however, one must be more conservative to avoid taking a bad step and falling.

To demonstrate this, we first optimized a baseline controller to walk on a narrow beam

that is 0.5 m in width. We enable collision detection between body parts here, so that

gaits with legs passing through each other are not possible. As expected, the resulting

controller is like that for walking on the ground plane, except that the width of its gait

is less than 0.5 m.

We then apply random forces to the torso, like those in the previous experiment, but with

F = 30. Under pushes of this magnitude, the baseline controller quickly takes a wrong

step and falls off the beam. Unlike the ground plane, where extending the width of a step

in the sagittal or coronal direction can prevent falling even with large forces, here, just a

light push is enough to cause the character to fall. Nevertheless, a successful controller

for this environment can be learned through optimization. As depicted in Figure 4.1d,

the resulting controller takes smaller, more deliberate steps, and keeps the feet closer to

center of the beam. The average step length decreased from 0.82 m (baseline) to 0.53 m,

and Epower increased from 44998 to 100657.



4.4. Applications 57

Figure 4.4: Effect of N on con-
troller robustness. The curve
shows the mean success rate for
10 controllers, at each value of
N , with standard error bars.
The orange region depicts the
sample standard deviation for 10
controllers.

4.4.2 Interactive user control

The control parameterization allows a user to specify heading (Section 4.3.1) and hence

the walking direction. Nevertheless, the baseline straight-walking controller does not

handle changes in heading successfully. To improve this, we view user input as a source

of uncertainty, and optimize a controller to cope with random changes in desired head-

ing direction. The optimized controller is slower (1.1 m/s) than the baseline controller

optimized without turning (1.6 m/s). Unlike our results in the pushing experiment, this

controller has the upper body leaning back slightly. We created an interface where the

user changes the desired heading direction at will using the keyboard, 0.5 radians at a

time. When used with the baseline controller, the character falls frequently. When opti-

mized with random orientation changes, however, the user can easily learn to interactively

navigate the 2D plane without the character falling.

We also use this task to examine the effect of N on the optimized solutions. We optimized

10 controllers with stochastic heading changes for each of N = 1, 3, 5, 10, 20. To model

p(c), heading changes occur at each time instant with probability 0.05%, each of which

is drawn from N (0, 0.5), a mean-zero Gaussian density with a standard deviation of 0.5

radians. To assess controller performance we use the fraction of 100 simulations that do

not fall within 10 s. The results in Figure 4.4 show that for small values of N there is

higher sampling variability, and hence less robustness on average. As N increases, the

average performance increases, as does the reliability of the controllers. Around N = 10

the marginal gain in controller performance decreases significantly compared to the added

computational expense during optimization for this task.



58 Chapter 4. Optimizing for Robustness to Uncertain Environments

4.4.3 Motor noise

We now consider the effects of motor noise together with different environments and

return functions. In a deterministic setting, control optimization may succeed at chal-

lenging tasks with relative ease, even if there is little margin for error. In the presence

of randomness, however, controllers must become more careful.

Biological neural control systems exhibit noise. This seemingly random variability is

found in the measurement of many biological quantities, even in highly repetitive tests [21].

For example, all neurons, including motor neurons, exhibit variability in their output po-

tentials even when the same stimuli are presented on repeated trials. Such neural noise

is often signal dependent. In the motor system, larger control signals exhibit greater

noise; i.e., in motor neurons that control muscle activation, the standard deviation scales

in proportion to firing rates. There is strong evidence that motor noise plays a major

role in determining human motor control strategies [33]. Motor noise may also provide

robustness under a wide range of otherwise unmodeled phenomena, including numerical

errors in computer simulation.

We employ a simplified model in which motor noise affects the joint torques produced by

the controller. Motivated by neural noise, we assume the standard deviation of the noise

increases with torque, and decreases with the strength of the joint (i.e., the maximum

torque that can be generated at that joint). The particular form of our model is a

modified version of that developed by Hamilton et al. [30]. For each joint i, given a

desired (noiseless) torque of the controller τ̄i, the noisy torque τi is drawn from a Gaussian

density with mean τ̄i and standard deviation σ(τ̄i):

τi ∼ N (τ̄i; σ(τ̄i)) (4.14)

σ(τ̄i) = τ̄iβ exp(−2.76)MVT−0.25 , (4.15)

where MVT is the maximum voluntary torque output at the particular joint and β is

a scale factor that allows one to adjust the noise level. For each joint DOF, we use

MVT = kp, the spring stiffness constant of the PD-controller at that joint DOF.

Walking on a slippery surface. Walking on a surface with a low coefficient-of-friction

µ requires caution. When optimizing a baseline controller for walking in a straight line



4.4. Applications 59

on a surface with µ = 0.4, with no noise or uncertainty in the environment, we obtain

a controller that is somewhat more cautious, taking smaller steps than a comparable

controller trained with greater friction. Nevertheless, more pronounced differences are

evident when controllers are optimized with uncertainty due to motor noise. We opti-

mized three controllers, each with a different amount of motor noise, by varying the scale

factor in (4.15), i.e., β = 50, 75, 100. We find that, for high noise levels, the character

raises his arms wide in the coronal plane and lowers his center of gravity, producing a

gait much like that of a person treading carefully on ice (e.g., see Figure 4.1c).

Carrying hot beverages. When designing a controller to carry a mug of hot coffee, we

want to ensure the character will not spill the coffee. Accordingly, the controller receives

large penalties (negative rewards) at every time-step for which the orientation of the mug

deviates too far from vertical. Figure 4.5a shows one pose of the baseline controller where

the arms are not particularly stiff and the step length is relatively long. By comparison, a

corresponding pose of the controller optimized with β = 100 shows a shorter step length

with arms that remain steady and level. Figure 4.5b plots the mug tilt as a function of

time. The baseline controller walks in a relaxed fashion, but allows the mug orientation

to reach the spillage threshold. Even small disturbances will therefore cause coffee to

spill. In contrast, the strategy optimized with motor noise creates a margin for safety

below the threshold.

To model this task, let Φt = [φcor, φsag, φtrans] represent the orientation of a hand in the

world frame at simulation step t, such that Φt = [0, 0, 0] corresponds to a level, upright

mug. Suppose that spills occur whenever m(t) =
√

φcor
2 + φsag

2 > 0.1. Note that this

model ignores acceleration of the mug, which could also be included for realism. For

the baseline controller, optimized in a deterministic setting, the mug orientation quickly

exceeds the 0.1 threshold, even for small amounts of motor noise (e.g., with β = 25). For

a controller optimized with β = 50, the walking speed slows, and the cup orientation is

more stable. For β = 100, the gait appears cautious and hip-driven (63% of the lower

body power output is from the hip, compared to 43% in the baseline and β = 50 case).

The latter two controllers, optimized to handle larger noise levels, are both able to walk

without spillage when simulated with β = 25, unlike the baseline controller.



60 Chapter 4. Optimizing for Robustness to Uncertain Environments

(a) (b)

Figure 4.5: Carrying hot beverages. (a) Poses from controllers optimized without and with
motor noise (β = 100). (b) Mug orientation as a function of time from the two controllers, both
simulated without motor noise.

4.4.4 Recovery controllers

Optimization with random external perturbations, like that in Section 4.4.1, produces

controllers that anticipate external disturbances. For example, they achieve robustness

by remaining stiff and keeping the COM relatively low. A complementary approach is

to design a reactive controller, where a basic controller π is active under normal cir-

cumstances, but a recovery controller πr is invoked when a disturbance is detected. The

recovery mechanism helps the character return to a normal gait so that π can be restarted.

For example, one might walk with a relaxed gait until pushed, at which point the recovery

controller takes over until the basic controller with the relaxed gait can resume control.

Ideally, πr would bring the character to states with high expected return with respect

to the basic controller π, but this is costly to evaluate. Instead, we aim for states

that are typical of π. We define several key features ŝ of a character’s state, and then

estimate p(ŝ), the distribution of features observed during normal walking under π. Here,

ŝ comprises the horizontal distance from the stance ankle to the COM, and the COM

velocity, projected into both the sagittal and coronal planes. Finally, we combine π and

πr to form a new reactive controller πnew as follows:

πnew(s) =







π(s) p(ŝ) > κ

πr(s) otherwise ,
(4.16)



4.4. Applications 61

Figure 4.6: Recovery con-
trollers optimized to return to
the baseline controller (Section
4.4.4) for larger pushes show
greater robustness. Success rate
is estimated from 100 random
trials.

where κ is a threshold. This controller runs π when the input is in π’s typical states, and

runs πr otherwise.

For the recovery task we begin with a controller π optimized to walk comfortably at

1.6 m/s, with step-length 0.8 m. We generate motions of duration 100 s from π with

random heading changes (see Section 4.4.2) that occur with probability 0.025% at each

time-step, drawn from N (0, 0.3). We then fit an axis-aligned Gaussian to these motion

features to approximate p(ŝ).

The goal of the controller πnew is to walk using π where possible, using πr to return the

character to states with high p(ŝ) (i.e., typical states from π). We model random external

forces using random pushes to the torso (as in Section 4.4.1), of 100 N and 150 N. The

optimization variables are κ and the parameters of πr, where πr is initialized to π, κ is

initialized to e−7. The reward for the optimization penalizes time-steps not spent in the

basic controller, and heavily penalizes falling:

r(st) = −0.01(recover t)− 100(failed t) , (4.17)

where recovert is 1 if p(ŝt) < κ, and 0 otherwise, and failed t is defined in the Appendix.

Following pushes, the recovery controllers successfully return the character to states with

p(ŝ) > κ after a few steps at most, thus re-activating π. Adding the recovery controller

improves robustness (Figure 4.6), to a degree comparable to directly optimizing the

basic controller, as in Section 4.4.1. However, direct optimization still provides larger

improvements in robustness, since the entire walking style is allowed to be modified.



62 Chapter 4. Optimizing for Robustness to Uncertain Environments

direction baseline rec. 100 N rec.150 N

(1, 0) 50 125 200
(1,±1) 50 75 175
(0,±1) 150 175 175
(−1,±1) 25 50 125
(−1, 0) 75 125 125

Table 4.2: Maximum disturbance force
components (in newtons) tolerance for re-
covery controllers pushed in different direc-
tions.

4.4.5 Transition between speeds

The ability to compose controllers is essential for characters to perform interesting activ-

ities in sequence. Previous work either assumes the existence of low-level controllers to or

from which one can reliably transition, or has focused on identifying specific states where

it is safe to switch [16, 22]. In general, between very different controllers (e.g., walking

fast and slow), finding reliable switching states is difficult. We can however exploit the

recovery controllers (4.16) above to facilitate such transitions.

More concretely, to facilitate transitions from controller πA to controller πB, we define a

new controller

πAB(s) =







πB(s) pB(ŝ) > κAB

πr,B(s) otherwise ,
(4.18)

where pB(ŝ) characterizes the key features of motions produced by πB, and κAB is a

threshold. When a command to switch from πA to πB is received, πAB is activated.

Since the states produced by πA are not necessarily typical of πB, i.e., pB(ŝ) < κAB, the

transition will usually activate πr,B directly. The recovery controller πr,B will then be

active until control under πB can begin. To determine πAB, like the recovery controller

in (4.16), we optimize κAB and the parameters of πr,B to transition the character from a

start state produced by πA, to a state where πB may be activated. To generate a range

of possible start states for transitions, we simulate motions from πA along with random

switching times.

We demonstrate transition controllers to change speed while walking. First, we learned

controllers for walking at 0.8, 1.6 and 2.4 m/s, and modeled their typical states with pB(ŝ)

as above. For optimization and testing, we run each simulation for 7 s, with switching

times drawn from a uniform distribution between 1 and 2 s. A transition is deemed

successful if the character is still walking after 7 s. Unlike previous experiments, we use



4.5. Discussion 63

CRN with N = 20.

Without transition controllers, transitions from high to low speeds fail frequently. Out

of 500 random trials, switching from 2.4 m/s to 1.6 m/s failed 203 times (40.6%), while

switching from 2.4 m/s to 0.8 m/s failed 238 times (47.6%). The number of failures

is reduced dramatically by the transition controllers, down to 7 (1.4%) and 16 (3.2%),

respectively. Solely in terms of failure rates, transition controllers do not make much

difference in other cases. For example, the failure rates for 0.8 m/s to 2.4 m/s and

1.6 m/s to 2.4 m/s were lowered from 5.4% to 2.2% and from 6.2% to 5.8%. However,

they often still served to bring the character into a stable state more quickly and gracefully

than direct switching, resulting in smoother transitions. Comparisons are included in the

supplemental video.

4.4.6 Composing many controllers at run-time

The ability to transition from one controller to another facilitates the implementation of

a character that can switch control strategies on demand. In the supplemental video, we

demonstrate a character switching between several walking controllers, each optimized

using methods described for fast speeds, slow speeds, a slippery surface, recovery, turning,

and the high beam. Most of the switching did not require explicit transition controllers,

since the controllers optimized with uncertainty are often robust enough as they are. All

switching was determined by user commands within a single interactive session.

