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Abstract

A variety of objects modelled in computer graphics can be e�ciently approximated

with generalized cylinders, particularly when they are viewed at a relatively small scale.

In this thesis we present a unique way of rendering generalized cylinders using polygon-

based projective rendering: a rendering meta-primitive called the paintstroke. Paint-

strokes allow for the concise modelling and e�cient dynamic tessellation of generalized

cylinders, making direct use of their screen-space projections so as to minimize the num-

ber of polygons required to construct their images. The resulting savings in vertex

transformations, rasterization overhead, and edge antialiasing more than repay the cost

of the tessellation. Used in conjunction with our A-Bu�er polygon renderer, paintstrokes

achieve a good balance of speed and image quality when drawn at small to medium scales,

generally surpassing other methods for rendering generalized cylinders.
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Chapter 1

Introduction

The ability to make pictures with a computer has entertained, enlightened, and challenged

us for decades. From its humble beginnings in the 1950's, the study of computer graphics

has spawned a multi-billion dollar industry and remains one of the most rapidly expanding

areas of computer science. One of the many reasons behind its growing popularity is the

power it provides to rapidly and precisely translate a complex speci�cation into a realistic

image. This task can be divided into two basic phases: building the speci�cation, or

modelling, and generating the image, or rendering.

The modelling and rendering processes are linked by the concept of a rendering prim-

itive, which is a member of the limited class of objects that can be directly rendered by

the computer hardware. All other types of objects need to be composed of these basic

building blocks, into which they are ultimately decomposed before they (or rather, their

constituent primitives) are to be rendered. Examples of 3-D rendering primitives in a

typical graphics system are points, lines, and triangles.

While a scene description could be fashioned purely out of rendering primitives, its

construction would typically be an onerous task for the modeller. Many types of objects,

particularly those with curved surfaces, can only adequately be approximated using a

large number of �nely distributed primitives, making them painstakingly slow and error-

prone for a human to construct. A better approach is to invoke a computer program

to translate the object's representation expressed in some more convenient form (such

as a parametric surface de�ned using control points) into rendering primitives. This

1



2 Chapter 1. Introduction

translation can either be done during the modelling phase, whereby the primitives output

by the translator are directly incorporated into the model that is passed to the renderer,

or it can be done as a preface to the rendering phase, in which case the model contains

the compact description, which is automatically decomposed into primitives at rendering

time. The latter alternative has the advantage of being user-transparent: the modeller

treats the compact representation of the object as though it were a rendering primitive;

its translation into actual primitives happens behind the scenes. Because this type of

object is not a true primitive, but it behaves like one, we call it a meta-primitive.1

In this thesis we will develop and explore a meta-primitive called the paintstroke,

designed for rendering generalized cylinders using a polygon-based projective rendering

system. We de�ne a generalized cylinder as the surface produced by extruding a circle

along a path through space, allowing the circle's radius to vary along the path. During

the extrusion, the circle's orientation is such that the plane it spans is always orthogonal

to the path. We will show that, in addition to providing a convenient and succinct

representation for generalized cylinders, paintstrokes can o�er signi�cant advantages over

comparable methods in rendering these surfaces.

Figure 1.1: A few sample paintstrokes rendered using our algorithm.

1Having distinguished between the two, we will frequently use the term `primitive' to denote a `meta-
primitive', allowing the context to indicate which meaning is intended.



1.1. The Purpose of the Paintstroke Primitive 3

1.1 The Purpose of the Paintstroke Primitive

1.1.1 Motivation

The work presented in this thesis is motivated largely by the observation that (1) a

signi�cant portion of objects we see around us are thin and roughly tubular in shape,

especially when viewing natural phenomena; and (2) the current methods for rendering

high quality images of such objects at small to medium scales are not as e�cient as

they could be. Our goal in designing the paintstroke was to furnish the user with an

e�ective means of rendering these objects at a variety of scales, providing a good balance

of rendering speed and image quality for tubes between one and ten pixels in screen-

projected thickness, which is where other methods generally fail to do so.

1.1.2 Applications

Because they are limited to modelling generalized cylinders, paintstrokes are not suitable

for designing arbitrary objects. This specialization, however, allows for highly optimized

rendering that consumes less time, memory, and bandwidth than more general methods.

Thus, paintstrokes can serve as inexpensive building blocks for highly complex geom-

etry. Combined in large numbers, they can be used to e�ciently render a variety of

detailed natural phenomena such as fur, hair, branches, twigs, and pine needles. Simpler

structures like wires, hoses, and pipes are equally suitable.

By taking advantage of their view-dependent tessellation scheme, paintstrokes can

very inexpensively approximate volumetric opacity and Fresnel e�ects, making them

useful in rendering water streams, icicles, and wisps of smoke, to name a few examples.

This has traditionally been di�cult to accomplish with other projective-rendering meth-

ods, necessitating the expensive solution of ray-tracing. Finally, a global shading function

can be used to approximate self-shadowing for globally convex objects uniformly layered

with paintstrokes, o�ering a very inexpensive and reasonably e�ective alternative to more

sophisticated methods like shadow-mapping [Wil78, RSC87].
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Figure 1.2: An example of high geometric detail that is captured with paintstrokes.

1.2 Features of Paintstrokes

As mentioned, the paintstroke is a dynamically tessellated polygon-based meta-primitive.

There are two basic phases to rendering it: (1) tessellate it into polygons, and (2) render

the polygons. Chapter 3 is devoted to the �rst phase, and Chapter 4 to the second.

Although polygon-based projective rendering was by no means the only choice for the

paintstroke's infrastructure, it is well-suited to the scope and applications of the primitive.

As an alternative, ray-tracing would be a considerably slower way to render polygons at

the scale for which paintstrokes are intended.2 Abandoning polygons for implicit or

2At much smaller scales, it would become viable, since it would eliminate the ine�ciency of touching
pixels multiple times (when rendering opaque objects), which becomes the major drawback of projective
rendering.
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parametric surfaces would, on the other hand, involve working with a far more complex

(and probably more computationally expensive) representation than that of our approach.

1.2.1 Paintstroke Tessellation

When rendering a curved surface using polygon primitives, at some point the surface

must be tessellated into polygons. Because this process consumes time, it is often done

only once, storing the tessellated polygons in place of the curved surface they represent.

Thus, the tessellation contributes nothing to the rendering time, having been performed

as a pre-processing step. Such an approach is known as static tessellation.

Paintstrokes are not rendered in this way. We maintain a compact descriptive model of

the generalized cylinder, as will be explained in Chapter 3. The tessellation occurs every

time the model is rendered, following its transformation into eye-space. Although this

dynamic tessellation contributes to the overall rendering cost, it capitalizes on important

symmetries and view-invariances of the generalized cylinder, which permit its screen

projection to be accurately tiled with only a small number of relatively large polygons.

The resulting savings in vertex transformations, rasterization overhead, and A-Bu�er

fragment blending more than compensate for the tessellation cost. Furthermore, by

continually adjusting the granularity of their tessellation, paintstrokes smoothly adapt

their level of detail to the scale at which they are rendered.

1.2.2 Polygon Rendering

Since paintstrokes are ultimately rendered as polygons, a fast, high-quality rendering en-

gine for polygons is essential to our approach. Due to the small scale at which paintstrokes

may be drawn, the problem of aliasing needs to be addressed, both along the edges and

near specular highlights. Our solution was to implement an A-Bu�er algorithm [Car84]

with adaptive Phong supersampling. In addition to fast and accurate edge antialiasing,

the A-Bu�er also allows for precise transparency blending and reasonable antialiasing

of interpenetrating (or touching) surfaces, both of which are di�cult to achieve with

standard Z-Bu�er implementations. The adaptive Phong shader dynamically varies the

number of Phong samples per pixel, depending on a number of parameters, including
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surface specularity and per-pixel normal variation. Both of these techniques are detailed

in Chapter 4.

While our polygon renderer has several features speci�cally geared toward paint-

strokes, it is a nevertheless general-purpose rendering engine. Among other things, it

allows the modeller to arbitrarily combine paintstrokes with standard polygons, set cam-

era orientations and change lighting parameters. This has enabled us to generate many

useful images and animations that go beyond simply testing the rendering of paintstrokes.

1.3 Scope

Because paintstrokes capture the full geometry of a scene, they are ideally suited to a

su�ciently large scale that allows all of their geometric detail to be seen. Although

intended for rendering tubes one to ten pixels in thickness, they can accommodate a

much wider variety of scales. Thicknesses ranging from a fraction of a pixel to hundreds

are possible. Despite this exibility, their usefulness at these extremes is limited. At very

small scales, aliasing problems begin to exceed the paintstroke's antialiasing capabilities

and image quality su�ers. In addition, the per-pixel rendering speed diminishes due to

high oversampling of the shading function. At this scale, other techniques that simplify

or altogether eliminate the underlying geometry (such as texture-mapping or volumetric

textures) are reasonable alternatives.

At the same time, there is a limit to using paintstrokes to model objects having large

screen coverage. Due to the simplicity of their shape and colour attributes, they are

generally not suitable for close-up images, unless the object being modelled happens to

be a generalized cylinder with a simple lengthwise colour variation. Thus, the perfect

scale for paintstrokes is an intermediate one, where the full geometry of a scene is visible,

but the discrepancy of each paintstroke's appearance with that of the object it represents

is not too conspicuous.

As an example, consider using paintstrokes to model tree branches in a forest. If

viewed from an airplane ying high overhead, this scene would be better rendered with

another technique, such as texture mapping. The geometry of the branches appears at

such a �ne scale that it can be adequately represented as just a colour variation across
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Static Polygonal Model (single LOD)

Paintstroke

Texture Map of Multiple Primitives
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Figure 1.3: Approximate speed/quality characteristics of various rendering methods ap-
plied to tubular objects.

a large scale model. On the other hand, if the scene is viewed by a person passing

through the forest, the paintstroke model will be appropriate for the majority of the

visible trees. Only the ones close to the viewer would need to be rendered with a more

general technique.

Figure 1.3 gives some insight into the range of scales at which paintstrokes and com-

parable rendering methods are most useful. It also depicts the relationship between

these scales and the corresponding image quality and rendering speed. Although sparse
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in details, it gives a general sense of each method's scope and allows for some basic

speed/quality comparisons between them.

Because no single chart could summarize all rendering scenarios, we have made a

number of assumptions in formulating ours. The measure of image quality shown has

been normalized to the highest quality achievable using standard projective rendering.

Features such as radiosity, glossy reection, and refraction are not considered. Rendering

speed is expressed in per-pixel rather than per-primitive terms. This explains why the

speed of several methods shown drops o� at smaller scales.

The two methods most similar in scope to paintstrokes are general-purpose dynamic

polygonal models (of which paintstrokes are a speci�c instance) and particle systems.

Volumetric textures become reasonable alternatives at very small scales. A detailed

discussion of these methods will be the main thrust of Chapter 2. Finally, after we have

examined the paintstroke primitive in depth, we will compare it with these methods.

That will be the topic of Chapter 5.



Chapter 2

Alternative Methods for Rendering

Tubes

In this chapter we examine some possible alternatives to paintstrokes, most of which

were introduced in Chapter 1. We do not limit our modelling domain strictly to general-

ized cylinders, but consider all objects that are reasonably approximated by generalized

cylinders at some scale. This considerably broadens the scope (and usefulness) of our

model.

2.1 Overview of Polygon-Based Models

2.1.1 Static vs. Dynamic Models

The simplest type of polygonal model is one that is static, consisting of a �xed set of

polygons. These may be directly speci�ed by the modeller, generated by a tessellation

routine applied to a non-polygonal (usually parametric or implicit) surface, or derived

by modifying an existing polygonal surface. Any work needed to obtain these polygons

is done during a pre-processing phase, so that it does not consume rendering time. In

contrast, dynamic models create or modify the polygonal representation of a model during

rendering. Normally, this is done either by tessellating the model from a parametric or

implicit surface, or by simplifying or re�ning an existing polygonal model into the one

that is rendered.

9
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2.1.2 Static Polygonal Models

The most obvious advantage of a static model, aside from its simplicity, is the processing

time saved by not modifying its representation during rendering. Because the cost of

polygonizing a static model is not included in the cost of rendering it, this type of model

normally consists of a very e�cient polygon mesh1 constructed by slow but high-quality

algorithms. Quite often, such algorithms will provide a great deal of exibility in setting

error tolerances that determine the allowable deviation of the output polygonization from

the original surface. A good example is the work on simpli�cation envelopes by Cohen

et al. [CVM+96]. Their approach computes a pair of implicit surfaces (the inner and

outer envelopes) that de�ne the allowable boundaries of the simpli�ed polygonal mesh.

Given a user-speci�ed polygonal mesh as input, the output is a coarser mesh it that is

sandwiched between the simpli�cation envelopes, thereby satisfying the user-de�ned error

tolerances while preserving global topology. Many other surface simpli�cation algorithms

that achieve similar results are catalogued by Heckbert and Garland in [HG94].

Although there are cases where static tessellation is the best choice, greater e�ciency

and exibility can usually be attained with dynamic models. This is because of several

important limitations, to be discussed below. In Chapter 5, we will argue that for render-

ing generalized cylinders, a dynamic tessellation scheme like the one used by paintstrokes

is decidedly superior to static tessellation.

One limitation of static tessellation is that it cannot handle any deformation of the

model during rendering, since this would involve modifying the arrangement and shapes

of the underlying polygons|a process that is normally achieved through dynamic re-

tessellation. Since many computer-generated animations portray a large number of

deformable objects, animators seldom rely solely on static models; they use dynamic

tessellation in much of their rendering.

Another disadvantage of the static model is that its way of describing surface|as

a set of polygons|often fails to be concise. For example, representations that specify

a parametric surface using a mesh of control points can usually provide a more precise

1By this we mean that the mesh provides a very good approximation to the underlying surface using
relatively few polygons.
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description of the model using much less data. Such representations can only be used

with dynamically tessellated models, and generally have far more modest storage and

bandwidth requirements than do static models.

Finally, a static model does not lend itself to e�ective level-of-detail adjustment when

rendered in an animation. Because such a model is always drawn at a single level of

detail, the speed (or conversely, quality) at which it is rendered su�ers when it is viewed

at a variety of screen sizes, since its level of detail can only be ideally suited to a single

scale. This de�ciency is frequently redressed by pre-computing multiple static models

of an object at various levels of detail, and selecting the appropriate one based on an

estimate of the model's screen-projected size. Although this multiresolution approach is

common [HG94, HG97] and works quite well for still images, it poses a critical problem

for animation: Transitions between levels of detail are discontinuous, often causing severe

popping artifacts. These artifacts can be mitigated by compositing the images at the

higher and the lower levels of detail during a transition, but this solution is expensive

and not entirely e�ectual|not only does it entail rendering the object twice, but it also

requires the rendered images to be alpha-blended.2This is clearly impractical in situations

where a large number of objects are continually shifting levels of detail, as when travelling

through a complex landscape populated with small objects (e.g. blades of grass) whose

distance from the viewer is in constant ux.

Another issue is the tradeo� in choosing the number of levels of detail at which an

object is to be represented. Using too few will result in a poor match between the

ideal number3 of polygons for a given scale and the number actually used in the model.

Hence, much of the time, either the rendering will be slower than it could be, or the image

quality will be substandard. Moreover, di�erences between successive levels of detail will

be large, exacerbating the popping during transitions. On the other hand, using too

many levels of detail can cause frequent switching between levels, which, as described

2Note that there are e�cient ways to eliminate this popping artifact by gradually altering the polyg-
onal structure of a model between successive levels of detail. However, because this modi�cation occurs
during rendering, by our de�nition, it does not apply to static models; we shall discuss this technique in
x2.1.4, under the rubric of dynamic models.

3Such an ideal number would depend on the type of tessellation used, the way of measuring how
accurately the tessellated model approximates a desired object (which is often somewhat subjective),
and an error tolerance.
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above, is undesirable.4 Moreover, maintaining a large number of models at various levels

of detail further contributes to the excessive storage requirements of static tessellation.

Lastly, the number and arrangement of polygons within a static model cannot be ad-

justed to suit a particular viewing position. Some dynamic models, such as paintstrokes,

exploit this view-dependency to achieve the same image quality using fewer polygons

than a static model, even when the latter is tessellated at the optimum granularity for

its scale. This result is borne out in Chapter 5, where we present a detailed comparison

between paintstrokes and statically tessellated generalized cylinders.

2.1.3 Dynamic Tessellation

Because dynamic tessellation consumes rendering time, the tessellation speed can have

a noticeable impact on the overall cost of rendering a scene. Thus, the time devoted

to re-tessellating objects must be balanced against any savings a�orded by their revised

polygonizations.

Most dynamic tessellation algorithms are for general-purpose parametric surfaces such

as NURBS and B�ezier patches, which are applicable to a wide variety of models. In

addition to these general algorithms, we will examine a technique by Jim Blinn [Bli89]

that is specialized for tessellating circular tubes, as is the paintstroke.

Tessellation Methods for General Parametric Surfaces

Nonuniform rational B-splines (NURBS) are a popular way of representing arbitrary con-

tinuous curves using a set of control points and a knot vector. A NURBS surface is a

two-dimensional extension of this curve, de�ned as the Cartesian product of one NURBS

curve with another, and speci�ed using a mesh of control points spanning the extent of

the desired surface. NURBS curves have two main advantages over their non-rational

counterparts such as B�ezier and Hermite curves. First, they are able to exactly represent

quadric curves (e.g. ellipses and hyperbolas), which the latter can only approximate.

And second, they are invariant under the perspective transformation, whereas the latter

are not. Speci�cally, if the control points of a NURBS are perspective-transformed, the

4Given that the model is stored at su�ciently many levels of detail, the popping will eventually cease
to be a problem. It will, however, be replaced by prodigious demands on storage and bandwidth.
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NURBS constructed from the transformed points is the true perspective projection of

the original curve. These advantages translate directly to NURBS surfaces, which can

be used for exact representations of spheres, cylinders, and (of interest to us) generalized

cylinders. Likewise, the NURBS surface is invariant under a perspective transforma-

tion. A third advantage is the existence of e�cient trimming algorithms which allow the

modeller to trim a NURBS surface with a parametric curve.

Because NURBS are de�ned as a ratio of B-splines, evaluations tend to be expensive,

requiring division operations [Sil90]. This is a major disadvantage of NURBS, one that

is not shared by non-rational splines. Although a number of optimizations have been

proposed to reduce the cost of evaluating and tessellating NURBS surfaces [SC88, Sil90,

AES94], non-rational spline surfaces are still cheaper to tessellate in most cases. Unless

a highly accurate representations of elliptical or hyperbolic solids is needed (which would

require a large number of control points to be adequately approximated with non-rational

alternatives), or the invariance under the perspective transform is particularly valuable,

it is generally more e�cient to use non-rational parametric surfaces.

A wide variety of non-rational parametric surfaces are used in modelling. They are

based on families of B-Splines, B�ezier curves, Hermites, and others. Although each of

these classes of curves has unique modelling characteristics, they are all equivalent from

a rendering standpoint. That is to say that a curve belonging to any one of them can

be expressed in terms of any other. For example, a B-spline can be expressed as a

B�ezier curve with a di�erent set of control points. This equivalency allows these curves,

and analogously, the surfaces based on them, to be rendered using a single algorithm,

regardless of what class of spline was used to model them.

Among the more e�cient evaluation algorithms are forward di�erence methods, which

are best suited to (parametrically) evenly spaced evaluation points, and subdivision meth-

ods, which can be used to produce a progressively re�ned mesh of evaluation points. For

the purpose of dynamic tessellation, the latter approach is the more useful. For B�ezier

curves, a particularly e�cient subdivision method exists, based on the de Casteljau al-

gorithm [Far88]. This involves averaging the positions of pairs of control points to create

new points that approximate the spline. Given a B�ezier segment of 4 control points,
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the subdivision generates two subsegments each with 4 control points (derived from the

averaged points), one of them shared between the subsegments. This is illustrated in

Figure 2.1. Either or both of the subsegments can be subdivided in the same way in

order to re�ne the approximation.

original control point

new control point

discarded

Figure 2.1: E�cient subdivision of a B�ezier curve segment.

Because the only operations involved are additions and divisions by two, the subdivi-

sion is very inexpensive. Moreover, as suggested by Robert Beach [Bea91], this technique

allows e�cient, curvature-dependent, adaptive subdivision. A suitable test for subdivi-

sion is whether the four control points of a B�ezier segment are approximately collinear.

If not, the segment is divided in half as described above, and the process is recursively

applied to each half. This algorithm is easily extended to two dimensions to produce a

mesh of evaluation points that can serve as polygon vertices.

Blinn's Optimal Tubes

Jim Blinn [Bli89] describes a view-adaptive tessellation scheme for Gouraud-shaded cylin-

ders that he calls optimal tubes, and an extension to handle constant-radius generalized

cylinders. Blinn's approach is similar to our own, in that he applies a view-dependent tes-

sellation to minimize the number of polygons required to produce a high-quality image.

Because Gouraud shading does not interpolate normals, breadthwise subdivisions are

used to capture shading information at visually signi�cant points on a cylinder's surface.

Assuming a single point-source light and incorporating the Lambertian (i.e. di�use and

ambient, but not specular) shading model, Blinn polygonizes the region of the cylinder

visible to the viewer into rectangular strips, with boundaries along the cylinder's silhou-
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ette lines and along the lines where the illumination \signi�cantly" changes. The latter

occur at the two shadow lines and at the line of maximum (Lambertian) illumination,

where the surface normal is coincident with the central light vector (i.e. halfway between

the shadow lines). An example of this arrangement is shown in Figure 2.2.

Figure 2.2: Sample polygonization of an optimal tube.

As an extension to this tessellation scheme, [Bli89] also presents a method of properly

joining a pair of optimal tubes, eliminating the cracks that would ordinarily appear at

the joint. This is needed when concatenating a series of tubes into a constant-radius

generalized cylinder. However, no algorithm for subdividing the latter into the former is

given.

2.1.4 Dynamic Surface Simpli�cation and Re�nement

Surface simpli�cation and re�nement di�ers from tessellation in that it is applied to ex-

isting polygonal meshes in order to produce new ones. E�cient simpli�cation of detailed

polygonal models is the primary goal of these techniques, which may be used in gener-

ating static as well as dynamic models. In the latter case it is also necessary to provide

an inverse transformation that converts the simpli�ed models back into the more com-

plex ones. This transformation is called surface re�nement. In conjunction with surface

simpli�cation, it allows a model's level of detail to continuously vary over a range of

scales.

The notion of surface simpli�cation and re�nement can be extended beyond just

the modi�cation an object's polygonal mesh: It can involve switching between di�erent

types of rendering primitives. An example of such an approach is the tree-rendering
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algorithm by Weber and Penn [WP95]. Based on the desired level of detail, the algorithm

dynamically selects points or lines to replace the more expensive polygons that are used

to model the leaves and branches of a tree. At a su�ciently small scale, the use of these

cheaper primitives can considerably expedite the rendering without compromising image

quality.

Algorithms for surface simpli�cation and re�nement are usually quite general in na-

ture, being geared toward di�erent classes of topology (e.g. manifold, degenerate) but

not to shapes as speci�c as generalized cylinders. Although their generality is for the

most part an advantage, their speed and output quality can be surpassed in very speci�c

cases by specialized dynamic tessellation algorithms, such as the paintstroke's.

Progressive Meshes

Hugues Hoppe's work on view-dependent progressive meshes [Hop97] presents a fast sur-

face simpli�cation and re�nement algorithm that makes local adjustments to the gran-

ularity of a model's polygonal (triangular) mesh based on its eye-space transformation.

Parts of the model that lie outside of the view frustum or that face away from the viewer

are simpli�ed to very coarse levels, whereas regions near the silhouette are re�ned into a

�ne mesh. The screen-projected size of the model is another determinant of overall mesh

granularity.

As in Hoppe's earlier paper [Hop96] on this subject, the simpli�cations and re�ne-

ments to the polygonal mesh are implemented using two basic transformations: the vertex

split, and the edge collapse. The former serves to re�ne a model by dividing a vertex

into two, thereby forming a new edge and a new polygon. The latter removes an edge

and replaces it with a single vertex, thereby deleting a polygon and simplifying the mesh.

As shown in Figure 2.3, these operations work as inverses to one another, allowing an

original model to be simpli�ed to arbitrarily few polygons and then re�ned through the

same number of steps back to its original complexity.

Popping artifacts that tend to arise in level-of-detail transitions are addressed using a

technique called the geomorph, which performs vertex split and edge collapse operations

gradually, moving a pair of vertices together or apart over a number of frames. This
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vertex split

edge collapse

Figure 2.3: The vertex split and edge collapse operations.

creates a smooth visual transition at a much lower cost than the alpha-blending approach

described in x2.1.2.
Much to this technique's advantage, it exploits the temporal coherence of animations

by reusing (and therefore amortizing the cost of modifying) a mesh over many frames.

According to the author, the cost of this dynamic re-polygonization accounts for less

than 15% of the total rendering time on a graphics workstation.

2.2 Particle Systems

Particle systems are a departure from the canon of representing and rendering objects

as surfaces. Many types of material have extremely complex surfaces, which would be

di�cult to model and slow to render using a surface-based representation. Fire, smoke,

and clouds are common examples. Particle systems provide a more e�cient way of

working with these types of objects, as well as many others.

A particle system describes an image using a (typically) large number small simple

objects called particles. In most implementations, including the seminal work by Bill

Reeves [Ree83] and Reeves and Blau [RB85], these objects are tiny spheres or cubes,

whose motion through space is described using implicit equations which additionally

incorporate an element of randomness. Reeves simpli�es the rendering of particles by

treating them as point light sources. This eliminates the issue of visibility, since a pair of
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overlapping particles both contribute equally to the colour intensity over the overlapping

region.5 Because of their simplicity, particles permit fast rendering and motion blur. The

latter is useful not only for animation, but also for rendering elongated objects, which

can be represented as the (appropriately con�gured) motion-blurred trail left behind a

particle.

To render a circular tube with particle systems, one would use motion-blurred spher-

ical particles moving along a desired path. If the diameters of the particles can vary

during the motion, arbitrary generalized cylinders can be constructed. In order to re-

solve visibility and apply proper shading, we would need a more complex particle model

than the one used in [RB85], which handles both of these in an ad hoc fashion suited

only to particular models. Speci�cally, we would require z-values and surface normals

(or some approximations thereof), neither of which are used by Reeves and Blau.

Implementing motion blur requires integrating a particle's position over time, which is

an expensive operation if performed explicitly. Fortunately, the simplicity of a spherical

particle allows simple approximations to be used in lieu of a true position-time integral,

expediting the rendering process considerably. Two such methods are brush extrusions,

and the polyline approach.

2.2.1 Brush Extrusions

Brush extrusions, as described by Turner Whitted [Whi83], approximate the temporal

integration of a particle|the brush tip|by rendering it at multiple discrete positions

along a path, without using motion blur. Provided that the sampling frequency is su�-

ciently high, this concatenation of discrete tip images (samples) produces an apparently

smooth and continuous trail. This method is well suited for real-time user interaction,

using an input device such as a mouse or stylus. The user drags the brush tip along some

path on the screen, as one would do with a paintbrush, and it leaves behind a nicely

rendered antialiased trail (provided, of course, that the tip image is antialiased).

Although the brush extrusions described in [Whi83] are generated by a constant, pre-

computed brush tip image which moves only in the x-y plane, this limitation still permits

5Of course, this is only an approximation. In reality, the closer particle should make the greater
contribution, all other things being equal.
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reasonably accurate rendering of constant-radius 3-D tubes under weak perspective and

near-directional lighting, using a pre-rendered sphere as the tip. A more exible alterna-

tive, which would allow variable-radius tubes under strong perspective and point-source

lighting, would be to dynamically re-render the brush tip as it moves along the path. A

compromise would be to pre-render the tip at various sizes and store them in memory.

This would permit perspective e�ects and radius variation, albeit limited by the max-

imum stored radius of the tip. It would still, however, require a near-directional light

source, since the sphere's shading would need to be constant.

2.2.2 Cone Spheres

In [Max90] Nelson Max presents a way to approximate generalized cylinders that is

similar in spirit to Whitted's brush extrusions. Instead of rendering a sphere at multiple

points along a path, it is rendered at fewer and more widely separated points. Each

adjacent pair of rendered spheres are then joined using a tight-�tting truncated cone,

as illustrated in Figure 2.4. Whereas the cones form the main body of the resulting

solid, the purpose of the spheres is to provide smooth \elbow" joints connecting adjacent

cones. This approach is argued to be more e�cient than brush extrusions because fewer

overlapping images need to be used to render a continuous-looking tube.

Figure 2.4: A pair of cone-spheres.

As we shall see in Chapter 3, cone-spheres are quite similar in nature to paintstrokes,

although, unlike the latter, they are not explicitly polygonized. The screen-projected

cone pro�les (which are polygonal) and spheres are rendered using a scanline algorithm

with an ad hoc antialiasing mask function. While Phong shading is applied to the cones,
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it is not used directly for the spheres. Instead, the shaded intensities of the two extended

cones that enclose a sphere are blended to derive its shading. This creates reasonably

smooth-looking highlights over a set of cone spheres approximating a curved tube.