4.5 Discussion

We have presented a unified framework that captures many sources of uncertainty in a

single optimization process. Our work shows the value of explicitly representing uncer-

tainty in character controllers: control strategies automatically adapt to specific sources

of randomness, making them more robust and composable, while creating natural stylis-

tic variations. A main limitation of our method is that the quality of results still falls

short of kinematic methods, and it could be argued that some of our adaptations appear

unusual. While we have tested with a simple four-state PD controller, we believe these



64 Chapter 4. Optimizing for Robustness to Uncertain Environments

observations are general and should be useful for more sophisticated control parameteri-

zations as well, but optimization may also become more difficult.

There remain other sources of uncertainty that could be handled with our model; each

of these could lead to new forms of robustness and control strategies. Perhaps most

significant is perceptual uncertainty [43], namely, the incomplete picture of the world

we get from our senses. For example, visual estimation of depth and motion is inher-

ently noisy, a crucial fact for anyone attempting to catch or avoid fast-moving objects.

Other sources of uncertainty include proprioceptive error (e.g., pose uncertainty), ground

roughness [12], and the behaviors of other agents.

Incorporating uncertainty into other approaches to optimization of character control

should be straightforward. For example, many optimal control formulations used in

recent animation research — including the Bellman equations, policy iteration, and the

linear-quadratic regulator — can be formulated with probabilistic dynamics. However,

restrictive dynamics and uncertainty models (e.g., linear dynamics and Gaussian noise)

are normally required for optimal closed-form solutions in continuous models.



Part II

Gaussian Process Models for Human

Motion

65





Chapter 5

Data-driven Prior Models of Human

Motion

The idea of introducing additional constraints for motion synthesis can be made more

general when discussed in terms of probabilistic models. In computer vision, where the

use of Bayesian methods is commonplace, the problem of recovering 3D motion from 2D

video observations can be thought of as modeling

p(motion|observation) , (5.1)

and identifying (at least) the most likely motion for a given set of observations. In the

animation context, the animator constraints constitute the observations. For a given set

of constraints, the animation system generates a corresponding motion1, which effectively

specifies a mapping from constraint space to motion space.

More specifically, motion here consist of sequences of 3D pose configurations. If observation

is available for each pose in the motion, which is often the case for computer vision, the

main modeling task actually lies in the mapping from observations to poses. Strictly

speaking, here the role of motion (relations between different poses) is potentially very

limited. We will use motion in a broad sense, including both individual pose configura-

tions as well as motions obtained from concatenating them.

1This motion trajectory could be thought of as a peak in the distribution p(motion|observation).

67



68 Chapter 5. Data-driven Prior Models of Human Motion

Discriminative methods approach this problem directly, either by modeling the distribu-

tion or by specifying a mapping from observations to the pose/motion space as discussed

before. However, this mapping could be highly nonlinear or even one-to-many, hence dif-

ficult to construct. On the other hand, the generative approach models (5.1) by relating

it to p(observation,motion), the joint distribution between observation and motion, via

Bayes’ rule:

p(motion|observation) ∝ p(observation,motion) (5.2)

= p(observation|motion)p(motion) . (5.3)

In 3D tracking, p(observation|motion) is called the likelihood model, which represents

the mapping from 3D poses to 2D images. Fundamentally, given the camera configu-

rations, this mapping is well understood as the rendering problem. Correspondingly, in

animation, the mapping from 3D pose to animator handles such as end-effectors is also

well defined. The challenge is mainly to model p(motion), the prior belief on which 3D

motion trajectories are likely. This term is often referred to as the motion model.

In the generative approach, given a set of observations or constraints, (5.3) can be eval-

uated with respect to a hypothesized motion. Some optimization algorithm will then be

used to find the hypothesis that maximizes (5.3). Conceptually, this amount to finding a

motion that simultaneously generates the observations (or satisfies user constraints) and

is deemed likely by the motion model. In general, the optimization is expensive, prone

to local minima, and needs to be done for each new observation. However, the motion

model is independent from the observation model, allowing the problem of characterizing

likely motions to be treated separately from the problem of selecting proper animator

constraints. In the rest of the thesis, we will focus on the generative approach, and

methods to model p(motion) from motion capture (mocap) data.

Regardless of the specific application, the main purpose of motion models is to constrain

the space of motions being considered. Much like the space of natural images is much

smaller than the space of all possible combinations of pixel colours, the space of natural

motions is also small relative to all possible motion trajectories. Two main aspects of

constraining the space are characterizing the space of likely poses and characterizing the

likely combinations between poses (e.g., smoothness constraints, physical plausibility).



5.1. Motion databases 69

The former class of models is more accurately called pose models, while the later motion

models. As alluded to above, most models contain aspects of both, and we will refer to

both as motion models.

5.1 Motion databases

One simple way to construct such a motion model is by keeping a database of valid

motions, synthesized by other means, and restricts the search of solutions to motions in

the database. This idea was first explored on simple 2D figures (Luxo lamp) [47], where

a motion database of physically generated hops can be adapted to varying terrains. The

motion model allows for hops to be concatenated as long as the final state of one hop

is sufficiently close to the initial state of the next. Although the Luxo lamp is simple

and low dimensional, the idea of transitioning between nearby poses became a common

theme of more recent works on human motion models based on mocap data.

Mocap data typically come as a collection of vectors representing the pose configuration in

a single frame. Natural looking motion trajectories can be synthesized by concatenating

pose vectors that appear natural when placed next to each other, which is usually true

when the vectors are numerically close. Given that similar poses can appear in multiple

captured motions, it is possible to generate trajectories that make use of poses from

different motion clips. This can be done by first constructing motion graphs [5, 44, 52]

from data, which constructs a graph structure where nodes correspond to poses and

edges correspond to allowable transitions. For any reasonably rich database, however,

the graph could easily get extremely large. The motion graphs can be compressed by

merging nodes from the same sequence [5, 44], or through cluster trees [52]. Dynamical

programming techniques can then be applied on the graph to search for trajectories that

satisfy user constraints such as position and direction. The structure of the graph can also

be manually designed [24], allowing for better control over the transitions. Higher level

controls such as run, walk, or jump can be composed and synthesized using annotated

motion graphs [6].

A major challenge of using stock motion clips for animation is how they could be made

more flexible to user constraints. The use of motion graphs allows for transitions in-

between clips, which alleviates the problem somewhat. However, fundamentally if a



70 Chapter 5. Data-driven Prior Models of Human Motion

certain pose does not exist in the database, it cannot be satisfied as a user constraint.

There have also been interests in combining interpolation and optimization with motion

graphs [93, 97], which expands the range of poses that could be synthesized.

5.2 Statistical models

As discussed previously, it is difficult to constrain motions using a mocap database be-

cause we cannot hope to capture all possible variations of human motion. For animation,

this means specific user constraints may not be always satisfied, and the model would only

be suitable for applications that do not require fine control (e.g., games). For tracking,

this limitation is even less appealing as trackers are often asked to track new individuals

performing activities in new styles.

Of course, the need to build motion models that are capable of making predictions beyond

observed data is not unique to animation and tracking. Indeed, the analysis of sequential

data has been studied extensively in fields ranging from control engineering to economics.

In computer science, the problem of learning from collections of data and generalizing

from them is the central problem in machine learning. The use of statistical modeling is

crucial to virtually all these applications. Although not exclusively, they have also been

applied to building motion models.

One common approach is to learn a probability distribution over the space of possible

poses and motions, parameterized by the joint angles of the body, as well as its global

position and orientation. This corresponds to explicitly modeling p(motion), mentioned

in the start of this chapter. Such a density function provides a natural measure of

plausibility, assigning higher probabilities to motions that are similar to the training

data. The task is challenging due to the high-dimensionality of human pose data, and

to the complexity of the motion. However, poses from specific activities often lie near

a nonlinear manifold with much lower dimensionality than the number of joint angles.

Motivated by this property, a common approach to define the generative model is to

decouple the modeling of pose and motion. The motion is modeled by a dynamical

process defined on a lower-dimensional latent space, and the poses are generated by an

observation process from the latent space.



5.2. Statistical models 71

The current literature offers a number of generative models where the dynamics is not

directly observed. Simple models such as linear dynamical systems (LDS) are efficient

and easily learned, but are limited in their expressiveness for complex motions. Though

they could still be useful as a weak prior for motion synthesis, give sufficient user con-

straints [13]. More expressive models, such as switching LDS [81], nonlinear dynamical

systems (NLDS) [92], and restricted Boltzmann machines [105] are more difficult to learn,

requiring many parameters that need to be hand-tuned and large amounts of training

data.

Using hidden Markov models as a starting point, additional parameters associated with

states or hierarchies can be introduced to model stylistic variations in motion [8,80], such

as different dancers performing the same score in different styles. Impressive results in

motion synthesis can be achieved with these models, but the learning process is complex

and typically requires manually specifying parameters such as the number of hidden

states and styles.

Alternatively, LDS can be used as a building block to more powerful models as well. Given

a clip of human motion, it is almost always the case that a single LDS is insufficient to

model its complexity. However, one would identify segments of the motion that can be

well modeled with LDS. A two-level model can be learned in this fashion [58], and good

synthesis results can be achieved. Closely related to this approach is switching LDS [81],

which models each pose as a mixture of LDS, and have been applied to tracking and

classification of motion.

Manifold learning techniques can be used to explicitly recover the low dimensional struc-

ture of the poses, which can make tasks such as density estimation (characterizing likely

poses) easier. However, a mapping from the low dimensional representation to the pose

space has to be learned separately [100]. Although the mappings between latent space

and pose space, as well as the dynamics, are in general nonlinear. Locally linear approx-

imations such as mixtures of factor analyzers [55, 56] can be used to approximate these

mappings.

The statistical models discussed so far are all parametric models, which only uses the

motion database as training data to tune the model parameters. These models allow

the evaluation of motions outside of the database (i.e., given a new motion, the model

can say something about how likely it is relative to training data). However, when used



72 Chapter 5. Data-driven Prior Models of Human Motion

for motion synthesis, they often have the effect of “smoothing” the motion, discarding

important high frequency information, and leading to artifacts such as foot-skating.

More recently, a number of projects in graphics and vision made use of Gaussian pro-

cess latent variable models (GPLVM) [49]. They were initially used for estimating the

density of likely poses (but not motion) for the problem of inverse kinematics [27] and

tracking [116]. In previous work, we extended the GPLVM to a dynamical model [127],

which has lead to promising tracking and animation results [69, 113, 135]. Other exten-

sions to the GPLVM include the addition of hierarchies [50], multifactor models (Chapter

6), and topological constraints [115]. Unlike most statistical models, Gaussian process

models do not throw away training data after the learning process; instead, they are used

directly to evaluate new motions. Consequently, good synthesis results can be obtained

at the cost of a more expensive likelihood computation.

5.3 Gaussian process dynamical models

In the rest of this chapter, we describe Gaussian process dynamical models (GPDM)

for nonlinear time series analysis, which is a specific approach to model p(motion). We

provide a summary of the work here as background for Chapter 6, interested readers are

referred to our previous article [127] for a more complete treatment. A GPDM is a latent

variable model. It comprises a low-dimensional latent space with associated dynamics,

and a map from the latent space to an observation space. We marginalize out the model

parameters in closed-form, using Gaussian process priors for both the dynamics and the

observation mappings. This results in a non-parametric model for dynamical systems

that accounts for uncertainty in the model.

5.3.1 Introduction

The GPDM is a Bayesian approach to learning NLDS, averaging over model parameters

rather than estimating them. Inspired by the fact that averaging over nonlinear regression

models leads to a Gaussian process regression model, we show that integrating over NLDS

parameters can also be performed in closed-form. The resulting model is fully defined by

a set of low-dimensional representations of the training data, with both observation and



5.3. Gaussian process dynamical models 73

dynamics processes learned from Gaussian process regression. As a natural consequence

of Gaussian process regression, the GPDM removes the need to select many parameters

associated with function approximators while retaining the power of nonlinear dynamics

and observation.

As mentioned previously, this approach is directly inspired by the GPLVM [49]. The

GPLVM models the joint distribution of the observed data and their corresponding rep-

resentation in a low-dimensional latent space. It is not, however, a dynamical model;

rather, it assumes that data are generated independently, ignoring temporal structure of

the input. Here we augment the GPLVM with a latent dynamical model, which gives

a closed-form expression for the joint distribution of the observed sequences and their

latent space representations. The incorporation of dynamics not only enables predictions

to be made about future data, but also helps to regularize the latent space for modeling

temporal data in general [85].

The unknowns in the GPDM consist of latent trajectories and hyperparameters. Gener-

ally, if the dynamics process defined by the latent trajectories is smooth, then the models

tend to make good predictions. We discuss a maximum a posteriori (MAP) algorithm

for estimating all unknowns, and discuss cases where it fails to learn smooth trajectories.