2.2.3 Polylines with Precomputed Shading

The polyline approach is a common method of rendering very thin constant-radius tubes:

The tube's shape is approximated using a set of line segments, whose widths correspond

to the screen-projected thickness of the tube. Usually, this method is applied to circular

extrusions (i.e. constant radius generalized cylinders), although it could in principle be

used for variable-radius tubes as well, by modulating the thickness of the line segments

used|as long as the maximum thickness remains small.

The shading of a polyline model can be performed e�ciently using a clever approx-

imation based on the work of Kajiya and Kay [KK89]. The shaded colour assigned to

each line segment is derived from the approximate integral of the Phong function around

the circumference of the (straight) tube represented by the segment. This approxima-

tion is validated by the observation that at small scales, a shaded tube appears to have

a single uniform colour, since the eye cannot discern the variation in brightness across

its breadth. It can be shown that at any point on the tube, the Phong integral is a

function of only two scalars: the angle � between the tube's tangent vector at the point

and the vector from the point to the light source, and the angle � between the tube's

tangent and the vector from the point to the viewer. This is illustrated in Figure 2.5.

� alone is su�cient to specify the di�use component of the shading, while both angles

are needed for the specular. Because its domain has only two dimensions, the shading

function for polylines can be precomputed over a range of quantized values and stored

in a 2-dimensional array, allowing fast table-lookup operations to be used in place of

traditional Phong sampling. Moreover, by using analytically computed integrals rather

than point sampling, this approach elegantly circumvents the problem of spatial aliasing

that is inherent in using traditional (i.e. sampling-based) Phong shading with models

having high per-pixel normal variation, such as thin tubes.

A common application for polylines is in rendering hair and, to a lesser extent, fur.
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θ

φ

Figure 2.5: The two angles that specify a polyline cylinder's reectance.

Examples of the former include [LTT91, RCI91], which make e�ective use of the pre-

computed shading model in dealing with the high degree of specularity exhibited by

hair. Hair is particularly suitable for the polyline approach because its constituents are

extremely thin in proportion to their length. For instance, when rendering human hair

from several metres of distance using a typical �eld of view and resolution, the hairs will

be less than a pixel in thickness and possibly dozens of pixels in length. The length is

signi�cant because it largely determines how well the hair would be represented using a

global texture map, as described in the following section. For very short hairs (which

tend to occur in fur, rather than in human hair) texture-mapping entire clumps of hair

becomes a superior alternative to rendering the individual hairs, yielding comparable

image quality at far greater speed.

2.3 Global Texture-Mapping Methods

A fast way to render a large group of objects at a small scale is to pre-render them

from one or more viewing angles and convert the resulting images into texture maps. At

rendering time, these textures are applied to relatively large polygons, which e�ectively

replace the �nely detailed geometry represented in the texture map. For many real-time

applications, this is the only viable way of rendering a geometrically rich model (such
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as a tree) at a small scale, because mapping a texture onto a polygon is so much faster

than rendering a large number of tiny objects. Used under the right circumstances, this

technique can produce high image quality at unparalleled speed. The ideal scenario for

it is one where the entities comprising the texture are su�ciently distant from the viewer

that their parallax and occlusion e�ects are negligible.

An example of this approach is the common technique called billboarding [NDW93],

which has been used to inexpensively render trees and other complex objects, when

viewed from a distance. At small scales, a tree's constituent leaves, twigs, and branches

project to su�ciently small screen-space images that a texture map gives an adequate

approximation of their true geometry. The texture is mapped onto a polygon that is

continually rotated to face the viewer, ensuring that the tree image is always orthogonal

to the viewing direction.6 The polygon's shape needn't conform to the tree's outline;

alpha values are used to \hide" parts of the polygon that are outside of the tree's image.

More advanced methods combine moderate geometric complexity with texture-mapping

to preserve global aspects of the simpli�ed geometry. The work on multiresolution sur-

face viewing by Andrew Certain et al. [CPD+96] allows for the relative proportion of

geometric and colour (i.e. texture) detail to be speci�ed as a rendering parameter. More-

over, the amount of detail in each can be progressively re�ned in an e�cient way, using

wavelets. Although the ability to adjust texture detail is generally irrelevant for render-

ing with texture-mapping hardware (in the paper it was used principally as a variable

form of image compression), the progressive geometry re�nement is a useful feature if a

desired frame rate needs to be attained at the possible expense of image quality. When

navigating a scene of variable complexity, each object can be allotted a �xed amount

of time for image re�nement, resulting in a steady rendering speed with variable image

quality.

A successful attempt to improve the quality of texture-mapped images at larger scales

is described by Jonathan Shade et al. in their paper on hierarchical image caching

[SLS+96]. Their method involves building an object hierarchy of a complex scene and

6The rotation is necessary to prevent the polygon (and the textured image it contains) from being
distorted by parallax when viewed from the side.
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caching the rendered image of each node in the hierarchy for use in subsequent frames.

The cached image is reused by texture-mapping it onto a quadrilateral that is drawn in

place of the original geometry. The hierarchical approach ensures that a large number of

small distant objects are clustered into a single texture map, preventing a proliferation

of small polygons.

What distinguishes this technique from the others is that it applies an error metric to

determine how well a cached image continues to approximate its associated geometry

as the viewer moves about the scene. When the quality of the approximation dips

below a given threshold, the cached image is replaced by a freshly rendered one based

on the viewer's new position. According to the authors, this permits a roughly tenfold

speed increase over plain view frustum culling when rendering walkthroughs of a complex

outdoor scene, with a minimal reduction in image quality.

2.4 Volumetric Textures

The basic idea behind volumetric textures is to replace volumes of complex repetitive ge-

ometry with sampled distributions of its density and reectance behaviour, called texels.

Using a volumetric ray-tracer, these distributions can then be e�ciently rendered at a

cost that is invariant to the amount of detail stored in the texel (provided that its size

and resolution remain constant). This invariance makes volumetric rendering somewhat

akin to texture-mapping in providing a near-constant rendering time for scenes of arbi-

trary complexity. Unlike texture-mapping, however, volumetric textures correctly handle

parallax and occlusion e�ects, since texels are truly three-dimensional in nature.

Early work by Kajiya and Kay [KK89] produced impressive results in rendering fur,

using an ad hoc reectance model based on the cylinder.7 This work has been generalized

by Fabrice Neyret [Ney95b] to permit more general reectance models based on the

normal distributions of ellipsoids, and to allow hierarchies of multiple texel resolutions

that minimize cost and spatial aliasing in the spirit of mip-mapping. Further extensions

by Neyret include methods to deform texels so as to permit some basic forms of animation

7Forms of this reectance model have found use in other rendering methods, such as the polyline
technique described in x2.2.3.
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[Ney95a], though this is still not as exible as with conventional geometric models.

Although usable at a wide range of scales, volumetric textures entail the considerable

computational overhead of volumetric ray-tracing. Accordingly, they o�er an e�ective

alternative to the above projective rendering methods only if (1) the general rendering

requirements strain or exceed the capacity of projective rendering (e.g. soft shadows,

accurate reections and refractions, volume opacity e�ects), or (2) the amount of per-

texel detail is su�ciently high to take advantage of their near-constant rendering time.

2.5 Summary

As our sampling shows, there are a variety of ways to render tubular objects. Whereas

some methods are su�ciently general to model tubes of arbitrary cross-section, others

are specialized for plain or generalized cylinders, as is the paintstroke. Moreover, some

methods are suited for large-scale rendering while others are only useful at very small

scales. As we shall see in Chapter 5, the paintstroke primitive, although limited in scope,

can usually do a better job in rendering generalized cylinders within its intended range

of scales than all the competing methods presented here.



Chapter 3

The Paintstroke: A Generalized

Cylinder Primitive

In this chapter we examine the structure and properties of the paintstroke primitive, and

develop its dynamic tessellation algorithm. We begin by discussing the way in which

paintstrokes are modelled and represented within our projective rendering framework.

The remainder of the chapter is largely devoted to a detailed account of their tessellation.

We conclude with an overview of the special rendering e�ects that are possible with

paintstrokes, and briey explain how these are achieved.

3.1 Representation

The essential properties of a paintstroke can be succinctly described with a one-dimensional

parametric function, ps(T ). The components of this function are visual attributes that

vary along the length of the paintstroke: position, radius, colour, opacity, and reectance.

All components but the radius are themselves vectors, consisting of related scalar subcom-

ponents. The overall ps function appears in Equation 3.1 below, with the components

ordered as listed above.

ps(T ) =

2
6666666664

pos(T )

rad(T )

colour(T )

op(T )

re(T )

3
7777777775

(3.1)

25
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The ps(T ) function is de�ned using a series of n � 2 control points, fcp0; cp1; : : : ;

cpn�1g. Each of these is an arbitrary constant vector bearing a value of ps(Ti) at regular

intervals of Ti.
1The control points are used by the rendering algorithm to generate simple,

visually appealing interpolant functions for all the components. A sample paintstroke

with variation in radius and colour appears in Figure 3.1. The white dots indicate the

positions of the control points.

Figure 3.1: Sample rendered paintstroke with control points indicated.

In our implementation, the pos(T ) and rad(T ) components are piecewise-cubic splines.

These provide a reasonable degree of continuity and exibility, yet can be e�ciently gen-

erated, evaluated, integrated, and di�erentiated. The remaining components of ps(T )

are piecewise-linear interpolants. While they lack the smoothness of splines, our experi-

ence has shown that the eye is considerably less attuned to derivative discontinuities in

these latter components than to those of the position or radius.

At this point, we introduce a re-parametrization of ps(T ), which will be more useful in

dealing with piecewise functions: we de�ne psm(t) as the section of ps(T ) where T � [a; b]

such that ps(a) = cpm and ps(b) = cpm+1. The new parameter, t � [0; 1], ranges over a

single section of a paintstroke between a pair of neighbouring control points:

psm(0) = cpm (3.2)

psm(1) = cpm+1 (3.3)

1Besides capturing these discrete values of ps(T ), the control points contain some additional infor-
mation that is used by the global lighting algorithm to simulate the self-shadowing of convex objects
consisting of paintstrokes. We shall ignore this additional information until x3.3.3, in which we present
the global shading algorithm.
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As a notational shorthand, we omit the subscript in the new parametrization if the

indices of the bounding control points are implied by the context. For example, we write

ps(t) in reference to psm(t), where the value of m is implicit. We will make frequent use

of this shorthand form when we discuss a single section of a paintstroke that is bounded

by an arbitrary pair of adjacent control points. From this point on, our use of the term

section in the context of paintstrokes will be restricted to the portion of a paintstroke

between two adjacent control points. We will use the term segment to refer to a subset

of a section.

pos0(t)

pos1(t)

rad3(0.6)

cp0

cp1

Figure 3.2: Paintstroke with piecewise position and radius components shown.

De�ning all the components of a paintstroke at the same control point is potentially

ine�cient if some components exhibit greater variation than others|consider an elab-

orately coloured paintstroke with a simple underlying geometry, most of whose control

points are introduced to store colour information, not geometry. This could be recti�ed

by modifying our implementation to use a separate set of control points for each compo-

nent or group of components with similar complexity. An alternative approach, discussed

in Chapter 6, is to use a one-dimensional texture to encode non-positional information.

Having presented the general structure of ps(t) and its components, we now shift

our focus to the latter. We examine the components of an arbitrary paintstroke section

psm(t), deriving each component's interpolant function from the control point values

assigned by the modeller.
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3.1.1 Position

pos(t) =

2
6664
posx(t)

posy(t)

posz(t)

3
7775 (3.4)

The function pos(t) de�nes the path that the paintstroke segment follows through

R
3 (in our case, eye-space) using a piecewise Catmull-Rom spline. Given the eye-space

position values pm�1, pm, pm+1, and pm+2 at the (parametrically evenly-spaced) control

points, the Catmull-Rom spline extends from pm to pm+1, according to the equation

posm(t) =
1

2

2
6666664

�1 3 �3 1

2 �5 4 �1
�1 0 1 0

0 2 0 0

3
7777775

2
6666664

pm�1

pm

pm+1

pm+2

3
7777775
�

2
6666664

t3

t2

t

1

3
7777775

(3.5)

As Figure 3.3 shows, a Catmull-Rom spline is equivalent to a Hermite curve, such

that the tangent vector at each inner control point joins the two surrounding control

points. Because the �rst and last control point of the paintstroke must be interpolated2,

we double them. This produces linear interpolants for the �rst and last segments. A

cpm-1

cpm

cpm+1

cpm+2

Figure 3.3: The Catmull-Rom spline.

future version of our algorithm will likely also incorporate a B�ezier spline representation,

which permits more intuitive modelling.

2Notice that a Catmull-Rom spline segment only interpolates between the middle two of the four
control points that specify it.
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The Eye-Space Coordinate System

Our eye-space coordinate system, shown in Figure 3.4, has the viewer at the origin and

looking toward the positive z-axis. Orthogonal to the z-axis lies the projection plane,

whose distance from the viewer along the positive z-axis is called the projection distance

and denoted by dproj.

Given an arbitrary paintstroke section, the unit vector extending from the viewer

in the direction of pos(t) is called the view vector and denoted by view(t). It is used

extensively in the rendering process, and we shall refer to it throughout this chapter.

Observe that view(t) = pos(t)
kpos(t)k

.

y

x

z

view plane
dproj

pos(t)

view(t) {

Figure 3.4: The geometry of our eye-space coordinate system.

3.1.2 Radius

The function rad(t) de�nes the thickness of the segment, measured orthogonally to the

tangent vector of the path, pos0(t). It is expressed in the same units as pos(t) and can

take any nonnegative value; however, using a value that exceeds the paintstroke's radius

of curvature yields unsightly folds in the surface.

The radius function is de�ned as a piecewise Catmull-Rom spline, precisely like each
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Figure 3.5: Variation in the radius component of a paintstroke.

component of pos(t). The model supplies a set of radii fr0; r1; : : : ; rn�1g corresponding
to the paintstroke's radii at the n control points. As with the positional interpolant, the

�rst and last control points are doubled.

radm(t) =
1

2

2
6666664

�1 3 �3 1

2 �5 4 �1
�1 0 1 0

0 2 0 0

3
7777775

2
6666664

rm�1

rm

rm+1

rm+2

3
7777775
�

2
6666664

t3

t2

t

1

3
7777775

(3.6)

3.1.3 Colour

colour(t) =

2
6664

colourr(t)

colourg(t)

colourb(t)

3
7775 (3.7)

The colour(t) function is expressed in terms of a red, green, and blue component, denoted

respectively by colourr(t), colourg(t), and colourb(t). These components vary indepen-

dently along the path of the segment. An alternative colour representation in terms of

hue, saturation, and colour value (HSV), would allow easier modelling and provide more

intuitive interpolation, albeit at the expense of (nonlinear) conversions to RGB space.

Our implementation only permits colour variation along the paintstroke, and not

around its girth|the latter is considerably more involved, being view-dependent and

nonlinear in screen-space. In this regard it is similar to texture-mapping, a feature that

is discussed in Chapter 6 as a potential enhancement to paintstrokes.

A colour value is assigned at each control point, and the colour(t) function inter-

polates linearly between these values, along the spine of the paintstroke. Given the set
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Figure 3.6: Variation in the colour component of a paintstroke.

of (r; g; b) colour points fc0; c1; : : : ; cn�1g, the equation for the interpolated colour value

between control points cm and cm+1 is

colourm(t) = (1� t)cm + tcm+1 (3.8)

3.1.4 Opacity

op(t) =

2
6666664

opmin(t)

opmax(t)

opcentre(t)

opedge(t)

3
7777775

(3.9)

A segment's opacity, represented by op(t), can vary both along its length and across

its breadth. The lengthwise opacity is modulated according to the segment's orientation

relative to the viewer, with the maximum opacity, opmax(t), attained when the paint-

stroke's path is collinear with the view vector, and the minimum opmin(t) when the two

vectors are orthogonal. This corresponds to the intuitive notion that looking along the

paintstroke should yield the greatest opacity, as shown in Figure 3.8. Section 3.3.1 pro-

vides a concrete example of this, and also explains how we interpolate between opmin(t)

and opmax(t) to obtain the paintstroke's lengthwise opacity at a given value for t.

In addition to the lengthwise opacity modulation, a paintstroke allows the modeller to

independently set opacity values for the centre and the edges of its screen-projected image.

These values are represented by the functions opcentre(t) and opedge(t), respectively. Any

point on the surface of the paintstroke thus has an additional opacity value that depends
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Figure 3.7: Simple variation in the opacity of a paintstroke.

maximum opacity

minimum
opacity

Figure 3.8: Intuition for lengthwise opacity variation.

on its position between the centre and the nearest edge. This breadthwise opacity value

is multiplied by the lengthwise opacity described above to yield an overall opacity.

Each component of the op(t) vector is interpolated linearly along the segment, as

with the colour. Given the set of opacity vectors fo0; o1; : : : ; on�1g corresponding to the
n control points, the interpolation is given by

opm(t) = (1� t)om + tom+1 (3.10)

3.1.5 Reectance

re(t) =

2
6664
reflka(t)

reflkd(t)

reflks(t)

3
7775 (3.11)

The function re(t) contains the ambient, di�use, and specular reectance coe�cients
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of a segment. These are used in the local shading model, which we shall describe in x4.3.6.
Like the other ps(t) components, the reectance function is user-de�ned. However, it can

also be automatically adjusted by the global shading algorithm, as discussed in x3.3.3.
Given the set of reectance vectors fr0; r1; : : : ; rn�1g, the reectance interpolant is

rem(t) = (1� t)rm + trm+1 (3.12)

Figure 3.9: Variation in the reectance component of a paintstroke.

3.2 Tessellating the Paintstroke

Traditional tessellation schemes subdivide a surface into a set of world-space or eye-space

polygons. Whereas the arrangement of these polygons is pre-determined, the arrange-

ment of their screen-space projections is view-dependent. The tessellation of a paintstroke

is in a sense the opposite: it yields a view-dependent set of eye-space polygons whose

screen-space projections are pre-determined. The paintstroke in e�ect directly polygo-

nizes the screen-projection of a generalized cylinder|not the full eye-space surface. This

is what makes the name \paintstroke" appropriate to our primitive: an artist drawing a

three-dimensional tube with a single stroke of the paintbrush capitalizes on the simplicity

of this object's screen projection, as does our tessellation scheme. Although the view-

dependency of a paintstroke's polygonization entails dynamic tessellation, it allows the

paintstroke to be drawn from any viewing angle with a very small number of polygons.

As we shall see in Chapter 5, this more than makes up for the cost of the retessellation.

Some of the assumptions behind our methodology rely on weak perspective3, partic-

ularly with respect to surface normals. Because paintstrokes are intended for relatively

small-scale rendering, which typically implies a moderate viewing distance, this assump-

3By this we mean that the perspective projection of an object is very similar to an orthonormal one.
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(a) Our tessellation
scheme

(b) Static tessella-
tion scheme

Figure 3.10: Example of our dynamic tessellation compared to traditional static tessel-
lation.

tion is not at all unreasonable. But even under fairly strong perspective, we have found

paintstrokes to produce adequate results.

In the following sections, we shall examine the algorithm that performs the dynamic

tessellation. Figure 3.11 indicates the various stages of the tessellation process that will be

examined, shown in the order in which they are performed. Our discussion will generally

proceed in this order, with two exceptions: all optional steps are discussed at the end,

and the Inection Point constraint is explained after the other Lengthwise Subdivision

constraints, because an understanding of the latter is needed to see the purpose of the

former.

3.2.1 Geometric Transformations and Interpolant Generation

The �rst step in the tessellation process transforms all the geometric data stored in the

control points fcp0; cp1; : : : ; cpn�1g from world-space to eye-space. This data consists of

the pos and Ngl components. The latter is called the global normal vector and is used

for global shading e�ects, discussed in x3.3.3.
Each section of the paintstroke, bounded by control points fcp0; cp1g; fcp1; cp2g;

: : :,fcpn�2; cpn�1g, is rendered individually. All the sections are processed in the same

manner, except that the �rst and last one may be closed o� with a polygonal endcap, as

explained in x3.2.5.
A section is handled as follows. First, the polynomial coe�cients of the interpolants
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Lengthwise Subdivision

Breadthwise Subdivision

Transform control points
Determine paintstroke quality level

Inflection Point Constraints
Position Constraint I
Position Constraint II
Radius Constraint

Paintstroke Preprocessing

Section Preprocessing

paintstroke

polygons

* Optional Steps

Repeat for each paintstroke section:

not all constraints satisfied

Derive interpolant functions, derivatives, integrals
* Apply Global Shading model
* Apply Lengthwise Opacity Variation model

Determine vertices
Determine normals
* Apply Breadthwise Opacity Variation model
* Endcap generation

Figure 3.11: Stages of paintstroke tessellation.
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pos(t) and rad(t) are computed, as well as for their derivatives and antiderivatives.

These coe�cients can be precomputed for rad(t) and reused each time the section is

drawn in subsequent frames. The pos(t) component needs to be re-generated for every

frame because the viewing transformations a�ect this component of the control points.

The following two phases will subdivide the section, �rst along its length, and then

along its breadth. The lengthwise subdivision breaks the section into segments, each of

which is then divided along its breadth to ultimately produce a set of polygons. That

completes the tessellation.

3.2.2 Lengthwise Subdivision

Once the piecewise interpolants have been generated, the section between each pair of

adjacent control points is recursively subdivided in half into pairs of segments until the

subdivision criterion for all the segments has been satis�ed. Whenever a segment is

subdivided, the split occurs at the parametric midpoint, i.e. at ps(0:5). The two halves

are then recursively subdivided in the same manner until no further subdivisions are

required.

A paintstroke segment ps(t) for t � [a; b]; a < b is either subdivided or advances to

the next phase, depending on the behaviour of its pos(t) and rad(t) components. In

order to advance, it must be approximately linear in pos(t) and rad(t)4, because it is

subsequently drawn as a truncated cone|which is linear in these components. There

are two constraints based on the former and one on the latter. If there are inection

points in any component of pos(t) or rad(t), these need to be dealt with as described in

x3.2.2 below, since the constraints we use are only valid on interpolants with monotonic

derivatives (within the speci�ed segment).

Position Constraint I

The �rst position constraint is based on the angle � between the two-dimensional tangent

vectors pos0scr(a) and pos0scr(b). These are the (x; y) screen-space projections of the

derivative pos0(t) at the segment's endpoints, t = a and t = b. If � exceeds a threshold

4Note that it is already linear (by de�nition) in the other components.
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θ

cpm

oa

ob

cpm+1

pos'scr(a)

posscr(a)

posscr(b)

d pos'scr(b)

Figure 3.12: The elements of Position Constraint I.

value denoted by �max, the constraint forces a subdivision. �max � (0
0; 900) is a function

of the segment's maximum length, as de�ned below, and a user-adjustable tolerance

parameter tol�.

The values pos0scr(a) and pos0scr(b) are obtained by analytically di�erentiating the

function posscr(t), the screen-projection of the paintstroke's path. Because our projection

point lies at the origin of the eye-space coordinate system and the projection plane is

orthogonal to the z-axis, determining posscr(t) to within a constant o�set requires only

three items: the eye-space position pos(t), the projection distance dproj (as shown in

Figure 3.4), and the scaling di�erence between screen-space and eye-space coordinates.5

The latter two are e�ectively combined into the nonzero projection constant cproj, used

in the formulas below. The constant o�sets o�setx and o�sety depend on the viewport

position; they are not computed since they vanish when posscr(t) is di�erentiated.

posscr(t) =

2
4 cproj

posx(t)
posz(t)

+ o�setx

cproj
posy(t)

posz(t)
+ o�sety

3
5 (3.13)

5We assume an equal scaling for the x and y directions.
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pos0scr(t) =

2
4 cproj

pos0x(t)posz(t)� pos0z(t)posx(t)
pos2z(t)

cproj
pos0y(t)posz(t)� pos0z(t)posy(t)

pos2z(t)

3
5 (3.14)

The next step is to normalize pos0scr(a) and pos
0
scr(b), and then compute their dot prod-

uct, which yields cos �.6 If this value is negative, we know that � exceeds the maximum

value of �max (90
0) so we subdivide the segment without any further work. Otherwise, we

need to determine �max. We begin by �nding the segment's maximum length d, de�ned

as the straight-line distance along the outside of a curved screen-projected paintstroke

segment. If the segment is straight, either side can be used, since their lengths are equal.

The value of d is computed as the distance between the two outside points oa and ob,

which are the points lying on the outside boundary of the segment at t = a and t = b,

respectively. The various elements of Position Constraint I are shown in Figure 3.12.

The outside point oa is computed by displacing the position point posscr(a) by one

of the two vectors perpendicular to pos0scr(a), namely

[posscr
0
y(a);�posscr0x(a)]> or [�posscr0y(a); posscr 0x(a)]> (3.15)

which has been normalized and scaled by the screen-projected radius cprojrad(a)=posz(a).

To determine which of the two perpendicular vectors points toward the outside of the

paintstroke's curvature, we apply a test based on pos00scr(a), recognizing that the second

derivative vector always points toward the centre of curvature. The same algorithm

is applied to obtain ob.
7 Once the outside points have been determined, it is trivial

to compute d2, the square of the distance between them. We use this value to derive

cos2 �max, as per the equation

cos2 �max =
d2

d2 + tol2�
(3.16)

Figure 3.13 provides a geometric interpretation for �max as a function of d and tol�.

The e�ect of this function is to enforce a strict angular tolerance for long segments

6Because we normalize the derivative vectors, we can omit the multiplications by cproj in Equation
3.14. This yields the vector pos0scr(t)=cproj instead of pos0scr(t), but the two are equal when normalized.

7Although the �rst segment requires computing both oa and ob, subsequent segments reuse the second
point from the previous segment, so that only one outside point per segment needs to be computed.
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θmax

tolθ

d

Figure 3.13: Geometric interpretation of �max.

(a) (b)

Figure 3.14: Thickness distortion resulting from inadequate lengthwise subdivision.

(where d is large), but to relax the tolerance for short ones. As a result, the lengthwise

subdivision granularity adapts to the screen-projected length of the paintstroke segment,

and it does so in a manner that can be modi�ed by tuning the positive parameter tol�.

Finally, the test that decides whether this constraint causes a subdivision is the

following, with a false value triggering the subdivision:

cos2 � � cos2 �max (3.17)

Given that � � (00; 900), the above relation is equivalent to the more intuitive (but also

more expensive) test condition, � � �max.

Aside from the obvious purpose of maintaining a smooth silhouette for a paintstroke

segment, Position Constraint I also keeps the segment's thickness from being distorted

by sharp bends in its screen-projected path. Segments with even a slight eye-space

curvature will, from certain viewing angles, exhibit a sharp curvature in their screen-space

projection. This is an important consideration because any segment with greatly di�ering

endpoint tangents appears signi�cantly thinner than the curved tube it represents. An

example of this phenomenon is given in Figure 3.14.
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Position Constraint II

The second position constraint maintains a desired degree of linearity in the z-component

of pos(t). This is necessary to ensure that a curved segment is adequately subdivided

even when viewed from an angle that makes its screen projection close to linear. In such

a situation, Position Constraint I would allow the entire segment to be rendered without

any subdivision, regardless of its true (i. e. eye-space) curvature. Although the rendered

image would have the correct shape, it would fail to express the true variation in the

surface normals along the segment.

To implement this constraint, we begin by computing over the interval [a; b] the exact

average values of posz(t) and its linear interpolant t�a
b�a

[posz(b)� posz(a)]+ posz(a). The

absolute di�erence between the two is a measure of posz(t)'s nonlinearity. This value is

then scaled by dproj
posz(a)

, a factor representing the foreshortening e�ect of the perspective

transformation at pos(a), given the projection distance dproj (shown in Figure 3.4).8

Finally, the perspective-adjusted nonlinearity measure is bounded by the parameter tolz,

speci�ed by the user. The formula for this constraint simpli�es to the following:

dproj
posz(a)

���� 1

b� a

Z b

a

posz(t) dt �
posz(a) + posz(b)

2

���� < tolz (3.18)

where the integral is easily obtained from the precomputed coe�cients of the (quartic)

antiderivative to posz(t).

t a b

posz(t)

Figure 3.15: Geometric interpretation of
R b

a
posz(t) dt � b�a

2
[posz(a) + posz(b)].