5.3.2 Model formulation

The GPDM comprises a generative mapping from a latent space x to the observation

space y, and a dynamical model in the latent space (Figure 5.1). These mappings are

in general nonlinear. For human motion modeling, a vector y in the observation space

corresponds to a pose configuration, and a sequence of poses defines a motion trajec-

tory. The latent dynamical model accounts for the temporal dependence between poses.

The GPDM is obtained by marginalizing out the parameters of the two mappings, and

optimizing the latent coordinates of training data.

More precisely, our goal is to model the probability density of a sequence of vector-

valued states y1, . . . ,yt, . . . ,yN , with discrete-time index t and yt ∈ R
D. As a basic



74 Chapter 5. Data-driven Prior Models of Human Motion

(a)

A

B

x1 x2 x3 x4

y1 y2 y3 y4 (b)

X

Y

Figure 5.1: Time-series graphical models. (a) Nonlinear latent-variable model for time series.
(Hyperparameters ᾱ, β̄ and W are not shown.) (b) GPDM model. Because the mapping
parameters A and B have been marginalized over, all latent coordinates X = [x1, . . . ,xN ]T are
jointly correlated, as are all poses Y = [y1, . . . ,yN ]T .

model, consider a latent variable mapping (5.5) with first-order Markov dynamics (5.4):

xt = f(xt−1;A) + nx,t (5.4)

yt = g(xt;B) + ny,t . (5.5)

Here, xt ∈ R
d denotes the d-dimensional latent coordinates at time t, f and g are map-

pings parameterized by A and B, nx,t and ny,t are zero-mean, isotropic, white Gaussian

noise processes. Figure 5.1a depicts the graphical model.

While linear mappings have been used extensively in auto-regressive models, here we

consider the more general nonlinear case for which f and g are linear combinations of

(nonlinear) basis functions:

f(x;A) =
∑

i

ai φi(x) (5.6)

g(x;B) =
∑

j

bj ψj(x) , (5.7)

for basis functions φi and ψj , with weightsA ≡ [a1, a2, . . . ]
T andB ≡ [b1,b2, . . . ]

T . To fit

this model to training data, one must select an appropriate number of basis functions, and

one must ensure that there is enough data to constrain the shape of each basis function.

After the basis functions are chosen, one might estimate the model parameters, A and

B, usually with an approximate form of expectation-maximization [92]. From a Bayesian

perspective, however, the uncertainty in the model parameters is significant, and because

the specific forms of f and g are incidental; the parameters should be marginalized out

if possible. Indeed, in contrast with previous NLDS models, the general approach we



5.3. Gaussian process dynamical models 75

take in the GPDM is to estimate the latent coordinates while marginalizing over model

parameters.

Each dimension of the latent mapping, g in (5.7), is a linear function of the columns of

B. Therefore, with an isotropic Gaussian prior on the columns of B, and the Gaussian

noise assumption above, one can show that marginalizing over g can be done in closed

form [66, 73]. In doing so we obtain a Gaussian density over the observations, Y ≡
[y1, . . . ,yN ]

T , which can be expressed as a product of Gaussian processes (one for each

of the D data dimensions):

p(Y |X, β̄,W) =
|W|N

√

(2π)ND|KY |D
exp

(

−1

2
tr
(

K−1
Y YW2YT

)

)

, (5.8)

where KY is a kernel matrix with hyperparameters β̄ that are shared by all observation

space dimensions, and hyperparameters W. The elements of the kernel matrix, KY , are

defined by a kernel function, (KY )ij ≡ kY (xi,xj). For the mapping g, we use the radial

basis function (RBF) kernel,

kY (x,x
′) = exp

(

−β1
2
||x− x′||2

)

+ β−1
2 δx,x′ . (5.9)

The width of the RBF kernel function is controlled by β−1
1 , and β−1

2 is the variance of

the isotropic additive noise in (5.5).

Following Grochow et al. [27], we include D scale parameters, W ≡ diag(w1, . . . , wD),

which model the variance in each observation dimension. This is important in many

data sets for which different dimensions do not share the same length scales, or differ

significantly in their variability over time. In effect, this assumes that each dimension of

the input data should exert the same influence on the shared kernel hyperparameters, β1

and β2.

The dynamic mapping on the latent coordinates X ≡ [x1, . . . ,xN ]
T is conceptually sim-

ilar, but subtler. As above, one can form the joint density over the latent coordinates

and the dynamics weights, A, in (5.6). Then, one can marginalize over the weights A to

obtain

p(X | ᾱ) =

∫

p(X |A, ᾱ) p(A | ᾱ) dA , (5.10)

where ᾱ is a vector of kernel hyperparameters. Incorporating the Markov property (5.4)



76 Chapter 5. Data-driven Prior Models of Human Motion

gives

p(X | ᾱ) = p(x1)

∫ N
∏

t=2

p(xt |xt−1,A, ᾱ)p(A | ᾱ) dA . (5.11)

Finally, with an isotropic Gaussian prior on the columns of A, one can show that (5.11)

reduces to

p(X | ᾱ) = p(x1)
√

(2π)(N−1)d|KX |d
exp

(

−1

2
tr
(

K−1
X X2:NX

T
2:N

)

)

, (5.12)

where X2:N = [x2, . . . ,xN ]
T , and KX is the (N−1) × (N−1) kernel matrix constructed

from X1:N−1 = [x1, . . . ,xN−1]
T . Below we also assume that x1 also has a Gaussian prior.

The dynamic kernel matrix has elements defined by a kernel function, (KX)ij ≡ kX(xi,xj),

for which a linear kernel is a natural choice; i.e.,

kX(x,x
′) = α1x

Tx′ + α−1
2 δx,x′ . (5.13)

In this case, (5.12) is the distribution over state trajectories of length N , drawn from

a distribution of auto-regressive models with a preference for stability [69]. While a

substantial portion of human motion (as well as many other systems) can be well modeled

by linear dynamical models, ground contacts introduce nonlinearity [7]. We found that

the linear kernel alone is unable to synthesize good walking motions (e.g., see Figure 5.2h-

i). Therefore, we typically use a “linear + RBF” kernel:

kX(x,x
′) = α1 exp

(

−α2

2
||x− x′||2

)

+ α3x
Tx′ + α−1

4 δx,x′ . (5.14)

The additional RBF term enables the GPDM to model nonlinear dynamics, while the

linear term allows the system to regress to linear dynamics when predictions are made

far from the existing data. Hyperparameters α1, α2 represent the output scale and the

inverse width of the RBF terms, and α3 represents the output scale of the linear term.

Together, they control the relative weighting between the terms, while α−1
4 represents

the variance of the noise term nx,t.

It should be noted that, due to the marginalization over A, the joint distribution of the

latent coordinates is not Gaussian. One can see this in (5.12), where latent variables occur

both inside the kernel matrix and outside of it; i.e., the log likelihood is not quadratic in



5.3. Gaussian process dynamical models 77

xt. Moreover, the distribution over state trajectories in a nonlinear dynamical system is

in general non-Gaussian.

Taken together, the latent mapping, and the dynamics define a generative model2 for

time-series observations (Figure 5.1b):

p(X,Y, ᾱ, β̄,W) = p(Y |X, β̄,W) p(X | ᾱ) . (5.15)

5.3.3 GPDM learning

Learning the GPDM from measured data Y entails using numerical optimization to

estimate some or all of the unknowns in the model {X, ᾱ, β̄,W}. A model gives rise to

a distribution over new poses and their latent coordinates [127]. We expect modes in

this distribution to correspond to motions similar to the training data and their latent

coordinates. We find that models with visually smooth latent trajectories X not only

better match our intuitions, but also achieve better quantitative results. However, care

must be taken in designing the optimization method, including the objective function

itself [127]. We discuss the most intuitive MAP learning algorithm here.

A natural learning algorithm for the GPDM is to minimize the joint negative log-posterior

of the unknowns, − ln p(X, ᾱ, β̄,W |Y), that is given, up to an additive constant, by

L = LY + LX , (5.16)

where

LY =
D

2
ln |KY |+

1

2
tr
(

K−1
Y YW2YT

)

−N ln |W| (5.17)

LX =
d

2
ln |KX |+

1

2
tr
(

K−1
X X2:NX

T
2:N

)

+
1

2
xT
1 x1 . (5.18)

We alternate between minimizing L with respect to W in closed form, and with respect

to
{

X, ᾱ, β̄
}

using scaled conjugate gradient (SCG). The latent coordinates are initial-

ized using a subspace projection onto the first d principal directions given by principal

components analysis (PCA) applied to mean-subtracted data Y.

2We omit a discussion of priors on the hyperparameters ᾱ, β̄,W here for compactness.



78 Chapter 5. Data-driven Prior Models of Human Motion

Figure 5.2 shows a GPDM on a 3D latent space, learned using MAP estimation. Each

blue point in the latent space corresponds to a training pose in the high-dimensional

space. The training data comprised two gait cycles of a person walking. The initial

coordinates provided by PCA are shown in Figure 5.2a. Figure 5.2c shows the MAP

latent space. Note that the GPDM is significantly smoother than a 3D GPLVM (i.e.,

without dynamics), shown in Figure 5.2b.

Figure 5.3b shows a GPDM latent space learned from walking data of four different

walkers. In contrast to the model learned with a single walker in Figure 5.2, the latent

trajectories here are not smooth. There are small clusters of latent positions separated by

large jumps in the latent space. While such models produce good reconstructions from

latent positions close to the training data, they often produce poor dynamical predictions.

For example, the sample trajectories shown in Figure 5.3d do not resemble the training

latent trajectories particularly well.

5.3.4 Discussion

Figure 5.2 shows 3D latent models learned from data comprising two walk cycles from

a single subject. In all experiments here we use a 3D latent space. Learning with more

than three latent dimensions significantly increases the number of latent coordinates

to be estimated. Conversely, in two dimensions the latent trajectories often intersect

which makes learning difficult. In particular, Gaussian processes are function mappings,

providing one prediction for each latent position. Accordingly, learned 2D GPDMs often

contain large “jumps” in latent trajectories as the optimization breaks the trajectory to

avoid nearby positions requiring inconsistent temporal predictions.

Figure 5.2b shows a 3D GPLVM (i.e., without dynamics) learned from walking data.

Note that, without the dynamical model, the latent trajectories are not smooth; there

are several locations where consecutive poses in the walking sequence are relatively far

apart in the latent space. In contrast, Figure 5.2c shows that the GPDM produces a

much smoother configuration of latent positions. Here the GPDM arranges the latent

positions roughly in the shape of a saddle.

Figure 5.2d visualizes the variance of the reconstruction as a function of the latent space

position. This plot depicts the confidence with which the model reconstructs a pose as a



5.3. Gaussian process dynamical models 79

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Models learned from a walking sequence comprising two gait cycles. The PCA
initializations (a), latent coordinates learned with a GPLVM (b) and GPDM (c) are shown in
blue. Vectors depict the temporal sequence. (d) − ln variance for reconstruction shows positions
in latent space that are reconstructed with high confidence. (e) Random trajectories drawn from
the dynamic predictive distribution using hybrid Monte Carlo are green, the red trajectory is the
mean-prediction sample. (f) Longer random trajectories drawn from the dynamics predictive
distribution. (g-i) − ln variance for reconstruction, random trajectories, and longer random
trajectories created in the same fashion as (d-f), using a model learned with the linear dynamics
kernel. Note that the samples do not follow the training data closely, and longer trajectories
are attracted to the origin.



80 Chapter 5. Data-driven Prior Models of Human Motion

(a) (b) (c) (d)

Figure 5.3: Models learned from walking sequences from four different subjects. The latent
coordinates learned with a GPLVM (a) and GPDM (b) are shown in blue. (c) − ln variance plot
shows clumpy high confidence regions. (d) Samples from the dynamic predictive distribution
are shown in green, while the mean-prediction sample is shown in red. The samples do not stay
close to the training data.

(a) (b) (c)

Figure 5.4: Models learned with two-stage MAP from four different walking subjects. (a) The
learned latent coordinates shown in blue, note the walkers are separated into distinct portions
of the latent space. (b) − ln variance plot shows smooth high confidence regions, and the
variance near data is similar to Figure 5.3c. (c) Typical samples from the dynamic predictive
distribution are shown in green, while the mean-prediction sample is shown in red.

function of latent position x. The GPDM reconstructs the pose with high confidence in

a “tube” around the region occupied by the training data.

To further illustrate the dynamical process, we can draw samples from the dynamic

predictive distribution [127]. These sample trajectories are depicted as red and green

trajectories. All samples are conditioned on the same initial state, x
(∗)
1 , and each has

a length of 62 time steps (i.e., drawn from p(X
(∗)
2:62 |x(∗)

1 ,Γ)). The length was chosen to

be just less than a full gait cycle for ease of visualization. The resulting trajectories are

smooth and roughly follow the trajectories of the training sequences. The variance in

latent position tends to grow larger when the latent trajectories corresponding to the

training data are farther apart, and toward the end of the simulated trajectory.