8Applying the perspective factor for pos(a) to the entire interval [a; b] is a reasonable simpli�cation
because, at the screen-projected size that paintstrokes are intended for, the perspective e�ect should be
very similar at both endpoints of a segment.
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The shaded region in Figure 3.15 represents the raw di�erence between the integrals

of posz(t) and its linear interpolant over the region [a; b]. We will discuss shortly how to

cope with an inection point in the interval. To obtain the measure of nonlinearity (prior

to the perspective adjustment) we must divide this raw di�erence by b � a. We do this

to essentially normalize the interval [a; b], whose length does not consistently correspond

to the length of the paintstroke segment.9 Contrary to our initial intuition, this does

not counteract the view-adaptive nature of this constraint, since enlarging a paintstroke

(by uniformly scaling its control points) would have no e�ect on the parametric distance

b � a. Thus the normalization of this interval only serves to treat segments of di�erent

physical lengths \equally", by not biasing the nonlinearity measure with a high value for

large parametric intervals that may correspond to small physical distances. Note that

the perspective-adjusted nonlinearity measure is sensitive both to true enlargement of

the paintstroke and to the perspective-induced enlargement of its screen projection as it

approaches the viewer.

The Radius Constraint

The radius constraint ensures a smooth lengthwise variation in the radius of a segment.

It is precisely analogous to Position Constraint II, relying on the perspective-adjusted

average di�erence between the rad(t) function and its linear interpolant. The simpli�ed

equation for this constraint is

dproj
posz(a)

���� 1

b� a

Z b

a

rad(t) dt � rad(a) + rad(b)

2

���� < tolrad (3.19)

Inection Point Constraints

Simple Inection Points Position Constraint II and the Radius Constraint both re-

quire that the spline interpolants to which they apply have monotonic derivatives with

respect to parameter t over the entire segment t � [a; b]. In order to satisfy this condition,

we must ensure that posz(t) and rad(t) have no inection points in the open interval

9If this is not clear, consider a paintstroke with three control points, the �rst two close together and
the third one far away. The parametric distances between the �rst two and last two control points are
the same: one.
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t � (a; b). This is both necessary and su�cient to satisfy the condition. Since the in-

terpolants are cubics, �nding an inection point within a segment|there can only be

one|amounts to �nding the zero of the interpolant's second derivative within the inter-

val (a; b). If one is found, a subdivision is carried out at the value of t where it occurs,

producing a pair of subsegments which do not contain the inection point in their open in-

tervals. The purpose of the foregoing requirement is exempli�ed in Figure 3.16(a), which

shows how a function with a non-monotonic derivatives can confound the average-value

constraints. The average value of the function, based on its (signed) integral, is close

to that of its linear interpolant|yet, clearly, the function is far from being linear. By

forcing a subdivision at the inection point, we create two subsegments whose derivatives

are monotonic within their respective intervals, thus removing the anomaly.

(a) Simple (b) Projected

Figure 3.16: A function with non-monotonic derivatives.

Projected Inection Points Another type of inection point that may arise is one

within the screen-projected path of a segment. As can be seen in Figure 3.16(b), this

can cause a nonlinear path segment to have equal tangents at the endpoints, thereby

erroneously satisfying Position Constraint I. Precisely locating this type of inection

point is quite expensive, given the nonlinearity of the perspective projection and the

resulting complexity of the projected curve. However, if we approximate the perspective

projection with a simple orthonormal one (i.e. we discard the z-component), the curve

becomes more tractable. This simpli�cation provides a much faster means of detecting

and locating the approximate inection points, and is very accurate at the relatively

small scales that paintstrokes are suited to.
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Abbreviating the segment's eye-space positional components posx(t) and posy(t) to

x(t) and y(t), we �nd the values of t that make either d2y

dx2
or d2x

dy2
equal to zero. We reason

as follows:

dy

dx
=

dy

dt

dt

dx
(3.20)

=
dy

dt
dx
dt

(3.21)

d2y

dx2
=

d2y

dt2
dx
dt
� d2x

dt2
dy

dt�
dx
dt

�3 (3.22)

Similarly,

d2x

dy2
=

d2x
dt2

dy

dt
� d2y

dt2
dx
dt�

dy

dt

�3 (3.23)

Setting either d2y

dx2
or d2x

dy2
to zero yields the same quadratic in terms of the polynomial co-

e�cients for x(t) and y(t). Note that although one of these derivatives may be unde�ned

due to a vanishing denominator, they can never both be unde�ned. That is because the

values of dx
dt

and dy

dt
cannot both vanish at the same point, unless a pair of consecutive

control points are identical in position|an illegal condition that, if present, is eliminated

when the control points are read in. Given that

x(t) = x3t
3 + x2t

2 + x1t + x0 (3.24)

y(t) = y3t
3 + y2t

2 + y1t+ y0 (3.25)

the inection points are obtained from the zeros of the quadratic

I(t) = 3(x2y3 � x3y2)t
2 + 3(x1y3 � x3y1)t+ x1y2 � x2y1 (3.26)

If I(t) has distinct zeros, either (or both) of them lying in the interval [0; 1] are inection

points. If the two zeros are identical, they are not inection points, since they do not

represent a sign change in d2y

dx2
(or in d2x

dy2
).

Because solving the roots of I(t) is fairly expensive operation, our algorithm avoids

doing so wherever possible. For example, when the coe�cient of t2 in I(t) is several

orders of magnitude smaller in absolute value than the coe�cient of t, we ignore the

quadratic term, approximating I(t) with the resulting linear equation. If I(t) cannot be
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simpli�ed in this way, we evaluate I(0), I(1), and, if necessary, m and I(m), where m is

the (easily obtained) value of t that yields an extremum. Based on these values we can

determine whether any roots fall within [0; 1], without explicitly solving them. If they

do|which is su�ciently rare in practice to make the above tests worthwhile|then we

solve for them.

3.2.3 Breadthwise Subdivision

After a segment has been su�ciently shortened by lengthwise subdivision, it is �nally tes-

sellated into polygons along its breadth. This involves dividing it into a ring of polygons

which tile the truncated cone that the segment represents. The tessellation is view-

dependent|the divisions occur relative to the centre and edges of the segment, as they

appear to the viewer. Although the polygons are ultimately rendered using a perspective

projection, the method used to tessellate them assumes an orthographic projection. The

inaccuracy of this assumption is negligible at the paintstroke's intended range of scales.

Moreover, this inaccuracy is visually much less signi�cant (and is independent of) the

shading and cross-sectional inaccuracies discussed below.

The speci�cs of a paintstroke's breadthwise tessellation depend on its quality level.

Each paintstroke bears one of three possible quality levels, numbered 0, 1, and 2. This

quantity is determined at an early preprocessing stage (indicated in Figure 3.11), based

on several user-de�ned parameters discussed below. As shown in Figure 3.17, the number

of each quality level represents log2N , where N is the number of polygons tiling the side

of the segment that is closest to the viewer. Hence, a quality-zero segment is tessellated

into a single polygon that always faces the viewer, a quality-one segment into two on each

side (the viewer's side and the one opposite to it), and a quality-two segment into four

on each side. For quality-one and quality-two paintstrokes, the side opposite the viewer

is often hidden and can thus be safely ignored, saving considerable rendering time. This

important optimization will be discussed shortly.



3.2. Tessellating the Paintstroke 45

Original Quality 0 Quality 2Quality 1

Figure 3.17: Breadthwise tessellation schemes for the three levels of quality.

(a) Quality 0 (b) Quality 1 (c) Quality 2

Figure 3.18: Paintstrokes generated at the three rendering quality levels.

Rendering Quality

A paintstroke's quality level can be set to vary according to its maximum screen-space

thickness. This feature is generally useful, although transitions in quality level are not

always seamless (as are the changes in the paintstroke's polygonization from scene to

scene within a given level of quality). For this reason, all segments of a paintstroke

share the same quality level. As the following descriptions indicate, higher quality levels

yield higher image quality. We have made no attempt to quantify this image quality,

since it really depends on a number of factors, including the paintstroke's orientation

and reectance, the lighting, and the user's need for a precise (as opposed to imprecise

but consistent) image.
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Quality Level 0 The tessellation of quality-zero segments is the simplest: the entire

segment becomes a single quadrilateral with vertices along the edges of the paintstroke,

corresponding to the silhouette of the generalized cylinder. This scheme yields the small-

est number of polygons, and the greatest savings over a general-purpose tessellation

method. However, it also yields the poorest rendering quality in several regards: (1) The

shading is inaccurate, being based on the linear interpolation of high curvature over a sin-

gle polygon. (2) A quality-zero segment disappears when viewed head-on, i.e. when the

tangent of its path, pos0(t), is collinear with the view vector. (3) The self-occlusion e�ect

accompanying high screen-space curvature|seen as a fold in the surface|is inaccurate.

(4) Paintstrokes of this quality level do not support breadthwise opacity variation, as

this feature requires a minimum of two polygons along the breadth of the paintstroke.

Despite their limitations, quality-zero paintstrokes are still very useful at a small scale,

where the above de�ciencies are largely irrelevant.

Quality Level 1 At this level, the viewer's side of the segment is divided into two

equal-sized quadrilaterals that have a common edge along the middle of the segment.

The same is done, if necessary, with the opposite side. Interpolating normals across

two polygons rather than one greatly improves the appearance of a shaded segment,

because of a more accurate normal distribution, and also improves the screen-space fold

at high curvature. Furthermore, paintstrokes of this quality level no longer disappear

when viewed head-on, although they may reveal their quadrilateral cross-section if their

path is su�ciently straight.

Quality Level 2 Quality-two paintstrokes produce the highest quality images, both

in their shading and in their appearance when viewed head-on. However, because they

generate four polygons per segment, their savings over a general tessellation scheme are

less pronounced. They are best suited to rendering at larger scales, where high image

quality is essential.
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Eliminating the Segment's Hidden Side

On the side of a segment facing the viewer, breadthwise subdivision generates a semi-ring

of 1, 2, or 4 vertices around each endpoint, depending on the level of quality used. If both

sides of a segment may be visible, then a full ring of 2, 4, or 8 vertices is generated10, and

any backfacing polygons are removed through faceculling at a later stage. Whether the

full ring is visible to the viewer depends on two criteria: the orientation of the segment

relative to the view vector, and behaviour of the radius derivative. Figure 3.19 provides

a geometric intuition for this dependency. For a given segment ps(t); t � [a; b], the full

ring is generated if and only if the following condition holds at t = a and t = b

�
pos0(t)

kpos0(t)k � view(t)
�
rad0(t) > tolring (3.27)

(a) Only one side visible (b) Both sides visible

Figure 3.19: Paintstroke orientation and radius derivative determine side visibility.

The nonnegative constant tolring can be tuned to achieve a desired level of strictness

in eliminating a partially hidden side. For example, if tolring = 0, then the full ring of

polygons will be used whenever there is any variation in the radius and the segment's

path is not perfectly orthogonal to the view vector|that is, whenever the opposite side

is at all visible, even if the resulting image is so similar as to be indistinguishable from

one created with just the semi-ring. Positive values for tolring will cause the semi-ring to

be used in place of the full ring when the side opposite the viewer is visible. We have

found that tolring � 2 works well in practice. This value causes semi-rings to be used in

10The vertices along the edges are shared by both sides; this is why their number does not double.
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place of full rings only when the half of the of the paintstroke further from the viewer is

just barely visible. Thus it minimizes the polygon count without noticeably degrading

the image.

(a) tolring = 2 (b) tolring = 20

Figure 3.20: A paintstroke rendered using two values for tolring, one reasonable and the
other excessive.

Determining the Polygon Vertices

To obtain a paintstroke polygon's vertices, we �rst determine their displacements from

a point on the central path of the segment. These displacements are view-dependent

vectors which all originate at pos(t), radiating outward as shown in Figure 3.21. We

refer to them as the out vectors: outedge(t) points to one of the segment's two lengthwise

silhouette edges, while outcentre(t) reaches the breadthwise centre of the segment. The

other two vectors, outmid1(t) and outmid2(t) are linear combinations of outedge(t) and

outcentre(t) that point to the angular midpoint between the centre and each edge. The

full set of out vectors is depicted in Figure 3.22.

pos'(t)

outcentre(t)

outedge(t)

view(t)

Figure 3.21: The view-dependent out vectors along the centre and edge of a segment.

outedge(t) = rad(t)
view(t)� pos0(t)

kview(t)� pos0(t)k (3.28)
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outedge(t)

outcentre(t)

-outedge(t)

-outmid1
(t)

-outmid2
(t)outmid1

(t)

outmid2
(t)

pos(t) -outcentre(t)

image plane

Figure 3.22: The complete set of out vectors relative to the given viewing direction.

outcentre(t) = rad(t)
outedge(t)� pos0(t)

koutedge(t)� pos0(t)k (3.29)

outmid1(t) =
1p
2
outcentre(t) +

1p
2
outedge(t) (3.30)

outmid2(t) =
1p
2
outcentre(t)� 1p

2
outedge(t) (3.31)

Vertices along the edges are now computed as pos(t) + outedge(t) and pos(t) �
outedge(t). For quality-zero paintstrokes, these are the only vertices used. For higher

quality levels, the centre vertex on the side of the segment facing the viewer is given by

pos(t) + outcentre(t), and the one one on the opposite side by pos(t)� outcentre(t). For

quality-two paintstrokes, the remaining four vertices are computed in the same manner,

although the position of the vertices relative to the edges is inverted on the side opposite

the viewer (i.e. if pos(t) + outmid1(t) is between the centre of the viewer's side and one

edge, then pos(t) � outmid1(t) is between the centre of the opposite side and the other

edge). The vertices are computed at both endpoints of the segment, yielding a ring (or

semi-ring, if only the viewer's side is visible) of quadrilaterals.

3.2.4 Computing the Normals

Vertex normals for paintstroke polygons are readily obtained from the out vectors dis-

cussed in the previous section.11 In fact, if a segment has no variation in radius, the

11As with the vertex positions, this determination is based on an orthographic projection.
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out vector corresponding to a given vertex is the normal for that vertex. In the general

case, each normal vector is equal to its corresponding out(t) vector plus an adjustment

vector adj(t) in the direction of pos0(t), whose norm is determined by the derivatives of

the radius and position. The out vectors de�ne the breadthwise normal variation of a

paintstroke (which is equivalent to that of a plain cylinder), while the adj vector repre-

sents the lengthwise normal variation, determined by the behaviour of the paintstroke's

radius.

adj(t) = � rad0(t)

kpos0(t)k2 pos
0(t) (3.32)

Assuming that the vector out has been normalized, we can justify this formula by

considering the truncated cone in Figure 3.23 and reasoning as follows. Note that the

vector out can represent any one of the out vectors of a paintstroke, since they are all

orthogonal to the path pos0(t), represented by �pos.

kadjk
koutk =

�rad

k�posk (3.33)

kadjk =
�rad

k�posk (3.34)

adj = kadjk �pos

k�posk (3.35)

=
�rad

k�posk
�pos

k�posk (3.36)

= �rad
�pos

k�posk2 (3.37)

lim
b�a!0

adj(t) = rad0(t)
pos0(t)

kpos0(t)k2 (3.38)

Breadthwise Distribution of Normals

In projective rendering, the normals in the interior of a polygon are usually derived by

bilinearly interpolating each component of the normals across the polygon's screen-space

projection. This is the case with our polygon renderer.12 A result of this bilinear inter-

12As we shall see in x4.3, our interpolation scheme is not an exact bilinear interpolation, but an
approximation to it. For the purpose of this discussion, however, we can ignore this detail.
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θ

θ

adj

out normal

∆rad

∆pos

rada

posa posb

radb

Figure 3.23: A cross-sectional view of a truncated cone.

polation is that the rate of change (of direction) of an interpolated normal with respect

to interpolation distance is smallest at the edges and greatest somewhere in the interior

of a polygon. However, as Figure 3.24 illustrates, this is a very poor approximation of a

generalized cylinder's breadthwise normal distribution. When a large amount of curva-

ture is interpolated over a single polygon, the resulting image appears to have a ridge at

the centre (see Figure 3.18) because the normals at that point are varying most rapidly

instead of least rapidly, as they should for a true generalized cylinder. As one would ex-

pect, the more polygons are used to express a paintstroke's breadthwise normal variation,

the better the approximation becomes. It is for this reason that shaded paintstrokes of

higher quality levels have a rounder appearance than those of lower ones.