The bottom row of Figure 5.2 shows a GPDM with only a linear term in the dynamics



5.3. Gaussian process dynamical models 81

kernel (5.14). Here the dynamical model is not as expressive, and there is more process

noise. Hence random samples from the dynamics do not follow the training data closely

(Figure 5.2h). The longer trajectories in Figure 5.2i are attracted towards the origin.

The MAP learning algorithm produces good models for the single walker and the golf

swings data. However, as discussed above, this is not the case with model learned with

four walkers (Figure 5.3b). In contrast to the GPDM learned for the single walk data

(Figure 5.2); the latent positions for the training poses in the four-walker GPDM consist

of small clumps of points connected by large jumps. The regions with high reconstruction

certainty are similarly clumped (Figure 5.3c); only in the vicinity of these clumps is pose

reconstructed reliably. Also note that the latent positions estimated for the GPDM are

very similar to those estimated by the GPLVM on the same dataset (Figure 5.3a). This

suggests that the dynamical term in the objective function (5.16) is overwhelmed by the

data reconstruction term during learning, and therefore has a negligible impact on the

resulting model.

Figure 5.4 shows that it is possible to apply alternative learning algorithms (e.g., two-

stage MAP [127]) to obtain smooth trajectories for all walkers. However, the model

here places the trajectories far apart in the latent space, and no relations between them

are captured. In the next chapter, we address this problem by employing additional

information in the training data. Namely, a pose may have associated labels of subject

identity, style, gait, or phase of motion. We explore a combination of Gaussian processes

and multilinear models for modeling motion data from multiple individuals and styles.

In particular, we derive the model by first assuming a Gaussian prior over parameters

and then marginalizing over them, in the same fashion as this section.



82 Chapter 5. Data-driven Prior Models of Human Motion



Chapter 6

A Gaussian Process Extension of

Multilinear Models

We introduce models for density estimation with multiple, hidden, continuous factors,

for use with training data addressed by multiple indices. In particular, we propose a

generalization of multilinear models using nonlinear basis functions. By marginalizing

over the weights, we obtain a multifactor form of the GPLVM. In this model, each factor

is kernelized independently, allowing nonlinear mappings from any particular factor to

the data. We learn models for human locomotion data, in which each pose is gener-

ated by factors representing the person’s identity, gait, and the current state of motion.

We demonstrate our approach using time-series prediction, and by synthesizing novel

animation from the model.

6.1 Introduction

Using prior models of human motion to constrain the inference of 3D pose sequences

is a popular approach to improve monocular people tracking, as well as to simplify the

process of character animation. The availability of mocap devices in recent years enables

such models to be learned from data, and learning models that generalize well to novel

motions has become a major challenge.

One of the main difficulties in this domain is that the training data and test data typically

83



84 Chapter 6. A Gaussian Process Extension of Multilinear Models

come from related but distinct distributions. For example, we would often like to learn

a prior model of locomotion from the mocap data of a few individuals performing a few

gaits (i.e., walking and running). Such a prior model could then be used to track a new

individual or to generate plausible animations of a related, but new gait not included in

the training database. Due to the natural variations in how different individuals perform

different gaits — which we broadly refer to as style — learning a model that can represent

and generalize to the space of human motions is not straightforward. One approach is

to learn a single model from all training data, without regard of our knowledge about

their style. However, as seen in Section 5.3.4, this can lead to unrealistic models that

either averages together all styles of motion, or else amount to a mixture model of styles.

Neither approach can be expected to handle data from new styles well. Nonetheless, it

has long been observed that interpolating and extrapolating mocap data yields plausible

new motions, and it is reasonable to attempt building motion models that can generalize

in style.

This chapter introduces a multifactor model for learning distributions of styles of hu-

man motion. We parameterize the space of human motion styles by a small number of

low-dimensional factors, such as identity and gait, where the dependence on each indi-

vidual factor may be nonlinear. This parameterization is learned in a semi-supervised

manner from a collection of example motions with different styles. Given a new motion,

identifying its stylistic factors defines that motion’s style-specific distribution.

Our multifactor Gaussian process model can be viewed as a special class of GPLVM [49].

As in the GPLVM, we marginalize out the weights in the generative model, and optimize

the latent variables that correspond to the different factors in the model. If used with

linear factors, the complete model amounts to a Bayesian generalization of multilinear

models [19, 120]. We also incorporate latent-space dynamics, and show that the use of

the multifactor model improves time-series prediction results on human motion.

6.1.1 Background

The problem of style-content separation — modeling the interaction of multiple factors

— was introduced by Tenenbaum and Freeman [107]. They employed a bilinear model, in

which hidden “style” and “content” variables are multiplied along with a set of weights to



6.1. Introduction 85

produce observations; their algorithm was used to model variations in images of human

faces and in typefaces. Identifying which variables correspond to “style” or “content” is

problem-dependent, and somewhat arbitrary.

The natural generalization of the bilinear model when more than two factors are present

is the multilinear model. Multilinear factorizations have been used to model images

of faces [120], 3D face geometry [122], mocap sequences [119], and texture and re-

flectance [121]. These models are multilinear in the factors, but linear with respect

to any single factor. A multifactor generalization of kernel PCA have been proposed [57].

It is complementary to the model proposed here, as they kernelize the outputs while we

kernelize the factors.

The main application in this chapter is learning models of human poses and motions.

Perhaps the simplest approach to generating motion is to interpolate example poses [91]

or mocap sequences [89], assuming that all examples are labeled with style parameters.

Independent components analysis can be applied to sequences to obtain a linear style-

space of sequences [95].

A few methods for nonlinear style-content separation of human pose and motion also

exist. The style machines model [8] learns a linear space of style-specific hidden Markov

models for different individuals. This method is limited to two factors, and must represent

poses with a discrete state model plus temporal smoothing. Elgammal and Lee [20] learn

a nonlinear manifold and a two-factor mapping to pose and silhouette data in a least

squares setting.

As discussed in the previous chapter, several researchers have used the GPLVM [49]

to model human poses [27, 116]. Given a set of high-dimensional training poses, the

GPLVM provides a set of corresponding low-dimensional latent coordinates, along with

a Gaussian process mapping from latent coordinates to pose observations. The mapping

is in general nonlinear, and gives rise to a joint distribution over new data and the

corresponding latent coordinates. The GPDM (Section 5.3) extends the GPLVM by

including a dynamical model on the low-dimensional latent space. It thereby models

time-series data for a single individual, but does not generalize well to multiple styles

or activities. This chapter builds on these two models with the inclusion of factors to

represent variation in gait and across individuals.



86 Chapter 6. A Gaussian Process Extension of Multilinear Models

6.2 Multifactor Gaussian processes

The model we use is a probabilistic latent variable model, involving a low-dimensional

latent space of hidden factors describing style and content, and a mapping to a high-

dimensional observation space. In this section, we introduce the multifactor Gaussian

process (GP) mapping that lies at the core of our approach. We will assume for now

that the inputs are known, and only consider one-dimensional outputs. In Section 6.3,

we describe how to learn the model in an unsupervised fashion, and apply the model to

motion capture data, in which each observation is a high-dimensional human body pose

associated with a particular person and a specific gait.

6.2.1 Gaussian processes

We begin by reviewing GP regression, using the “weight-space” view [88]. Suppose

we have a one-dimensional function y = g(x) of input vector x, defined as a linear

combination of J basis functions φj(x):

y = g(x) =
J
∑

j=1

wjφj(x) = wTΦ(x) , (6.1)

where the vector Φ(x) = [φ1(x), ..., φJ(x)]
T stacks the basis functions. Furthermore, we

assume a weight decay prior: w ∼ N (0; I). Since the outputs y are a linear function of

the weights, the outputs are also Gaussian. In particular, given known inputs x and x′,

the mean and covariance of their outputs y and y′ are:

µ(x) ≡ E[y] = E[wTΦ(x)]

= E[wT ]Φ(x)

= 0 (6.2)

k(x,x′) ≡ E[yy′] = E[(wTΦ(x))T (wTΦ(x′))]

= E[Φ(x)TwwTΦ(x′)]

= Φ(x)TE[wwT ]Φ(x′)

= Φ(x)TΦ(x′) , (6.3)



6.2. Multifactor Gaussian processes 87

since E[w] = 0 and E[wwT ] = I. The functions µ(x) and k(x,x′) are referred to as

the mean function and kernel function, respectively. If we choose linear basis functions

(i.e., Φ(x) = x), then the kernel function is quadratic: k(x,x′) = xTx′. It can be shown

that, with appropriate choice of Gaussian basis functions for φj(x), the kernel function

becomes the RBF kernel:

k(x,x′) = exp(−γ
2
||x− x′||2) . (6.4)

Other assumptions about the form of g lead to different kernel functions.

Given N training pairs D = {(xi, yi)}, the N×N kernel matrix K is defined such that

Ki,j = k(xi,xj). A Gaussian predictive distribution at a new input, x̃ can then be derived

i.e.,

ỹ | x̃,D ∼ N (m(x̃); σ2(x̃)) , (6.5)

where

m(x) = [y1, ..., yN ] K
−1k(x) (6.6)

σ2(x) = k(x,x)− k(x)TK−1k(x) (6.7)

k(x) = [k(x,x1), ..., k(x,xN)]
T . (6.8)

6.2.2 A simple two-factor model

Suppose now we wish to model different mappings for different styles. One way to do

this is to add a latent “style” parameter. Accordingly, consider a regression problem

with inputs x and style parameters s ∈ R
S. We define the following mapping, in which

the output depends linearly on style:

y = f(x; s) =

S
∑

i=1

sigi(x) + ε

=
S
∑

i=1

siw
T
i Φ(x) + ε , (6.9)

where each gi(x) is a mapping with weight vector wi, and ε represents additive i.i.d. Gaus-

sian noise with zero mean and variance β−1. Fixing just the input s specializes the



88 Chapter 6. A Gaussian Process Extension of Multilinear Models

mapping to a specific style. If we hold fixed the input x and style s, then, because ε

and w ≡ [wT
1 . . .w

T
S ]

T are Gaussian, and f(x; s) is a linear function of w, f(x; s) is

also Gaussian. Given two sets of inputs (x, s) and (x′, s′), this function has mean and

covariance

E[y] =
∑

i

siE[wi]
TΦ(x) + E[ε] = 0 (6.10)

E[yy′] = E[

(

S
∑

i=1

sigi(x) + ε

)(

S
∑

j=1

s′jgj(x
′) + ε′

)

]

=
∑

i

sis
′
iΦ(x)TE[wiw

T
i ]Φ(x′) + E[εε′]

= (sT s′)Φ(x)TΦ(x′) + β−1δ . (6.11)

The term δ is 1 when y and y′ are the same measurement, and zero otherwise.

The simple two-factor model with linear dependence on style and nonlinear dependence

on content can therefore be expressed as a GP, with the Bayesian integration of the

weights derived in closed form. As discussed below, the two-factor model can be gener-

alized to greater numbers of factors, each of which may be linearly or nonlinearly related

to the training data, holding the other factors fixed.

6.2.3 General multifactor models

In general, suppose we wish to model the effect ofM factors X = {x(1), . . . ,x(M)} on the

output independently, then

y = f(x(1), . . . ,x(M)) + ε

= wT (Φ(1) ⊗ · · · ⊗Φ(M)) + ε , (6.12)

where Φ(i) is a basis column vector for factor x(i), w is a weight vector, ε is as defined in

the previous section, and ⊗ denotes the Kronecker product. As an example, for M = 3

with indexing elements of w by (l, m, n), (6.12) can be written as

y =
∑

l,m,n

wl,m,nφ
(1)
l φ(2)

m φ(3)
n + ε ,



6.2. Multifactor Gaussian processes 89

where φ
(i)
j is an element of Φ(i), and is a function of x(i). The lengths of w and (Φ(1) ⊗

· · · ⊗Φ(M)) are both equal to the product of the lengths of Φ(i)’s.

As before, we assume a weight decay prior on w. Hence, y is a GP with zero mean and

covariance

k(X ,X ′) ≡ E[yy′]

= E[(wT (Φ(1) ⊗ · · · ⊗Φ(M)) + ε)(wT (Φ(1)′ ⊗ · · · ⊗Φ(M)′) + ε′)]

= (Φ(1) ⊗ · · · ⊗Φ(M))TE[wwT ](Φ(1) ⊗ · · · ⊗Φ(M)′) + E[εε′]

= (Φ(1) ⊗ · · · ⊗Φ(M))T (Φ(1)′ ⊗ · · · ⊗Φ(M)′) + β−1δ

= (Φ(1)TΦ(1)′)⊗ · · · ⊗ (Φ(M)TΦ(M)′) + β−1δ

=

M
∏

i=1

ki(x
(i),x(i)′) + β−1δ , (6.13)

where ki(x
(i),x(i)′) = Φ(i)TΦ(i)′ is the kernel function for the i-th factor, and Φ(i)′ is

a function of x(i)′. For example, the kernel function in (6.11) has two factors, with

k1(s, s
′) = sT s′ and k2(x,x

′) = e−
γ

2
||x−x

′||2.