Any distribution of normals can be associated with a surface whose normals form

the same distribution. The surface corresponding to a generalized cylinder's breadth-

wise normal distribution is a circular extrusion, or a cylinder. In contrast, the breadth-

wise normal distribution produced by interpolating over a single paintstroke polygon is

that of a parabolic extrusion|a nontrivial fact, though easily justi�ed. Referring to

Figure 3.24(b), which represents a cross-sectional view of the polygon with the x-axis

denoting the direction of interpolation and the y-axis the central normal vector, we rea-

son as follows: the normal at any value of x has slope a=x where a > 0 represents the
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nudgefactor, a value that determines the range of the normals to be interpolated. Thus,

the tangent of the curve f(x) whose normal at point x is a=x must be �x=a, yielding
the equations

f 0(x) = �x

a
(3.39)

f(x) = �x2

2a
+ c (3.40)

x
y

(0,0)

(a) Cylinder

x
y

(0,0)

y=a

(b) Polygon

Figure 3.24: Breadthwise distributions of normals for a true cylinder and a linearly
interpolated polygonal representation.

Nudge Factors

For segments of quality zero, the normals along the lengthwise edges of a polygon are

arti�cially nudged toward the normals of the centre vertices (even though the latter do not

appear in a quality-zero segment). This is needed because the true edge normals are co-

planar, so the subsequent interpolation between the edges would never have the (required)

perpendicular component in the central direction|at the middle of the polygon, the

normal would simply vanish instead of pointing orthogonally to the edges. The amount

by which the edge normals are shifted toward the centre normal, speci�ed by the nudge

factor, determines both the range and distribution of the normals. A large nudge factor

produces a smaller range but improves the cylindrical appearance of the distribution by

reducing the height of the parabola whose shape it approximates. As the nudge factor

approaches zero, the derivative of the normal's direction with respect to interpolation
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distance approaches in�nity, causing severe spatial aliasing in the shading model.13 A

well-chosen value for the nudge factor produces a reasonable range of normals that do

not vary too quickly at the centre, and are thus not prone to this type of aliasing.

Figure 3.25: Normals interpolated using a small (bottom) and a larger (top) nudge factor.

For paintstrokes of quality level one or two, no explicit nudge factors are used, since

they are already implied by the 900 (for quality one) or 450 (for quality two) of breadthwise

normal variation across each polygon. The greatest di�erence in normal distributions is

between levels zero and one. Accordingly, paintstrokes that automatically adjust their

level of quality to their screen-projected size can produce popping artifacts when making

a transition between these two levels. Transitions between levels one and two, while

perceptible, are far less conspicuous. Naturally, the smoothness of any quality level

transition also depends on the paintstroke's reectance and its orientation relative to the

light source and the viewer.

(a) Quality 0, with
three nudge factors

(b) Quality 1 (c) Quality 2

Figure 3.26: Breadthwise normal distributions and their implied surface shapes for paint-
strokes.

13Of course, the same type of aliasing will occur with a true cylinder, whose normals along the edges

vary rapidly with respect to interpolation distance.
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3.2.5 Endcap Generation

A paintstroke of quality one or two can be terminated at either end with an endcap,

provided that the radius is greater than zero. This feature is made optional by classifying

paintstrokes as either open (without endcaps) or closed (with endcaps), and allowing the

model to specify the type of paintstroke used. The construction of the endcaps for

quality-one and quality-two paintstrokes is shown in Figure 3.27. The essentially at

geometry of quality-zero paintstrokes precludes (and eliminates the need for) endcaps.

A triangle fan is used for the endcaps in order to allow the central point to assume a

normal parallel to the paintstroke's tangent vector pos0(t). A improved implementation

for generating smoother endcaps at large sizes is outlined in Chapter 5.

(a) Quality 1 (b) Quality 2

Figure 3.27: Endcap construction.

3.2.6 Problems with High Screen Curvature

It is the modeller's responsibility to ensure that the radius of a paintstroke does not exceed

its radius of curvature in world-space (or equivalently, in eye-space). But even a well-

behaved paintstroke that satis�es this requirement may, when transformed into screen-

space, have a projected (x; y)-path whose radius of curvature is easily exceeded by the

Figure 3.28: A paintstroke with high screen-projected curvature.
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paintstroke's projected radius. This occurs when the direction of a curved paintstroke's

path approaches that of the view vector, as exempli�ed in Figure 3.28.

This situation can give rise both to concave and complex (speci�cally, bowtie) poly-

gons at all three quality levels. The latter are caused by the intersection of edges along

the endpoints of a segment, and the former can occur when these edges do not quite

intersect, but their endpoints are close. Since most polygon rendering algorithms, in-

cluding ours, work only with simple convex polygons, these degenerate polygons pose a

problem.

(a) Quality 0 (b) Quality 1 (c) Quality 2

Figure 3.29: Tessellation meshes producing bowtie polygons at all three levels of rendering
quality for a paintstroke of sharp screen-space curvature.

Our implementation solves the problem in the traditional way, by splitting the of-

fending polygon into an equivalent pair of triangles. As Figure 3.30 illustrates, splitting

bowtie polygons can result in T-junctions, which many rendering systems cannot reliably

handle [NDW93]. Hardware-based rendering engines typically use �xed-point arithmetic

which may fail to represent the point in the middle of the T-junction as lying on the line

joining the two points on either side of it. This can result in cracks intermittently open-

ing up in the junction. In contrast, our polygon renderer handles T-junctions without

di�culty because it represents vertex positions as double-precision oating-point values,

rather than using the less accurate �xed-point representation.
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T-junction

Figure 3.30: T-junction produced by splitting a bowtie polygon.

3.3 Special Rendering E�ects

3.3.1 Lengthwise Opacity Variation

As mentioned in x3.1.4, the lengthwise opacity of a paintstroke segment varies according

to the values of opmin(t) and opmax(t). The latter opacity is applied when the segment is

viewed head-on, whereas the former is used when it is viewed orthogonally to its path.

For intermediate cases, an opacity value is interpolated between these extremes, based

on the dot product of the normalized tangent vector and the view vector.

opacityl(t) =

����view(t) � pos0(t)

kpos0(t)k
���� opmax(t) +

�
1�

����view(t) � pos0(t)

kpos0(t)k
����
�
opmin(t)

(3.41)

By exploiting this opacity interpolation, it is possible to simulate volume opacity,

which varies according to the distance that penetrating light rays travel through a mate-

rial. However, since we are basing the opacity on just a tangent vector, rather than any

measure of distance, this e�ect is only a crude approximation, whose accuracy could be

arbitrarily wrong. Nevertheless, the e�ect produces good results in practice, and is far

less expensive than computing true volume opacity.

In order to quantify the accuracy of our opacity interpolation in a typical example,

we have computed the true volume opacity of the bent tube shown in Figure 3.32. The

light penetration distance d is determined by the constants r1 = 10, r2 = 11, L = 10,
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view

pos'(t)
pos'(t)

(a) The geometry behind our ap-
proximation

(b) The result

Figure 3.31: Lengthwise opacity variation simulating volume opacity.

θ

r2 = 11

r1 =
 10

L = 10

d

Figure 3.32: Tube used in the opacity comparison.

and by the parameter � � [00; 450]. We compute the true opacity using the formula

opacity = 1� e�� d (3.42)

where � represents the material density, which is assumed constant over the tube. We

ran the comparison several times, using di�erent values for �.

We have constructed this comparison so that the interpolant endpoints opmin(t) and

opmax(t) are set to the true minimum and maximum opacity values (computed using

Equation 3.42), which occur at � = 00 and � = 450. As the results in Figure 3.33
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3.3.2 Breadthwise Opacity Variation

The surface normals spanning the breadth of a paintstroke provide a simple and useful

way of modulating the opacity across its breadth. This e�ect is achieved in each ring

of polygons comprising a paintstroke segment by storing a dot product of the normal

at each front-facing vertex with view vector. All the dot products within the segment

are then divided by the maximum dot product, which occurs at the centre vertex. The

quotient is stored for each vertex vi as the parameter si. Given the vertex normal Ni,

the equations for si and for the �nal opacity, oi, are

si =
Ni � view

maxj(Nj � view) (3.43)

oi = (1� si)opedge + si opcentre (3.44)

This value is multiplied by the lengthwise opacity value from the previous section, to

yield an overall opacity at each vertex.

Figure 3.34: Implementation of breadthwise opacity variation.

A simpler way to implement this type of opacity variation would be to assign each

vertex a �xed value for oi, based on the position of the vertex along the width of the

paintstroke. Thus, for a quality-one paintstroke, the vertex at the centre would have a

value of one, and the vertices along the edges would have values of zero. Although this

approach seems initially appealing because it is simple and inexpensive, it breaks down

when a full ring of polygons becomes visible, as in Figure 3.20. In this case, the vertices

along the top and bottom of the tapered segment (corresponding to the \edge" polygons,
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though, from this angle, they are nowhere near the edges) would have an opacity value

of opedge while vertices along the left and right would have opacity values of opcentre.

Our solution guarantees that the opacity will depend on the angle of the surface normal

relative to the viewer, eliminating this anomaly.

Breadthwise opacity variation can be used to produce fuzzy paintstrokes (by using

a high value for opcentre and a low value for opedge) or to simulate the Fresnel e�ect

for streams of water or icicles (by doing the reverse). Applications for the former in-

clude modelling wisps of hair or blobs of smoke. An example of the latter is shown in

Figure 3.36.

Figure 3.35: Two types of breadthwise opacity variation.

3.3.3 Global Shading Algorithm

The surface normals derived in x3.2.4 enable us to apply accurate local shading to each

individual paintstroke. However, they fail to take into account the shadows that paint-

strokes can cast onto themselves and other paintstrokes. While this problem could be

recti�ed by explicitly computing shadows for all paintstrokes, as with shadow bu�ering

[Wil78], this approach would signi�cantly increase rendering time and memory require-

ments. Our solution, while not as general as true shadow calculation, produces good

results for homogeneous layers of paintstrokes covering a roughly convex shape. It is
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Figure 3.36: Breadthwise opacity variation used to simulate the Fresnel e�ect in a stream
of water.

similar in spirit to the one proposed by Reeves and Blau [RB85].

Each control point of a paintstroke has associated with it a global normal Ngl and

a global depth value dgl, as shown in Figure 3.37. The former indicates the direction of

the global surface to which the control point belongs, and the latter the relative depth

from that surface, expressed as a value between zero (on the surface) and one (maximally

distant from the surface). Note that this is unrelated to the true position of the control

point|this model is based only on the global normal and depth value. The global normal

value is entered by the user in world-space and is automatically transformed into eye-

space (as is the position vector) when a paintstroke is rendered. The depth values are

constant.

0 .1
.5
.9

dgl =

Ngl

Figure 3.37: Global normals and depth values assigned to the control points of a paint-
stroke.

At any control point, the estimated amount of light penetration, p, relative to a light

direction L is given by the following equation, with � and � as de�ned below. The vectors
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L and Ngl are assumed normalized.

p =
1

2

hp
(��)2 � �2 + 1 � ��

i
(3.45)

� = 1� dgl

� = Ngl � L

This penetration value, ranging between zero and one, has a speci�c geometric in-

terpretation. As illustrated in Figure 3.38, we construct a unit sphere centred at the

origin. The position of the control point in this model is de�ned to be (1�dgl)Ngl, which

always lies within the sphere. Now we extend a line segment in the direction of the light

vector L, joining some point on the surface of the sphere to the control point within. The

length of this line segment represents the penetration value at the control point. Since

the length could vary from 0 to 2, we multiply it by 1
2
in order to normalize it.

dgl

Ngl

p=0.3
p=0.2

p=0.6

p=0.7

Figure 3.38: Penetration values at various light angles for a given global normal and
depth.

When the penetration at a given control point cpi is determined, the reectance

vector ri for that control point is scaled down according to a negative exponential function

involving its penetration value pi and a user-de�ned material density factor �.
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ri := ri e
�pi� (3.46)

This global shading model works well when a large number of control points are

uniformly distributed over a convex volume. This is usually the case with fur and foliage,

so this method is particularly useful in modelling these.

Figure 3.39: Example of a global shading e�ect.

3.4 Summary

In this chapter we have discussed three important aspects of the paintstroke primitive: its

representation, its tessellation, and the unique rendering features that are made possible

by the above. We have also examined some of the strengths and limitations of the

di�erent quality levels of paintstrokes, a topic that will be revisited in Chapter 5.
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Chapter 4

Rendering Polygons Using the

A-Bu�er

In the preceding chapter, we have examined the overall structure of paintstrokes, and

how they are tessellated into polygons. This chapter explains how our rendering engine

converts these and other polygons into screen images. Unless otherwise noted, all poly-

gons discussed in this chapter are of the simple and convex variety|an assumption that

greatly simpli�es the task of rendering them and sets the stage for a number of signi�cant

algorithmic optimizations. As we have seen in Chapter 3, complex or concave polygons

can always be decomposed into simple convex ones, so they can still be rendered, albeit

with some extra work.

4.1 Overview of the A-Bu�er

The A-Bu�er is a framework that provides an e�cient way to represent and composite

rasterized images with subpixel accuracy. It accomplishes this through a mechanism

that appropriately blends their colour and opacity values according to subpixel coverage,

e�ectively applying a box �lter over each pixel. This �ltering provides fast, high-quality

antialiasing of the resulting image. In a typical projective-rendering graphics pipeline, the

A-Bu�er's scope lies within the last stage of the screen-space phase, where rasterization

occurs.