Given N training pairs D = {(Xi, yi)}Ni=1, the kernel matrix K for the resulting GP is

defined in the usual way; i.e., Ki,j = k(Xi,Xj). The kernel product may also be written

as the element-wise product of M kernel matrices, one for each factor,

K = K(1) ◦K(2) ◦ · · · ◦K(M) + β−1I . (6.14)

Conditioned on the factors, the joint likelihood of a vector of outputs y = [y1, ..., yN ]
T is

Gaussian: y|{Xi}Ni=1 ∼ N (0;K).

If all basis functions Φ(i) are linear, then the generative model is multilinear, and the

GP represents a Bayesian form of multilinear regression. For general kernel functions,

multifactor GP regression can be performed in the same manner as normal GP regression.

Given training data D, the predictive distribution for a new set of inputs in each of the

factors, X̃ , is Gaussian, and are defined in terms of the kernel function as in (6.5) – (6.8).

Generalizing the above discussion to non-zero mean functions is straightforward.

In the case where the inputs {Xi}Ni=1 are unknown and the outputs are high-dimensional,

the model can be viewed as a GPLVM [49] with a structured latent space. As it is usually



90 Chapter 6. A Gaussian Process Extension of Multilinear Models

assumed that different subsets of the observations are represented by the same vector in

certain latent factors. For example, a set of distinct face images are assumed to share

the same lighting direction, or a set of poses are assumed to share the same gait.

Since the product of valid kernel functions is also a valid kernel function [88,103], any valid

kernels may be used for the individual factors. Although this is a known result, products

of kernel functions are rarely used. The value of our formulation is that it leads to

intuition as to how and why to multiply kernels, by considering the underlying generative

model. Previous work provides guidance as to how to determine the generative model as

well. For example, simple bilinear models have been used successfully to model stylistic

variation in typefaces [107], and multilinear models have also been used to capture the

dependence of facial images on identity, lighting, and pose [107,120]. Nonlinear manifolds

are clearly useful for modeling the space of human poses [20,27,116], but we may wish to

express the dependence of motion data on other factors with linear kernels. In the next

section, we use such experience with simpler models of mocap data to guide the selection

of kernel functions for more complex multifactor models.

6.3 A model for human motion

In this section, we apply the multifactor model to human mocap data consisting of

sequences of poses. A single pose is represented as a feature vector yt of 89 dimensions,

including 43 angular degrees-of-freedom (DOF) (see Figure 6.1), their velocities, and

the global translational velocity. Joints with three DOFs and the global orientation are

represented as exponential maps [26]; other joints are represented as Euler angles. An

entire motion is represented as a sequence of T poses, y1:T .

We focus on periodic human locomotion, such as walking and running, and model each

pose in a motion sequence as arising from a combination of three independent factors:� the identity of the subject performing the motion, represented as a 3D vector s;� the gait of locomotion (walk, stride, or run), represented as a 3D vector g; and� the current state in the motion sequence, represented as a 3D vector x. For example,

x corresponds to the phase of a cyclic gait.



6.3. A model for human motion 91

radius(1)

wrist(1)

thorax(3)

upperback(3)

lowerback(3)

femur(3)

tibia(1)

foot(2)

root(6)

head(3) upperneck(3)

lowerneck(3)

humerus(3)

subject (s)

gait (g)

state (x)

⊗

Figure 6.1: The skeleton
used in our experiments is a
simplified version of the de-
fault skeleton in the CMU
mocap database. The num-
bers in parentheses indicate
the number of DOFs for
the joint directly above the
labeled body node in the
kinematic tree.

For the purpose of the discussion, We will refer to s and g as the style, and x as the

content of the motion. These latent input coordinates are not normally provided in

observed motions. Hence, the model is a form of the GPLVM, in which we estimate the

latent coordinates.

We must also choose the type of kernel functions for each set of input coordinates.

Fortunately, we can draw on experience from previous work to help select the mappings.

In particular, it has been shown that, for a style-specific model of motion, a nonlinear

GPLVM model with an RBF kernel provides excellent results [27, 116], whereas linear

models (such as obtained by PCA) do not capture the nonlinearities of human poses.

Second, stylistic parameters can often be modeled effectively using a linear space of

styles [8, 98, 114] or multilinear in the case of multiple factors [119]. The representative

power of linear mappings depends on the dimensionality of the latent space. We found

3D to be sufficient for representing style spaces containing three subjects and three gaits,

respectively. Third, since each DOF yd may have a very different variance, it is important

to introduce scale terms wd for individual DOFs [27]. Based on these observations, we

employ the following kernel function for the d-th DOF:

kd([x, s, g], [x
′, s′, g′]) =

1

w2
d

((sT s′)(gTg′) exp(−γ
2
||x− x′||2) + β−1δ) . (6.15)

This defines a Gaussian process fd(x, s, g) for each pose DOF, which is assumed to be

independent conditioned on the inputs. Note that, if we fix values of s and g, we get a

style-specific GP over poses y conditioned on the content x.



92 Chapter 6. A Gaussian Process Extension of Multilinear Models

For any particular motion sequence, we assume the style stays constant over time, and

only model dynamics in the content space. We consider two approaches: nonlinear GP

dynamics and a circle dynamics model (CDM), where the content vectors are restricted

to lie on a unit circle [20]. In the first approach, we assume the time-series obeys a

nonlinear dynamical mapping:

xt = h(xt−1) + ε . (6.16)

Furthermore, we assume that h is a GP with a linear + RBF kernel; hence, for any given

s and g, the model is a GPDM (Section 5.3).

In the CDM, low-dimensional coordinates are parameterized by a phase parameter θt,

such that xt = [cos θt, sin θt]
T . Phase is linear as a function of time, parameterized by

offset θ0 and step-size ∆θ: θt = θ0 + t∆θ. Each sequence is then parameterized only by

θ0 and ∆θ. The step-size accounts for the different frequencies of different gaits. (The

sampling rate of the mocap data is the same in all cases).

Given training sequences, we learn the model by maximizing the log-posterior of the un-

known factors x, s and g for each pose, as well as the kernel parameters. As mentioned

before, each motion sequence has a single s and a single g for each pose; these factors

are not allowed to vary through time. Furthermore, motions performed by the same

subject are constrained to have the same s as each other, and motions with the same

type of gait are constrained to have the same g. The β and γ hyperparameters have prior

p(β, γ) ∝ (βγ)−1; all other hyperparameters and factors have uniform priors. Numerical

optimization is performed using L-BFGS-B [138]. Note that we do not constrain corre-

sponding poses in different sequences to share the same x, as we do not assume prior

knowledge of the exact correspondences. It is desirable, however, to restrict the content

of different styles to lie on the same trajectory, especially for motion synthesis. This is

the main motivation for the CDM.

6.4 Experiments

We now evaluate the ability of learned multifactor models to perform time-series predic-

tion from mocap data, and to synthesize new motion sequences in new styles.



6.4. Experiments 93

Model GPDM B-GPDM CDM

Style no yes no yes yes
07-02 1.56 0.91 1.75 0.76 0.38
08-04 1.18 0.48 1.30 0.97 0.47
08-05 1.91 0.56 1.29 0.57 1.77
08-11 2.42 1.06 1.52 1.36 0.80
07-04 1.10 1.10 1.17 1.32 0.72
07-12 1.45 1.06 1.39 0.78 0.57
37-01 1.04 0.75 0.98 0.91 0.35
16-35 1.41 0.53 0.55 0.40 0.39
09-07 1.34 0.49 0.87 0.67 0.57
Avg. 1.49 0.77 1.20 0.86 0.67

Table 6.1: Root mean square (RMS)
errors for long prediction. Sequence
indices correspond to the sequences in
the CMU mocap database.

Model B-GPDM CDM

Style no yes yes
07-04 1.21 ± .035 0.92 ± .030 1.12 ± .048
07-12 1.48 ± .033 0.88 ± .037 1.14 ± .050
37-01 1.00 ± .026 0.70 ± .013 0.85 ± .019

Table 6.2: RMS errors for short pre-
diction (averaged over 24 samples).

6.4.1 Prediction

In the prediction task, we first learn models from a collection of motion clips. The data

are taken from the CMU mocap database (http://mocap.cs.cmu.edu), data sets 02 02,

02 03, 35 01, 35 18, 08 01, 08 07, downsampled by a factor of 4, and constitute 314 frames

in total. Then, given a portion of a new sequence, we predict the subsequent frames of the

sequence, and compare them against ground-truth. No time warping is done on any of the

training or testing data. We compare single-factor dynamical models for xt which do not

explicitly model style (s and g) with the multifactor models introduced in the previous

section (but use the same dynamical model in xt). We will refer to the latter as stylistic

models here. The models compared include the GPDM, the B-GPDM [113], and the

CDM. The B-GPDM is a variant of GPDM, which heavily prefers smooth trajectories in

the latent space. Following previous work, we use 3D latent spaces for xt in the GPDMs.

The CDM restricts xt to lie on a circle, and is therefore 2D. For the stylistic models, 2

additional 3D latent spaces are introduced, corresponding to the s and g factors.

Given that a 2D circle latent space is unable to model any stylistic variations, the CDM

without style is omitted as it performed very poorly. Single-factor GPDMs with higher



94 Chapter 6. A Gaussian Process Extension of Multilinear Models

latent dimensionality are also omitted, as we have found that additional latent dimensions

do not improve performance.

In prediction, the hidden factors are first estimated for the test subjects, by maximizing

the joint posterior of all unknowns, conditioned on the test sequence and the learned

model. Prediction is then performed by extrapolating the latent sequence of xt’s. For

the GPDM variants, this is done by optimizing the joint dynamics distribution [127]; for

the CDM, this is done by taking the appropriate number of linear steps in phase. In

both cases, the subject and gait are assumed to stay constant for the new sequence. New

poses are then generated as the mean of the conditional Gaussian given the computed

factors for each time-step.

All five models are tested by a long prediction experiment and a short prediction experi-

ment. In long prediction, poses for just over half a cycle are provided, and poses for the

next cycle are predicted. For walking data, 25 frames are given, 40 are predicted. For

running data, 13 are given, 20 are predicted. This is due to the difference in the number

of poses per cycle. The mean RMS errors of all of the predicted frames are shown in Table

6.1. The stylistic versions the GPDMs perform better than the single-factor versions by

48% and 28%, respectively. The stylistic CDM model achieved the lowest average rates

among all models in the long prediction test.

In short prediction, only about a quarter of a cycle is given (10 poses), and half a cycle

(20 poses) is predicted. Here we selected three data sets — all from subjects not seen

in the training data — consisting of walks of varying speeds. For each set, 24 random

starting poses are selected (constrained by the need for there to be enough ground truth

data after the start pose), and we show the mean and standard error of the average RMS

for each pose. Here we do not test the GPDM models, as they performed worse than the

B-GPDM models in the previous test. The stylistic model improved upon the original

B-GPDM model in all three data sets. The stylistic CDM model had a higher mean

error, as well as more variability than the stylistic B-GPDM model. This is in part due

to its need for accurate estimation of the starting phase, as well as step size, which is less

reliable for small numbers of input poses.



6.4. Experiments 95

Figure 6.2: The structure of the multifactor model, where each sequence of poses are generated
by an identity/subject vector, a gait vector, and a trajectory of states. Not all combinations
of identity and gaits are available in the training data; the sequences (02, stride), (35, stride),
and (08, run) are missing data inferred by the stylistic CDM.

6.4.2 Motion synthesis

The learned stylistic CDM can be used to generate motions not present in the training

data. The model was learned from three subjects (02, 35, and 08 from the CMU database)

all with some missing data. For subjects 02 and 35, the training data comprised examples

of walking and running, but not striding. For subject 08, the training data included

examples of walking and striding only. To generate new motion trajectories, a step size

∆θ must be determined. We fit a bilinear model to the step sizes estimated during

learning, mapping from s and g to ∆θ. Because the step-size determines the speed of

the motion, we can generate motions of varying speeds.

Figure 6.2 depicts the structure of the multifactor model, including the inferred motions.

These inferred motions are not simply copies of poses from a nearby gait or subject. In

particular, the striding poses for subjects 02 and 35 contain stylistic elements of their

respective walks: the inferred striding motion for 35 contains very little hand movement

compared to the one striding training sequence (upper right), which is nevertheless con-

sistent with subject 35’s walking style (bottom center). Similarly, the bending of the left

arm for subject 02 (upper left) is evident in that subject’s walking style (lower left).



96 Chapter 6. A Gaussian Process Extension of Multilinear Models

Figure 6.3: Motions generated from Gaussian sampling of the gait space and subject space.
None of the poses are present in the training data.

Figure 6.4: Transitions between different motions are achieved by linear interpolation in the
gait space.

We can also generate new motions by random sampling. We fit one Gaussian distribution

to the learned subject vector (s) and another to the learned gait vector (g), and then

generate random new styles by sampling from these Gaussians. The step size ∆θ can

then be predicted by the bilinear model, and a sequence xt of arbitrary length can then

be generated.

The synthesized motions are shown in Figure 6.3. The top and middle rows are typical

samples between a walk and a run. The bottom row is a slightly less typical, being a

mixture of a run and a stride, which exaggerates the flight phase of running. In general,

we find that convex combinations of styles produce reasonable motions.

Figure 6.4 demonstrates the ability of the model to generate smooth transitions from

walking to running and from running to striding. The transitions are generated by

linearly interpolating the gait vector with respect to the changing state vector. The

subject vector is fixed to that of subject 02.



6.5. Discussion 97

6.5 Discussion

We have described a multifactor regression and dimensionality reduction framework that

unifies multilinear models with Bayesian regression and non-linear dimensionality reduc-

tion. The model can be viewed as a form of hierarchical Bayesian prior: modeling stylistic

variation allows us to model a distribution of distributions, and thus generalize to new

data with a style-specific distribution not included in the training data. In all of our

experiments, we found that stylistic models performed better than generic models.

A number of potentially daunting choices are involved in determining which factors and

kernels to use. We have made these choices by considering subproblems and special

cases of the underlying generative model, such as “style-only” models and “content-

only” models. Considering these cases sheds light on how to combine these models,

and we recommend this approach. Alternatively, model selection techniques could be

employed, assuming a large dataset is available. Either way, we believe that multiplicative

combination of kernels will be useful for modeling many types of data sources with

multiple factors.

The goal of models proposed in this chapter is to generate plausible motions that are dif-

ferent from training data, which is different from (though related to) a density estimation

problem. One way to evaluate density estimation results is by first generating samples

from the learned models, and then examining the difference between the sample and

training distributions. However, the motion synthesis results we obtained through style

interpolation in this chapter are not expected to come from the training distribution, and

therefore need to be evaluated by a separate metric.

Alternatively, the multifactor models could be evaluated in the context of more realistic

applications. The effectiveness of the proposed models can arguably be better demon-

strated by improving the performance of say, an animation or a people tracking system

than any evaluation of the models by themselves. The GPLVM has been applied to a

number of such systems, as noted in Chapter 5. Being a special case of the GPLVM, the

models proposed in this chapter can be applied and evaluated in a similar fashion. The

evaluations could also be improved by training on a larger dataset, a different dataset

(e.g., face data), or by comparing the style prediction results with ground truth data.



98 Chapter 6. A Gaussian Process Extension of Multilinear Models

6.5.1 A special case for fast matrix inversion

The main computational cost of Gaussian process models, including the variant pre-

sented here, is the O(N3) inversion of the kernel matrix. The operation is necessary

both to compute the likelihood of the data (5.8) and to perform prediction (6.6), (6.7).

Furthermore, since our latent representations are not known and must be estimated, the

inversion is performed for each iteration of the MAP estimation.

Consider a special case for the multifactor model where exactly one data point is available

for each combination of factors. If we also assume no process noise, then up to proper

ordering of the data vectors, the kernel matrix can be decomposed into a number of

smaller matrices. Specifically,

K = F(1) ⊗ F(2) ⊗ · · · ⊗ F(M) , (6.17)

where F(m) is a Nm by Nm matrix, Fi,j = km(x
(m)
i ,x

(m)
j ), Nm is the number of different

categories for them-th factor, and x
(m)
i is the latent representation of the i-th category for

the m-th factor. For example, the identity and gait factors in the example locomotion

model have three categories each. Note that under our assumptions here, it must be

true that N =
∏M

m Nm, which suggests the size of the F(m) matrices are generally much

smaller than K. It immediately follows from properties of the Kronecker product that

K−1 = F(1)−1 ⊗ F(2)−1 ⊗ · · · ⊗ F(M)−1
, (6.18)

which means the inversion of the kernel matrix can be achieved by inverting M much

smaller matrices and taking their Kronecker product. Except for boundary cases, the

size of the largest matrix that needs to be inverted is greatly reduced.

However, K is invertible if and only if matrices F(1), . . . ,F(M) are invertible. Furthermore,

the requirement for the covariance function km, and therefore the matrix F(m) to be

positive-semidefinite is insufficient to guarantee invertibility. One solution is to redefine

K so that a sufficiently large diagonal term is added to each of the F(m) matrices before

taking the tensor product:

K = (F(1) + β−1
1 I(1))⊗ (F(2) + β−1

2 I(2))⊗ · · · ⊗ (F(M) + β−1
M I(M)) . (6.19)



6.5. Discussion 99

Unlike in (6.14), where K is the sum of a tensor product term and a diagonal term that

arises from the isotropic Gaussian process noise, expansion of (6.19) includes additional

terms with lower-order dependencies on the factors. An interesting direction of future

work is to investigate the effects of this modification with experiments.



100 Chapter 6. A Gaussian Process Extension of Multilinear Models



Part III

Conclusion

101





Chapter 7

Conclusion and Future Work

In Part I of this thesis, we showed that walking controllers for 3D humanoid characters

could be synthesized via an automatic optimization technique. In particular, Chapter

3 demonstrated that optimizing with a carefully chosen, biomechanically motivated ob-

jective function could result in controllers that create gaits significantly closer to human

walking than hand-tuned alternatives from previous work. Chapter 4 showed that the

same central idea — controller optimization based on CMA — can be combined with

Monte Carlo simulation to generate controllers that are robust to different types of exter-

nal disturbances and user inputs. Moreover, natural stylistic variations were generated

by optimizing with different environmental constraints. For example, when significant

motor noise is present, the optimization leads to a visually more careful walking style on

slippery surface.

The idea of controller optimization based on derivative-free search techniques is conceptu-

ally simple, and is not new in itself. As we have discussed earlier, graphics researchers in

the early 90s have optimized locomotion controllers for much simpler characters. How-

ever, it was never clear that the method would scale to a 3D, full-body human-like

character. What we have shown here is that, when combined with a good control param-

eterization and objective function, this simple idea for automatic controller synthesis is

effective for 3D humanoid walking. Moreover, it is important to note that our results do

not rely on tracking motion capture or any other types of reference trajectory data. This

not only provides increased robustness, but also allows us to explore stylistic changes

under different types of environment and types of uncertainty.

103



104 Chapter 7. Conclusion and Future Work

The second part of this thesis dealt with the problem of human motion modeling from

motion capture data. We presented a Bayesian approach to model existing motion data,

which only assumes the model parameters has a prior distribution that is Gaussian, cor-

responding to a preference for smooth mappings. Since we do not make overly strong

assumptions such as linearity of mappings, high-frequency details in the generally non-

linear human motion can be better modeled. Moreover, the Gaussian assumption allows

the parameters to be analytically marginalized over, resulting in Gaussian process models

that require fewer parameters to set compared to models with comparable expressiveness.

These probabilistic motion models can not only be used for motion synthesis, but also

are able to evaluate the likelihood of new motion trajectories, which enables applications

such as forecasting and tracking.

The work in this thesis focused on the single activity of locomotion, which falls far short

of the range of motions people perform in everyday life. Furthermore, while the optimiza-

tion techniques we introduced here allow for high-level controls such as walking speed

to be specified, the problem of satisfying animator constraints such as keyframes is not

addressed. For highly specific user constraints, the spacetime constraints approach to tra-

jectory optimization discussed in Section 2.3, where gradients can often be computed, is

more suitable than our control optimization formulation. However, while convergence to

a solution may be faster, the problem of multiple local minima persists. It would be inter-

esting to see if a sampling-based method such as CMA can be combined with analytical

gradients to improve the reliability of spacetime constraints on complex characters.

The development of physics-based constraints for human motion has traditionally been

motivated from the character animation perspective, where the synthesis of high-quality

motion is imperative. In contrast, data-driven constraints have at least in part been

driven by applications in computer vision, where evaluating the quality of new motions

is just as important as motion synthesis. Not surprisingly, in the latter domain, more

attention has been paid to the use of motion models estimated from existing data, which

can naturally be applied to evaluate new data. It is not until recently that the com-

bination of the two — physical constraints and motion models, have started receiving

attention in computer vision [9, 10, 123].

It is less clear whether adapting a more formal approach to motion modeling would be

immediately beneficial to computer animation, but should still be a worthy direction for



105

exploration. For example, a clear and recognized [60] connection exists between spacetime

constraints and energy-based models [51]. Can efficient learning and inference algorithms

developed for the latter be applied to improve reliability of the former? On the other

hand, can animation systems based on spacetime constraints be effectively converted to

an energy-based model for applications such as motion classification?

If we are willing to approach both the character animation and tracking problems in

terms of building prior models of motion, then it is instructive to consider what an ideal

model would require. In particular, relating back to the flexibility versus plausibility

issue discussed in Chapter 1, an ideal model for these applications should be

1. able to generate motions that satisfy any reasonable user constraints (or observa-

tions up to noise), and

2. generates only “natural” motions.

The definition of natural motion certainly depends on the application, but our knowledge

of physics provides a rough guideline. For 3D people tracking, natural motions are almost

certainly a subset of physically valid motions. On the other hand, in the production of

artistic animation, hard physical constraints are less useful1.

Depending on the approach, either one of the conditions can be trivially satisfied by

itself. When considered together, however, motion model designers are forced to sacri-

fice either flexibility or perceived realism to find the right balance. Models defined from

physics-based constraints can be extremely flexible in theory, but finding the force tra-

jectory or control strategy to realize specific user constraints or observations is highly

non-trivial. On the other hand, data-driven constraints, often combined with statistical

models, can be highly effective for user constraints and observations that are close to

previously available motion data. However, when this is not the case, they are limited in

the ability to generalize, as even sophisticated statistical models can only make reliable

predictions near observed data. The primary reason for this limitation is that they do not

incorporate significant knowledge about the nature of human motion. Consequently, the

most impressive demonstrations of generalization to unobserved data or environmental

disturbances have relied on physical constraints, and this thesis is no exception.

1However, in this domain, it could be argued that strong motion models are not very useful in general.



106 Chapter 7. Conclusion and Future Work

Statistical modeling has been an effective tool in numerous domains of science, and should

be effective for dealing with problems in motion analysis and synthesis as well. Moreover,

by treating parameters of the equations of motion as parameters of a statistical model, it

provides a natural medium to combine physics-based and data-driven constraints. The

incorporation of physical constraints into the modeling process, despite its implication on

computational costs, greatly increases the resulting model’s potential for generalization.

Indeed, finding efficient learning and inference algorithms for physics-based statistical

models could be a highly rewarding direction for researchers in both character animation

and human tracking.

Finally, the need to create animations for complex, articulated characters is almost as old

as the field of computer animation itself. Today, animated feature films are commonplace

and have become an important part of mainstream entertainment. Despite the impres-

sive progress, there is no shortage of problems to work on for animation researchers.

Unlike feature films that command budgets in the millions, films by independent artists

often must be produced with minimal cost. The cost is highly dependent on the labour

involved, and therefore the quality of motion synthesis algorithms. Applications in the

rapidly growing video game industry offer even more technical challenges. Achieving

the holy grail of creating interactive game characters capable of reacting to unexpected

disturbances with a large repertoire of reliable motor skills, still remain elusive. As al-

luded to at the start of this thesis, addressing how prior knowledge about human motion,

whether physics-based or data-driven, is utilized in the animation system is central to

making progress.

In this work, we chose to focus on two subproblems, and dealt with both physics-based

and data-driven constraints. We improved both the style and robustness of characters

constrained by physical simulations, for the important activity of walking. We also

proposed novel statistical models to better utilize available motion capture data. It

is our hope that the methods proposed would serve as important building blocks for

future motion synthesis algorithms. Algorithms that will significantly reduce the effort

of animation creation, as well as get us one step closer to the holy grail of creating

interactive characters that can walk, jump, play soccer, and perform other everyday

motor skills that humans take for granted.



Bibliography

[1] Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. An application

of reinforcement learning to aerobatic helicopter flight. In Advances in Neural

Information Processing Systems 19. MIT Press, 2007, pp. 1–8.

[2] Agrawala, M., and Stolte, C. Rendering effective route maps: Improving

usability through generalization. In Proceedings of ACM SIGGRAPH 2001 (Aug.

2001), Computer Graphics Proceedings, Annual Conference Series, pp. 241–250.

[3] Alexander, R. M. Principles of Animal Locomotion. Princeton University Press,

2003.

[4] Anderson, F. C., and Pandy, M. G. Dynamic optimization of human walking.

Journal of Biomechanical Engineering 123, 5 (Oct. 2001), 381–390.

[5] Arikan, O., and Forsyth, D. A. Interactive motion generation from examples.

ACM Transactions on Graphics 21, 3 (July 2002), 483–490.

[6] Arikan, O., Forsyth, D. A., and O’Brien, J. F. Motion synthesis from

annotations. ACM Transactions on Graphics 22, 3 (July 2003), 402–408.

[7] Bissacco, A. Modeling and learning contact dynamics in human motion. In

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR) (June 2005), vol. 1, pp. 421–428.

[8] Brand, M., and Hertzmann, A. Style machines. In Proceedings of ACM SIG-

GRAPH 2000 (July 2000), Computer Graphics Proceedings, Annual Conference

Series, pp. 183–192.