In the A-Bu�er framework, polygons are rendered in two stages: �rst they are raster-

ized into a set of fragments|simpli�ed subpixel resolution images, each covering a single

pixel. A more rigorous de�nition of fragments will be presented shortly. Once all the

65
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polygons have been rasterized, the fragments over each pixel are blended, or composited,

to generate a �nal colour value that is assigned to that pixel. Thus, polygons are not

completely rendered one at a time, as they are with most other renderers; they all have

to be rasterized before a single pixel can be drawn to the screen.1 As mentioned, the A-

Bu�er performs spatial antialiasing by applying a pixel-sized box �lter to each fragment.

Thus, each fragment is treated as an individual supersampled subpixel-resolution image

(�ltered independently of the others) that contributes to the �nal colour of the pixel it

covers, and only that pixel.

There are numerous implementations of the A-Bu�er in circulation. While most of

these are software-based, some have been designed to work in hardware [SS93], though

these are rarely found in practice. Ours is based on the original implementation by

Loren Carpenter [Car84], although it fundamentally di�ers in two aspects: the way that

fragments are generated, and the way that intersecting fragments are blended. Similar

work based on using bitmaps to approximate pixel coverage, as described by Fiume

and Fournier in [FFR83], predates the A-Bu�er. Their approach, however, does not keep

track of multiple fragments per pixel, and as a result, blended pixels are dependent on the

order in which polygons are processed. Consequently, this solution provides less accurate

results for overlapping surfaces, and as presented cannot adequately handle transparency,

although it is faster and more memory-e�cient than the A-Bu�er.

Thus far we have referred to the A-Bu�er only in the context of rendering polygons.

Although that is indeed its most common application, the A-Bu�er can be used in imag-

ing a variety of non-polygonal primitives (e.g. lines, ovals, and even text) using di�erent

methods of rasterization (e.g. scanline, ray-tracing, bilinear interpolation). This variety

of incarnations exists because the A-Bu�er does not impose a particular rasterization

algorithm, but only speci�es the format of the fragments it processes. Hence, any raster-

ization scheme can in principle be made to work within the framework of the A-Bu�er.

In fact, more than one could be used for di�erent sets of primitives within the same scene,

where the fragments are generated in di�erent ways, but processed by a single A-Bu�er

1It is noteworthy that the A-Bu�er blends each pixel's fragments independently of the other pixels'.
Although our current implementation does not take advantage of it, this theoretically allows for very
e�cient parallelization of the blending process.
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blending routine. In this chapter, however, we shall restrict our scope to simple convex

polygons, which serve as the basis of our rendering engine.

4.2 Fragments

Fragments are data structures that store a simpli�ed representation of a polygon's pro-

jected image over a particular pixel, rasterized at \quasi-subpixel" resolution, as de�ned

below. Each pixel is allocated zero or more fragments, one for each polygon whose inte-

rior contains any part of the pixel.2 The fragments are stored in a list, ordered by the

the values of their Zmin �elds which represent their minimum (or closest) z-values.

Storing depth information for each pixel touched by a rasterized primitive is an ap-

proach that the A-Bu�er shares with its predecessor, the Z-Bu�er. Complementing this

similarity are two noteworthy di�erences: �rst, the A-Bu�er's fragments contain a great

deal more information than the simple depth values used in the Z-Bu�er; and second, un-

like the Z-Bu�er, which keeps only the foremost depth value at each pixel, the A-Bu�er

stores fragments for all polygons, even those masked by closer ones. It is easy to see

from these di�erences that the A-Bu�er consumes considerably more memory than the

Z-Bu�er.

A minimal A-Bu�er implementation such as ours represents the fragment's data struc-

ture with the following �elds:

1. The coverage mask, mask

2. The colour, colour

3. The opacity, opacity

4. The minimum and maximum screen-space z-values, Zmin and Zmax

5. The tag identi�er, tag

Note that there is no information about surface normals stored in a fragment. That is

because the local shading model is incorporated in the rasterization routine, so that a

2More precisely, any centre of a subpixel within the pixel. We have more to say about subpixels in
x4.2.1.
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fragment's colour �eld contains the shaded colour, as determined by the desired local

illumination model.

We used the term \quasi-subpixel" to describe the resolution at which fragments

are rasterized. That is because the fragment's supersampled image is simpli�ed in the

following ways: (1) all the subpixels share the same colour and opacity values, and (2)

just the minimum and maximum z-values over the entire fragment are computed. Hence,

only the pixel's coverage is stored at true subpixel resolution within the fragment.

4.2.1 The coverage mask �eld, mask

screen-projected
polygonsubpixels

1
0

2
3
4
5
6
7
8

10 2 3 4 5 6 7 8

Figure 4.1: A coverage mask produced by rasterizing a small polygon, with a superim-
posed grid indicating subpixel positions.

The �eld mask is a two-dimensional bitmap that stores a screen-projected polygon's

subpixel-resolution image over a pixel. Each bit in the coverage mask is associated

with one subpixel, indicating whether the latter is covered. Subpixels are arranged in

a uniform rectangular grid spanning the pixel. The shape of each subpixel may or may

not match the shape of the pixel, depending on the subpixel resolution used. In [Car84],

Carpenter uses an 8 � 4 resolution, making his subpixels rectangular (assuming square

pixels). Our version employs a resolution of 8�8, which allows the bitmap to be stored in

a single 64-bit integer variable, the rows being packed in consecutive 8-bit intervals. This

permits an e�cient implementation of set operations such as unions and intersections by

means of bitwise operations on registers. These operations, as we shall see shortly, are

essential to the fragment-blending portion of the algorithm. The amount of time spent
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generating fragments (and to a lesser extent, blending them) grows with the resolution of

the coverage mask, but so does the quality of the antialiasing, due to the greater precision

with which the coverage of a pixel can be approximated.

4.2.2 The tag identi�er �eld, tag

This �eld is an optional identi�er that may assigned to a fragment upon its creation.

Although our current implementation does not make use of the tag �eld, its traditional

role facilitates merging \compatible" fragments in order to free up memory, as described

in [Car84]. To qualify as compatible, a pair of fragments must belong to the same

pixel, be adjacent in depth, and come from polygons tiling a single surface. All the

polygons tessellated from this surface share an identi�er that is placed in the tag �eld

of the fragments they generate, providing a simple and inexpensive test for merging

compatibility. Another potential application for the tag �eld will be described in x5.1.3.

4.2.3 The colour �eld, colour

The colour of a fragment is stored as a set of integer r; g; b � [0; 255] representing the

quantized red, green, and blue components. Because the �eld mask does not store any

colour information about subpixels3, the image it contains is monochrome|all the �lled

subpixels share a single average colour value that is stored in the �eld colour. Allowing

only one colour per fragment greatly simpli�es the blending formulas while still permitting

smooth colour variation across multiple pixels, since fragments are never bigger than a

single pixel.

4.2.4 The opacity �eld, opacity

The opacity of a fragment is a oating-point value between zero and one, with zero

corresponding to complete transparency (and therefore invisibility), and one to complete

opacity. As with colour, the value of opacity applies to all the subpixels of a fragment.

3In more colloquial usage, a bitmap is often said to store binary colour values. This is not strictly
true; it stores values that may represent two di�erent colours, but the identity of those colours is not
explicitly encoded in the bitmap.
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4.2.5 The minimum and maximum z-value �elds, Zmin and Zmax

The �elds Zmin and Zmax contain the minimum and maximum screen-space z-values of a

fragment, respectively. Unlike the Z-Bu�er, which uses a single z-value, the A-Bu�er

attempts to antialias intersecting fragments. Given a pair of such fragments, it needs to

determine what portion of each one is visible to the viewer. The Zmin and Zmax values of

both fragments are used to estimate this, as described in xB.2.7.

4.3 Rasterization

Having examined the fragment's structure in some detail, we now turn to the task of

generating fragments, which is performed by the rasterization algorithm. Our imple-

mentation rasterizes each polygon by linearly interpolating a vector of values over the

interior and producing a fragment at each pixel. The vector, called the interpolant vector,

consists of the following elements:

� screen-space position vector

� eye-space normal vector

� colour

� opacity

� kd, the di�use shading coe�cient

� ks, the specular shading coe�cient
4

We have developed two methods of interpolating this vector, bilinear interpolation and

constant-increment interpolation, ultimately incorporating the latter into our rendering

engine.

4.3.1 Bilinear vs. Constant-Increment Interpolation

Bilinear interpolation linearly scans the components of the interpolant vector along the

polygon's left and right edges, starting at the top and proceeding downward. At each

4ks and kd are used in the shading model and will be explained in x4.3.6.
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vertical step during the scanning, a horizontal interpolation is made between the inter-

polated points along the edges, scanning the breadth of the polygon. By thus composing

the vertical interpolation with the horizontal, the full area of the polygon is scanned. An

e�cient way to perform such interpolations is to compute an increment for the interpolant

vector corresponding to one horizontal or vertical step, and to apply the corresponding in-

crement at each step during the scanning. Computing the increment requires subtracting

the endpoint values and dividing by the (horizontal or vertical) distance between them.

Although quite simple, this computation|particularly for the horizontal increment|can

account for a signi�cant portion of a polygon's rendering time, because it is performed

at each subpixel row in the polygon.

Because the appropriate increment is re-computed for each row and for each pair of

vertices along the edges, bilinear interpolation is suitable for approximating a nonlinear

function from a set of samples. While this is a useful feature for many applications, a less

expensive method exists for strictly linear functions: constant-increment interpolation.

This technique is similar to bilinear interpolation, except that it applies constant horizon-

tal and vertical increments when scanning anywhere within the polygon. Except for the

x- and y- values (which are trivial to interpolate within the polygon), a plane equation

is constructed for each scalar subcomponent of the interpolant vector, using its value at

each vertex as a z-value for the plane, together with the vertex's screen-space x- and y-

values. The plane equation is then used to compute the constant horizontal and vertical

increments to be used during the scanning, as outlined in the following section. This

represents a signi�cant cost reduction over bilinear interpolation, which needs to recom-

pute the horizontal increment many times for each polygon. Moreover, the eliminated

recomputation is relatively expensive, involving one division and, for each component of

the interpolant vector, one subtraction, multiplication, and assignment operation.

4.3.2 Computing the Plane Equations

To obtain the plane equation for a given quantity we wish to interpolate over a polygon,

we construct a geometric analogue of the polygon by replacing the screen-space z-value

at each vertex with the interpolated quantity at that vertex. The normal of this new
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polygon will provide the plane equation we seek. If the new vertices are coplanar, we

could use any pair of edges to determine the normal. However, recognizing that the

vertices may not all be coplanar, we compute an average normal direction by treating

the polygon as a fan of triangles joined at one of the vertices, as shown in Figure 4.2. The

choice of the common vertex is arbitrary, as will be evident from the ultimate formula

we derive. We add the (non-normalized) normal vector of each triangle, obtained by

the cross product of the two edges that share the common vertex, taken in a consistent

cyclical order.5 The sum of the normals represents an average normal direction of the

set of triangles comprising the original polygon, with each triangle's contribution to the

normal weighted by its area. This weighting is borne in the magnitude of each normal,

and that is why we omit normalizing them.

v0

vn-1

vn-2

v3

v2

v1

Figure 4.2: Fan of triangles used in computing the average normal.

Given n 3-dimensional vertices, v0;v1; : : : ;vn�1, we compute the sum of the cross

products, N, as follows:

N = (v1 � v0)� (v2 � v0) (4.1)

+ (v2 � v0)� (v3 � v0) (4.2)

+ : : : (4.3)

+ (vn�2 � v0)� (vn�1 � v0) (4.4)

= v1 � v2 � v1 � v0 � v0 � v2 + v0 � v0 (4.5)

5Note that any pair of edges in a triangle would yield the same cross product, provided their cyclical
ordering was the same, so our choice is legitimately arbitrary.
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Cancelled terms +v2 � v3 � v2 � v0 � v0 � v3 + v0 � v0 (4.6)

+v3 � v4 � v3 � v0 � v0 � v4 + v0 � v0 (4.7)

+ : : : (4.8)

+vn�2 � vn�1 � vn�2 � v0 � v0 � vn�1 + v0 � v0 (4.9)

= v1 � v2 � v1 � v0 (4.10)

+v2 � v3 (4.11)

+v3 � v4 (4.12)

+ : : : (4.13)

+vn�2 � vn�1 � v0 � vn�1 (4.14)

= v0 � v1 + v1 � v2 + : : : + vn�2 � vn�1 + vn�1 � v0(4.15)

If we then represent each vector vi using its components xi; yi; zi, we can expand out

the cross products to yield the ultimate formulas used in computing N. Letting vn equal

v0
6, we can write:

Nx =
n�1X
i=0

(yizi+1 � ziyi+1) (4.16)

Ny =
n�1X
i=0

(zixi+1 � xizi+1) (4.17)

Nz =

n�1X
i=0

(xiyi+1 � yixi+1) (4.18)

These three normal components respectively correspond to the coe�cients A;B;C

of the plane equation Ax + By + Cz + D = 0. The value jNzj also equals twice the

polygon's area, a quantity we will make use of shortly. The coe�cient D is obtained by

substituting the average (x; y; z) value of the vertices into the equation. The constant

increments for one unit (in our case, one subpixel) of horizontal or vertical movement are

then given by the expressions �A=C and �B=C, respectively.

6In allowing this, we observe that the subscripts form a ring of modulo n arithmetic, establishing the
arbitrariness of the starting vertex v0 as promised.
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4.3.3 Problems with Nonplanar Polygons

Because it is assumes linearity in the function to be interpolated, constant-increment

interpolation has a potential shortcoming when applied to polygon scan-conversion: A

polygon that is nonplanar in any component of the interpolant vector will yield an in-

terpolant that fails to span the exact range of values spanned by the vertices. This

can produce a discontinuity along the shared edge of adjacent polygons, one of which is

nonplanar. In contrast, bilinear interpolation fully interpolates the vertex values across

even a nonplanar polygon, so that such discontinuities cannot occur. However, when

applied to such polygons, the results of bilinear interpolation become dependent on the

polygon's orientation with respect to the scanning direction, as shown in Figure 4.3. This

presents a problem, because the direction of the horizontal scanning is �xed relative to

the viewport, and therefore varies relative to the polygon's frame of reference. While

orientation-dependency is undesirable e�ect, it is much less noticeable than the edge

discontinuities arising from the constant-increment method.

1 0

0 1

0.5
1

0

0

1
1

Figure 4.3: Orientation-dependency of bilinear interpolation for a nonplanar polygon.