107



108 Bibliography

[9] Brubaker, M. A., and Fleet, D. J. The kneed walker for human pose tracking.

In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR) (June 2008).

[10] Brubaker, M. A., Fleet, D. J., and Hertzmann, A. Physics-based person

tracking using the anthropomorphic walker. International Journal of Computer

Vision 87, 1 (Mar. 2010), 140–155.

[11] Burridge, R. R., Rizzi, A. A., and Koditschek, D. E. Sequential compo-

sition of dynamically dexterous robot behaviors. International Journal of Robotic

Research 18, 6 (1999), 534–555.

[12] Byl, K., and Tedrake, R. Metastable walking machines. International Journal

of Robotic Research 28, 8 (2009), 1040–1064.

[13] Chai, J., and Hodgins, J. K. Constraint-based motion optimization using

a statistical dynamic model. ACM Transactions on Graphics 26, 3 (July 2007),

8:1–8:9.

[14] Cohen, M. F. Interactive spacetime control for animation. In Computer Graphics

(Proceedings of SIGGRAPH 92) (July 1992), pp. 293–302.

[15] Collins, S., Ruina, A., Tedrake, R., and Wisse, M. Efficient bipedal robots

based on passive-dynamic walkers. Science 307, 5712 (Feb. 2005), 1082–1085.

[16] Coros, S., Beaudoin, P., and van de Panne, M. Robust task-based control

policies for physics-based characters. ACM Transactions on Graphics 28, 5 (Dec.

2009), 170:1–170:9.

[17] Coros, S., Beaudoin, P., Yin, K. K., and van de Pann, M. Synthesis

of constrained walking skills. ACM Transactions on Graphics 27, 5 (Dec. 2008),

113:1–113:9.

[18] da Silva, M., Abe, Y., and Popović, J. Interactive simulation of stylized

human locomotion. ACM Transactions on Graphics 27, 3 (Aug. 2008), 82:1–82:10.

[19] De Lathauwer, L., De Moor, B., and Vandewalle, J. A multilinear

singular value decomposition. SIAM Journal on Matrix Analysis and Applications

21, 4 (Apr. 2000), 1253–1278.



Bibliography 109

[20] Elgammal, A., and Lee, C.-S. Separating style and content on a nonlinear man-

ifold. In Proceedings of the 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR) (June/July 2004), vol. 1, pp. 478–485.

[21] Faisal, A. A., Selen, L. P. J., and Wolpert, D. M. Noise in the nervous

system. Nature Reviews Neuroscience 9, 4 (Apr. 2008), 292–303.

[22] Faloutsos, P., van de Panne, M., and Terzopoulos, D. Composable

controllers for physics-based character animation. In Proceedings of ACM SIG-

GRAPH 2001 (Aug. 2001), Computer Graphics Proceedings, Annual Conference

Series, pp. 251–260.

[23] Fang, A. C., and Pollard, N. S. Efficient synthesis of physically valid human

motion. ACM Transactions on Graphics 22, 3 (July 2003), 417–426.

[24] Gleicher, M., Shin, H. J., Kovar, L., and Jepsen, A. Snap-together motion:

Assembling run-time animations. In Proceedings of the 2003 ACM Symposium on

Interactive 3D Graphics (I3D) (Apr. 2003), pp. 181–188.

[25] Goldstein, H., Poole, C. P., and Safko, J. L. Classical Mechanics, third ed.

Addison-Wesley, 2001.

[26] Grassia, F. S. Practical parameterization of rotations using the exponential map.

Journal of Graphics Tools 3, 3 (Mar. 1998), 29–48.

[27] Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. Style-based

inverse kinematics. ACM Transactions on Graphics 23, 3 (Aug. 2004), 522–531.

[28] Grzeszczuk, R., and Terzopoulos, D. Automated learning of muscle-

actuated locomotion through control abstraction. In Proceedings of SIGGRAPH 95

(Aug. 1995), Computer Graphics Proceedings, Annual Conference Series, pp. 63–

70.

[29] Grzeszczuk, R., Terzopoulos, D., and Hinton, G. NeuroAnimator: Fast

neural network emulation and control of physics-based models. In Proceedings of

SIGGRAPH 98 (July 1998), Computer Graphics Proceedings, Annual Conference

Series, pp. 9–20.



110 Bibliography

[30] Hamilton, A. F. d. C., Jones, K. E., and Wolpert, D. M. The scaling of

motor noise with muscle strength and motor unit in number in humans. Experi-

mental Brain Research 157, 4 (2004), 417–430.

[31] Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New

Evolutionary Computation. Advances on Estimation of Distribution Algorithms.

Springer, 2006, pp. 75–102.

[32] Hansen, N. The CMA evolution strategy: A tutorial. Homepage of Nikolaus

Hansen (http://www.lri.fr/~hansen/), Mar. 2010.

[33] Harris, C. M., and Wolpert, D. M. Signal-dependent noise determines motor

planning. Nature 394, 6695 (Aug. 1998), 780–784.

[34] Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. A

statistical model of human pose and body shape. Computer Graphics Forum 28, 2

(Apr. 2009), 337–346.

[35] Herr, H., and Popović, M. Angular momentum in human walking. Journal of

Experimental Biology 211, 4 (Feb. 2008), 467–481.

[36] Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. The development of

Honda humanoid robot. In Proceedings of the 1998 IEEE International Conference

on Robotics and Automation (ICRA) (May 1998), vol. 2, pp. 1321–1326.

[37] Hodgins, J. K., and Pollard, N. S. Adapting simulated behaviors for new

characters. In Proceedings of SIGGRAPH 97 (Aug. 1997), Computer Graphics

Proceedings, Annual Conference Series, pp. 153–162.

[38] Hodgins, J. K., and Raibert, M. H. Biped gymnastics. International Journal

of Robotics Research 9, 2 (Apr. 1990), 115–128.

[39] Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F. Ani-

mating human athletics. In Proceedings of SIGGRAPH 95 (Aug. 1995), Computer

Graphics Proceedings, Annual Conference Series, pp. 71–78.

[40] Kim, J.-Y., Park, I.-W., and Oh, J.-H. Walking control algorithm of biped

humanoid robot on uneven and inclined floor. Journal of Intelligent and Robotic

Systems 48, 4 (Apr. 2007), 457–484.



Bibliography 111

[41] Kim, M.-S., Kim, I., Park, S., and Oh, J. H. Realization of stretch-legged

walking of the humanoid robot. In Proceedings of the 8th IEEE-RAS International

Conference on Humanoid Robotics (Humanoids 2008) (Dec. 2008), pp. 118–124.

[42] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by sim-

ulated annealing. Science 220, 4598 (May 1983), 671–680.

[43] Körding, K. Decision theory: What “should” the nervous system do? Science

318, 5850 (Oct. 2007), 606–610.

[44] Kovar, L., Gleicher, M., and Pighin, F. Motion graphs. ACM Transactions

on Graphics 21, 3 (July 2002), 473–482.

[45] Kudoh, S., Komura, T., and Ikeuchi, K. Stepping motion for a human-like

character to maintain balance against large perturbations. In Proceedings of the

2006 IEEE International Conference on Robotics and Automation (ICRA) (May

2006), pp. 2661–2666.

[46] Kuo, A. D. A simple model of bipedal walking predicts the preferred speed-step

length relationship. Journal of Biomechanical Engineering 123, 3 (June 2001),

264–269.

[47] Lamouret, A., and van de Panne, M. Motion synthesis by example. In Pro-

ceedings of the 7th Eurographics Workshop on Computer Animation and Simulation

(EGCAS 96) (1996), pp. 199–212.

[48] Laszlo, J. F., van de Panne, M., and Fiume, E. Limit cycle control and

its application to the animation of balancing and walking. In Proceedings of SIG-

GRAPH 96 (Aug. 1996), Computer Graphics Proceedings, Annual Conference Se-

ries, pp. 155–162.

[49] Lawrence, N. D. Probabilistic non-linear principal component analysis with

Gaussian process latent variable models. Journal of Machine Learning Research 6

(Nov. 2005), 1783–1816.

[50] Lawrence, N. D., and Moore, A. J. Hierarchical Gaussian process latent vari-

able models. In Proceedings of 24th International Conference on Machine Learning

(ICML 2007) (June 2007), pp. 481–488.



112 Bibliography

[51] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F.

Energy-based models. In Predicting Structured Data. MIT Press, 2006, pp. 191–246.

[52] Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard,

N. S. Interactive control of avatars animated with human motion data. ACM

Transactions on Graphics 21, 3 (July 2002), 491–500.

[53] Lee, J., and Lee, K. H. Precomputing avatar behavior from human motion

data. Graphical Models 68, 2 (Mar. 2006), 158–174.

[54] Lee, Y., Lee, S. J., and Popović, Z. Compact character controllers. ACM

Transactions on Graphics 28, 5 (Dec. 2009), 169:1–169:8.

[55] Li, R., Tian, T.-P., and Sclaroff, S. Simultaneous learning of nonlinear

manifold and dynamical models for high-dimensional time series. In Proceedings of

the 11th IEEE International Conference on Computer Vision (ICCV 2007) (Oct.

2007).

[56] Li, R., Yang, M.-H., Sclaroff, S., and Tian, T.-P. Monocular tracking of

3D human motion with a coordinated mixture of factor analyzers. In Proceedings

of the 9th European Conference on Computer Vision (ECCV 2006) (May 2006),

vol. 2, pp. 137–150.

[57] Li, Y., Du, Y., and Lin, X. Kernel-based multifactor analysis for image synthesis

and recognition. In Proceedings of the 10th IEEE International Conference on

Computer Vision (ICCV 2005) (Oct. 2005), vol. 1, pp. 114–119.

[58] Li, Y., Wang, T., and Shum, H.-Y. Motion texture: A two-level statistical

model for character motion synthesis. ACM Transactions on Graphics 21, 3 (July

2002), 465–472.

[59] Li, Y., Wang, W., Crompton, R. H., and Gunther, M. M. Free vertical

moments and transverse forces in human walking and their role in relation to arm-

swing. Journal of Experimental Biology 204, 1 (Jan. 2001), 47–58.

[60] Liu, C. K., Hertzmann, A., and Popović, Z. Learning physics-based motion

style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3

(July 2005), 1062–1070.



Bibliography 113

[61] Liu, C. K., Hertzmann, A., and Popović, Z. Composition of complex op-

timal multi-character motions. In Proceedings of the 2006 ACM SIGGRAPH /

Eurographics Symposium on Computer Animation (SCA) (Sept. 2006), pp. 215–

222.

[62] Liu, C. K., and Popović, Z. Synthesis of complex dynamic character motion

from simple animations. ACM Transactions on Graphics 21, 3 (July 2002), 408–

416.

[63] Liu, Z., Gortler, S. J., and Cohen, M. F. Hierarchical spacetime control.

In Proceedings of SIGGRAPH 94 (July 1994), Computer Graphics Proceedings,

Annual Conference Series, pp. 35–42.

[64] Lo, W.-Y., and Zwicker, M. Real-time planning for parameterized human

motion. In Proceedings of the 2008 ACM SIGGRAPH / Eurographics Symposium

on Computer Animation (SCA) (July 2008), pp. 29–38.

[65] Macchietto, A., Zordan, V., and Shelton, C. R. Momentum control for

balance. ACM Transactions on Graphics 28, 3 (July 2009), 80:1–80:8.

[66] MacKay, D. J. C. Information Theory, Inference, and Learning Algorithms.

Cambridge University Press, 2003.

[67] McCann, J., and Pollard, N. Responsive characters from motion fragments.

ACM Transactions on Graphics 26, 3 (July 2007), 6:1–6:7.

[68] McGeer, T. Passive dynamic walking. International Journal of Robotics Research

9, 2 (Apr. 1990), 62–82.

[69] Moon, K., and Pavlović, V. Impact of dynamics on subspace embedding

and tracking of sequences. In Proceedings of the 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR) (June 2006),

vol. 1, pp. 198–205.

[70] Morimoto, J., and Atkeson, C. G. Nonparametric representation of an ap-

proximated poincaré map for learning biped locomotion. Autonomous Robots 27,

2 (Aug. 2009), 131–144.



114 Bibliography

[71] Muico, U., Lee, Y., Popović, J., and Popović, Z. Contact-aware nonlinear

control of dynamic characters. ACM Transactions on Graphics 28, 3 (July 2009),

81:1–81:9.

[72] Muybridge, E. Animal Locomotion. University of Pennsylvania, 1887.

[73] Neal, R. M. Bayesian Learning for Neural Networks. Springer-Verlag New York,

Inc., 1996.

[74] Nelder, J. A., and Mead, R. A simplex method for function minimization.

Computer Journal 7, 4 (1965), 308–313.

[75] Ng, A. Y., and Jordan, M. I. PEGASUS: A policy search method for large

MDPs and POMDPs. In Proceedings of the 16th Conference on Uncertainty in

Artificial Intelligence (UAI 2000) (June/July 2000), pp. 406–415.

[76] Ngo, J. T., and Marks, J. Spacetime constraints revisited. In Proceedings of

SIGGRAPH 93 (Aug. 1993), Computer Graphics Proceedings, Annual Conference

Series, pp. 343–350.

[77] Nocedal, J., and Wright, S. J. Numerical Optimization. Springer-Verlag,

1999.

[78] Novacheck, T. F. The biomechanics of running. Gait and Posture 7, 1 (Jan.

1998), 77–95.

[79] Ogura, Y., Shimomura, K., Kondo, H., Morishima, A., Okubo, T.,

Momoki, S., ok Lim, H., and Takanishi, A. Human-like walking with knee

stretched, heel-contact and toe-off motion by a humanoid robot. In Proceedings of

the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) (Oct. 2006), pp. 3976–3981.

[80] Pan, W., and Torresani, L. Unsupervised hierarchical modeling of locomo-

tion styles. In Proceedings of 26th International Conference on Machine Learning

(ICML 2009) (June 2009), pp. 99:1–99:8.

[81] Pavlović, V., Rehg, J. M., and MacCormick, J. Learning switching linear

models of human motion. In Advances in Neural Information Processing Systems

13. MIT Press, Cambridge, MA, 2001, pp. 981–987.



Bibliography 115

[82] Peters, J., and Schaal, S. Reinforcement learning of motor skills with policy

gradients. Neural Networks 21, 4 (May 2008), 682–697.

[83] Popović, Z., and Witkin, A. P. Physically based motion transformation.

In Proceedings of SIGGRAPH 99 (Aug. 1999), Computer Graphics Proceedings,

Annual Conference Series, pp. 11–20.

[84] Pozzo, T., Berthoz, A., and Lefort, L. Head stabilization during various

locomotor tasks in humans. Experimental Brain Research 82, 1 (Aug. 1990), 97–

106.

[85] Rahimi, A., Recht, B., and Darrell, T. Learning appearance manifolds from

video. In Proceedings of the 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR) (June 2005), vol. 1, pp. 868–875.

[86] Raibert, M. H. Legged Robots That Balance. The MIT Press, 1986.

[87] Raibert, M. H., and Hodgins, J. K. Animation of dynamic legged locomotion.

In Computer Graphics (Proceedings of SIGGRAPH 91) (July 1991), pp. 349–358.

[88] Rasmussen, C. E., and Williams, C. K. I. Gaussian Processes for Machine

Learning. The MIT Press, 2006.

[89] Rose, C., Cohen, M. F., and Bodenheimer, B. Verbs and adverbs: Multidi-

mensional motion interpolation. IEEE Computer Graphics and Applications 18, 5

(September/October 1998), 32–40.

[90] Rose, C., Guenter, B., Bodenheimer, B., and Cohen, M. F. Efficient

generation of motion transitions using spacetime constraints. In Proceedings of

SIGGRAPH 96 (Aug. 1996), Computer Graphics Proceedings, Annual Conference

Series, pp. 147–154.

[91] Rose, C., Sloan, P.-P. J., and Cohen, M. F. Artist-directed inverse-

kinematics using radial basis function interpolation. Computer Graphics Forum

20, 3 (2001), 239–250.

[92] Roweis, S. T., and Ghahramani, Z. Learning nonlinear dynamical systems

using the expectation-maximization algorithm. In Kalman Filtering and Neural

Networks. Wiley, 2001, pp. 175–220.



116 Bibliography

[93] Safonova, A., and Hodgins, J. K. Construction and optimal search of inter-

polated motion graphs. ACM Transactions on Graphics 26, 3 (July 2007), 106:1–

106:11.

[94] Safonova, A., Hodgins, J. K., and Pollard, N. S. Synthesizing physi-

cally realistic human motion in low-dimensional, behavior-specific spaces. ACM

Transactions on Graphics 23, 3 (Aug. 2004), 514–521.

[95] Shapiro, A., Cao, Y., and Faloutsos, P. Style components. In Proceedings

of Graphics Interface 2006 (June 2006), pp. 33–39.

[96] Sharon, D., and van de Panne, M. Synthesis of controllers for stylized planar

bipedal walking. In Proceedings of the 2005 IEEE International Conference on

Robotics and Automation (ICRA) (Apr. 2005), pp. 2387–2392.

[97] Shin, H. J., and Oh, H. S. Fat Graphs: Constructing an interactive character

with continuous controls. In Proceedings of the 2006 ACM SIGGRAPH / Euro-

graphics Symposium on Computer Animation (SCA) (Sept. 2006), pp. 291–298.

[98] Sidenbladh, H., Black, M. J., and Fleet, D. J. Stochastic tracking of

3D human figures using 2D image motion. In Proceedings of the 6th European

Conference on Computer Vision (ECCV 2000) (June/July 2000), vol. 2, pp. 702–

718.

[99] Sims, K. Evolving virtual creatures. In Proceedings of SIGGRAPH 94 (July 1994),

Computer Graphics Proceedings, Annual Conference Series, pp. 15–22.

[100] Sminchisescu, C., and Jepson, A. D. Generative modeling for continuous non-

linearly embedded visual inference. In Proceedings of 21st International Conference

on Machine Learning (ICML 2004) (July 2004), pp. 759–766.

[101] Sok, K. W., Kim, M., and Lee, J. Simulating biped behaviors from human

motion data. ACM Transactions on Graphics 26, 3 (July 2007), 107:1–107:9.

[102] Spall, J. C. Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control. Wiley, 2003.



Bibliography 117

[103] Stitson, M. O., Gammerman, A., Vapnik, V., Vovk, V., Watkins, C.,

and Weston, J. Support vector regression with ANOVA decomposition kernels.

In Advances in Kernel Methods: Support Vector Learning. The MIT Press, 1998.

[104] Sutton, R. S., and Barto, A. G. Reinforcement Learning: An Introduction.

MIT Press, 1998.

[105] Taylor, G. W., and Hinton, G. E. Factored conditional restricted Boltz-

mann machines for modeling motion style. In Proceedings of 26th International

Conference on Machine Learning (ICML 2009) (June 2009), pp. 129:1–129:8.

[106] Tedrake, R., Zhang, T. W., and Seung, H. S. Stochastic policy gradient

reinforcement learning on a simple 3D biped. In Proceedings of the 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Oct. 2004),

vol. 3, pp. 2849–2854.

[107] Tenenbaum, J. B., and Freeman, W. T. Separating style and content with

bilinear models. Neural Computation 12, 6 (June 2000), 1247–1283.

[108] Thornton, S., and Marion, J. Classical Dynamics of Particles and Systems,

fifth ed. Thomson-Brooks/Cole, 2004.

[109] Todorov, E. Optimality principles in sensorimotor control. Nature Neuroscience

7, 9 (Aug. 2004), 907–915.

[110] Treuille, A., Lee, Y., and Popović, Z. Near-optimal character animation

with continuous control. ACM Transactions on Graphics 26, 3 (July 2007), 7:1–7:7.

[111] Troje, N. F. Decomposing biological motion: A framework for analysis and

synthesis of human gait patterns. Journal of Vision 2, 5 (Sept. 2002), 371–387.

[112] Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y. Real-time

physics-based 3D biped character animation using an inverted pendulum model.

IEEE Transactions on Visualization and Computer Graphics 16, 2 (March/April

2010), 325–337.

[113] Urtasun, R., Fleet, D. J., and Fua, P. 3D people tracking with Gaussian

process dynamical models. In Proceedings of the 2006 IEEE Computer Society



118 Bibliography

Conference on Computer Vision and Pattern Recognition (CVPR) (June 2006),

vol. 1, pp. 238–245.

[114] Urtasun, R., Fleet, D. J., and Fua, P. Temporal motion models for monoc-

ular and multiview 3D human body tracking. Computer Vision and Image Under-

standing 104, 2–3 (November/December 2006), 157–177.

[115] Urtasun, R., Fleet, D. J., Geiger, A., Popović, J., Darrell, T. J.,

and Lawrence, N. D. Topologically-constrained latent variable models. In

Proceedings of 25th International Conference on Machine Learning (ICML 2008)

(June 2008), pp. 1080–1087.

[116] Urtasun, R., Fleet, D. J., Hertzmann, A., and Fua, P. Priors for people

tracking from small training sets. In Proceedings of the 10th IEEE International

Conference on Computer Vision (ICCV 2005) (Oct. 2005), vol. 1, pp. 403–410.

[117] van de Panne, M., and Fiume, E. Sensor-actuator networks. In Proceedings of

SIGGRAPH 93 (Aug. 1993), Computer Graphics Proceedings, Annual Conference

Series, pp. 335–342.

[118] van de Panne, M., and Lamouret, A. Guided optimization for balanced loco-

motion. In Proceedings of the 6th Eurographics Workshop on Computer Animation

and Simulation (EGCAS 95) (1995), pp. 165–177.

[119] Vasilescu, M. A. O. Human motion signatures: Analysis, synthesis, recognition.

In Proceedings of the 16th International Conference on Pattern Recognition (ICPR

2002) (Aug. 2002), vol. 3, pp. 456–460.

[120] Vasilescu, M. A. O., and Terzopoulos, D. Multilinear analysis of image en-

sembles: TensorFaces. In Proceedings of the 7th European Conference on Computer

Vision (ECCV 2002) (May/June 2002), vol. 1, pp. 447–460.

[121] Vasilescu, M. A. O., and Terzopoulos, D. TensorTextures: Multilinear

image-based rendering. ACM Transactions on Graphics 23, 3 (Aug. 2004), 336–

342.

[122] Vlasic, D., Brand, M., Pfister, H., and Popović, J. Face transfer with

multilinear models. ACM Transactions on Graphics 24, 3 (Aug. 2005), 426–433.



Bibliography 119

[123] Vondrak, M., Sigal, L., and Jenkins, O. C. Physical simulation for proba-

bilistic motion tracking. In Proceedings of the 2008 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR) (June 2008).

[124] Vukobratović, M., and Borovac, B. Zero-moment point — Thirty five years

of its life. International Journal of Humanoid Robotics 1, 1 (Mar. 2004), 157–173.

[125] Wampler, K., and Popović, Z. Optimal gait and form for animal locomotion.

ACM Transactions on Graphics 28, 3 (July 2009), 60:1–60:8.

[126] Wang, J. M., Fleet, D. J., and Hertzmann, A. Multifactor Gaussian process

models for style-content separation. In Proceedings of 24th International Conference

on Machine Learning (ICML 2007) (June 2007), pp. 975–982.

[127] Wang, J. M., Fleet, D. J., and Hertzmann, A. Gaussian process dynamical

models for human motion. IEEE Transactions on Pattern Analysis and Machine

Intelligence 30, 2 (Feb. 2008), 283–298.

[128] Wang, J. M., Fleet, D. J., and Hertzmann, A. Optimizing walking con-

trollers. ACM Transactions on Graphics 28, 5 (Dec. 2009), 168:1–168:8.

[129] Wang, J. M., Fleet, D. J., and Hertzmann, A. Optimizing walking con-

trollers for uncertain inputs and environments. ACM Transactions on Graphics 29,

4 (July 2010), 73:1–73:8.

[130] Witkin, A., and Baraff, D. Physically based modeling: Principles and

practice (online SIGGRAPH ’97 course notes). Physically Based Modeling

(http://www.cs.cmu.edu/~baraff/sigcourse/), 1997.

[131] Witkin, A., and Kass, M. Spacetime constraints. In Computer Graphics (Pro-

ceedings of SIGGRAPH 88) (Aug. 1988), pp. 159–168.

[132] Wooten, W. L., and Hodgins, J. K. Animation of human diving. Computer

Graphics Forum 15, 1 (1996), 3–14.

[133] Wu, J.-c., and Popović, Z. Realistic modeling of bird flight animations. ACM

Transactions on Graphics 22, 3 (July 2003), 888–895.



120 Bibliography

[134] Yang, P.-F., Laszlo, J., and Singh, K. Layered dynamic control for in-

teractive character swimming. In Proceedings of the 2004 ACM SIGGRAPH /

Eurographics Symposium on Computer Animation (SCA) (July 2004), pp. 39–47.

[135] Ye, Y., and Liu, C. K. Synthesis of responsive motion using a dynamic model.

Computer Graphics Forum 29, 2 (May 2010), 555–562.

[136] Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. Continuation

methods for adapting simulated skills. ACM Transactions on Graphics 27, 3 (Aug.

2008), 81:1–81:7.

[137] Yin, K., Loken, K., and van de Panne, M. SIMBICON: Simple biped loco-

motion control. ACM Transactions on Graphics 26, 3 (July 2007), 105:1–105:10.

[138] Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. Algorithm 778: L-BFGS-B:

Fortran subroutines for large-scale bound-constrained optimization. ACM Trans-

actions on Mathematical Software 23, 4 (Dec. 1997), 550–560.

[139] Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. Dynamic response

for motion capture animation. ACM Transactions on Graphics 24, 3 (Aug. 2005),

697–701.