The easiest and probably most common way of dealing with nonplanar polygons is

to subdivide them into triangles, which are trivially planar in all interpolated quantities.

While this method does indeed remove the discontinuities of constant-increment inter-

polation and also the orientation-dependency of bilinear interpolation, it would negate

many of the savings a�orded by tessellating paintstrokes into a small number of large

polygons.
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4.3.4 The Dynamic Triangulation Algorithm

Observing that the majority of polygons generated by our paintstroke tessellation scheme

did not manifest the artifacts caused by nonplanarity, we opted to use the more e�cient

constant-increment method. Our experience has shown that for small polygons (under

8 pixels in area), discontinuities between adjacent polygons arising from nonplanarity

are virtually undetectable|not because they cease to exist, but because the eye cannot

discern them. To deal with larger polygons, we implement a dynamic triangulation

mechanism, which uses a planarity test to determine whether subdivision is necessary.

If it is, the polygon is subdivided into a fan of triangles, one per vertex. As Figure 4.4

illustrates, the triangles all share a new central vertex, which is obtained by averaging

the vertices of the original polygon.7

Figure 4.4: A polygon subdivided by the dynamic triangulation algorithm.

Because our constant-increment interpolation produces a least-squares linear solution,

the deviations of the vertices from the interpolant plane are a good measure of the former's

planarity. The maximum absolute deviation among the vertices is multiplied by an ad

hoc linear function of the polygon's area (one function per component). If the product

exceeds a given threshold, the polygon is triangulated.

The purpose of the area functions is to lower the triangulation threshold for larger

polygons, where the e�ects of nonplanarity are particularly conspicuous. Each function

is de�ned using a pair of values, c1 and c2, that specify the polygon areas for which

the function reaches its minimum, 0, and its maximum, 1. An example appears in

7Contrary to intuition, we do not re-normalize the normal vector of the averaged vertex, as this would
yield a noticeably di�erent shading pro�le from the original polygon. Because we want the triangulated
polygons to blend seamlessly with the ones that are not triangulated, we must ensure that the normals
across both types behave similarly. Preserving the original (i.e. non-normalized) average normal at the
centre of the former type maintains this similarity.
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(a) Large paintstroke without dynamic trian-
gulation

(b) Close-up of the tail

(c) Large paintstroke with dynamic triangula-
tion

(d) Close-up of the tail

(e) Small paintstroke with or without dynamic
triangulation

(f) Close-up of the tail

Figure 4.6: Paintstrokes rendered with and without dynamic triangulation.
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4.3.5 The Rasterization Algorithm

Operating at an 8�8 subpixel resolution, a naive algorithm would take about 64 times as

long to rasterize an image as it would at full pixel resolution. In such a case, the A-Bu�er

would o�er no speed advantage over rendering a scene at the higher resolution with a

Z-Bu�er algorithm, and then �ltering it down. Traditional A-Bu�er implementations

do much better than this: they operate at pixel resolution, while still achieving subpixel

accuracy. The way this is done, as described in [FFR83, Car84], is by constructing a table

of pre-computed coverage masks, based on (and indexed by) all possible horizontal and

vertical edge intercepts within a pixel, expressed at subpixel resolution.8 Whereas fully

covered pixels in the interior of the polygon are trivially dealt with, those along the edges

derive their coverage masks by appropriately combining the table entries corresponding

to the edge intercepts.

Even though a coverage mask constructed at pixel resolution, as described above,

retains subpixel accuracy, the same is not true of a fragment's shaded colour. Applying

a single shading sample per pixel can produce severe aliasing artifacts at the small scales

paintstrokes are intended for. Since our goal is to provide high overall image quality,

and not just silhouette antialiasing, it is often necessary to compute the shading model

at �ner than pixel resolution. Because of this, the rendering cost tends to be dominated

by the shading, with relatively little time devoted to constructing the coverage mask.

Consequently, we opted for a simpler solution in creating coverage masks than the one

described above. Although not as e�cient, our approach is still far superior to a simple

high-resolution Z-Bu�er with �ltering, and also provides more accurate average values

for the other fragment components (such as colour and depth values) than the pixel-

resolution algorithm.

Our algorithm optimizes the rasterization of fragments that are either completely

covered or have entire rows of subpixels covered. As the example in Figure 4.3 suggests,

the vast majority of fragments will typically �t at least the latter pro�le, and a signi�cant

number may also �t the former. As for those that �t neither, the rasterization is still

8Some table entries can be eliminated due to symmetry.
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much more e�cient than scanning each individual subpixel.9 More speci�cally, fragments

that are fully covered are sampled only once. For partially covered fragments, one sample

is applied per fully covered row, and two per partially covered row. Further details of

our rasterization algorithm can be found in Appendix A.

Full pixel coverage
Partial pixel coverage with some subpixel rows fully covered
Partial pixel coverage with no subpixel rows fully covered

Pixels

Figure 4.7: A typical polygon.

4.3.6 The Local Shading Algorithm

Computing the shaded colour of each fragment, based on a local shading model, is an

important but time-consuming part of rasterizing a polygon. Using the familiar Phong

shading model, described below, we sample an interpolated normal between 1 and 64

times per pixel in order to determine di�use and specular reection intensities. Despite

a number of optimizations we have incorporated into this algorithm, it remains the most

expensive element of rasterizing polygons.

For practical reasons, our current shading algorithm provides only a rudimentary

set of parameters: a single directional light source of variable colour and direction. Its

design is extensible, however, and could easily be adapted to accommodate multiple light

sources, including point sources and spotlights. As a further simpli�cation, we have �xed

the colour of the specular component to the colour of the light source, and colours of

the other two components to that of the polygon, as illuminated by the light source.

These settings capture the behaviour of Lambertian and specular reectance for many

9A possible exception to this arises in the shading model, which may require sampling the normal at
each subpixel; none of the other interpolated quantities requires this.



80 Chapter 4. Rendering Polygons Using the A-Buffer

V

L

H

N

Figure 4.8: The elements of the Phong shading model.

common materials. Again, with only minor modi�cation, our implementation could

permit separate specular, di�use, and ambient colours, as do many common rendering

packages.

The Phong Shading Model

At each sampling point, the di�use and specular intensities, Id and Is are computed using

the equations below, where the symbols kd, ks, es, V, N, L, and H respectively denote

the di�use and specular reectance coe�cients, the specular exponent, the view vector,

the surface normal, the light direction vector, and the halfway vector. The view vector

extends from a point on the polygon's surface to the viewer. The halfway vector, as its

name suggests, points halfway between L and V. The relationship among the di�erent

vectors is shown Figure 4.8. In the equations that follow, these vectors are assumed

to be normalized. A more thorough discussion of the Phong model can be found in

[FV83, HB94].

Our implementation uses a constant view vector per polygon, which is based on

the polygon's centre as derived by averaging the vertices. For reasonably small screen-

projected polygons, this approximation is perfectly adequate and saves a great deal of

work in eliminating per-sample renormalization of V, which would otherwise be required

in recomputing H for each sample.

Id = kdN � L (4.19)

Is = ks (N �H)es (4.20)
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colour := kaCLCM + (1� ka)(IsCL + IdCM) (4.21)

As shown in Equation 4.21, the colour �eld of a fragment is assigned a value based

on the material colour and the intensity values Id and Is. The symbols CM and CL

respectively denote the material colour and the light colour, and ka represents the ambient

light coe�cient. We treat the colours as 3-dimensional [r; g; b] vectors with r; g; b � [0; 1],

and de�ne the product CLCM to be the vector [CLrCMr;CLgCMg;CLbCMb].

Renormalization of the interpolated normal is optimized by storing the inverse recip-

rocal function f(x) = 1=
p
x in a 192-element table for x � (0; 1:5]. The squared norm

of the interpolated normal is converted to a table index, and the normal is then scaled

by the table value at that index. Although it seems surprising that the length of the

interpolated normal could exceed one, this can happen near the edges of a polygon that

is nonplanar in one or more of its normal components.

Because the greatest expense in applying the Phong model lies in renormalizing the

interpolated normal (despite the optimized table-lookup of the 1=
p
x function), we com-

pute the di�use intensity in addition to the specular at each shading sample. Although

di�use lighting did not appear to contribute signi�cantly to aliasing, it is relatively in-

expensive to sample, given that the surface normal needs to be normalized anyway.

Moreover, the sign of the value obtained for Id can serve as an indication of whether the

specular intensity needs to be computed at all (for opaque surfaces, if N � L < 0, then

Id := 0 and Is := 0, because of self-shadowing).

Aliasing in the Shading Model

While the A-Bu�er does a good job of eliminating spatial aliasing along an object's sil-

houette, it does not address potential aliasing artifacts in the shading. These can arise

from a rapid variation in the shaded colours of fragments, which becomes di�cult to

faithfully capture with a standard per-pixel sampling approach. To achieve reasonable

image quality at smaller scales, this type of aliasing also needs to be dealt with. Paint-

strokes presented a particular challenge in this regard, due to the rapid variation in their

surface normals over possibly very short distances. When used to model thin objects,

such as hairs, they can have a screen-projected thickness of a couple of pixels or less, yet
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the surface normals across this width always span nearly 180 degrees.

In its early stages of development, our shading algorithm applied a Phong sample at

a single �xed position within each pixel, as is the norm with traditional scan-conversion

methods. This approach met with generally poor results. Although it was fast, the

image quality was substandard: there was considerable spatial aliasing in the specular

highlights, especially noticeable during animation in the form of ickering and crawling

artifacts. Materials such as water or hair, having high specular exponents, were particu-

larly prone to this aliasing. An image rendered with only one sample per fragment (which

resulted in approximately two samples per pixel of coverage, due to the large number of

partially covered fragments) is shown in Figure 4.11 for reference. Note that much of

the aliasing in the full-size image is disguised by the quality of the laser printing. The

aliasing is more evident in the zoomed image.

We subsequently attempted to reduce the aliasing by averaging out the normal com-

ponents over each fragment, as is done with the colour, opacity, and reectance values.

While this improved the results somewhat, it still left much to be desired for specular

exponents higher than 4. The problem with using a fragment-averaged normal is that

this is still just a once-per-fragment sampling approach (with a variable position), so it

cannot faithfully capture very rapid variations in specular intensity. The general problem

of �ltering normal distributions has also been noted in earlier work by Alain Fournier

[Fou92].

The problem with using an averaged normal is the following: When the specular

exponent es is high, the specular intensity function ks(N �H)es decays very sharply from

its maximum as N deviates from H, so if the averaged normal misses H by only a small

amount, it causes a gross underestimate of the pixel's intensity. By the same token, if

the average happens to be very close to H, it causes a large overestimate. Figure 4.9

helps to explain this phenomenon, showing two cases where an average normal yields a

poor estimate of average shading intensity. In this �gure, we assume that all the normals

and the halfway vector are coplanar, so that each can be expressed as a single angle, �,

with H represented by � = 0. Note that the angle �avg corresponding to the normalized

average vector of the normals represented by �min and �max is in fact the average of the
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angles �min and �max, since the average of two unit vectors bisects the angle between

them. The intensity function Is(�) and its exact average ~Is(�) over the range [�min; �max]

are given by the equations

Is(�) = ks cos
es � (4.22)

~Is(�) =
1

�max � �min

Z �max

�min

Is(�) d� (4.23)

θ θmin θmaxθavg

Is(θ)

(a) ~Is overestimated

θ θmin θmaxθavg

Is(θ)

(b) ~Is underestimated

Figure 4.9: Problems with using an average normal for local shading.

In an animated scene, this manifests itself through icker, produced by alternately

underestimating and overestimating the specular intensity. Moreover, the o�ending pixels

tend to occur in conspicuous stairstep patterns, an artifact visible even in still images and

especially so in animated ones where the \stairs" crawl disturbingly across the screen.

Antialiasing the Shading

Our solution to the aliasing problem was to obtain a more precise sampling of the specular

intensity function by applying multiple Phong samples per fragment, at a rate determined

by four features of the underlying polygon: size, distribution of normals, the ks coe�cient,

and the exponent es. These attributes serve to identify polygons that are susceptible to

specular aliasing. When rasterizing such polygons, the shading model is evaluated, as

necessary, at up to subpixel resolution. Polygons that are not prone to aliasing are

sampled at lower rates, to a minimum of one sample per pixel. More precisely, the
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Figure 4.10: The 16 arrangements of sampling grids used in our model.

shading samples occur on a variable grid within the pixel, having horizontal and vertical

densities of 1, 2, 4, or 8 subpixels. The 16 possible sampling grids for fully covered

fragments are shown in Figure 4.10. The way in which the appropriate sampling grid is

selected is detailed in Appendix A.

The rendered images in Figure 4.11 attest to the e�cacy of this dynamic sampling

approach. Note that Figure 4.11(c) achieves the same image quality as 4.11(e), using

only half as many samples. Although our supersampling approach is quite e�ective, some

aliasing may still be evident in scenes with rapid normal variation, even at the maximum

sampling rate of 64 Phong samples per pixel. Using a higher subpixel resolution would

certainly alleviate this, although other techniques such as jittered sampling or accurate

table-based preintegration of the shading model's light intensity function may provide

a more e�cient solution. The latter has been implemented in polyline methods for

rendering hair, as discussed in [LTT91, RCI91].

4.4 Blending the A-Bu�er Fragments

Once all the polygons have been rasterized, the A-Bu�er consists of a multitude of frag-

ments, each associated with a particular pixel and ordered by Zmin. At this stage we are

ready to blend the fragments over each pixel to determine the pixel's colour. The purpose

of the blending algorithm we are about to describe is to express a set of contiguous (in
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(a) Minimum sampling rate (2 samples/pixel
on average)

(b) Zoomed image

(c) Adaptive Sampling Rate (33 samples/pixel
on average)

(d) Zoomed image

(e) Maximum Sampling Rate (64 sam-
ples/pixel on average)

(f) Zoomed image

Figure 4.11: Images generated with minimum, maximum, and adaptive sampling rates.
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terms of Zmin) fragments over a given pixel as a single visually equivalent fragment. We

will explain what is meant by this shortly.

In simple terms, the A-Bu�er blends the fragments over a pixel by computing a

weighted average of the their colours, where the weighting factor for each fragment is

its coverage.10 However, we can only apply this simple rule to fragments with disjoint

coverage masks. If any masks overlap, we need to compute the e�ective colour and

coverage of the overlapping regions, and then blend these regions together, along with

any non-overlapping ones, using the coverage-weighted averaging. The way in which

overlapping fragments are combined can be quite complex, and this makes blending an

interesting problem.

Our blending algorithm is embodied in the function BlendFragment which is based

on the Blend under mask routine outlined in [Car84]. BlendFragment blends a list of

fragments ordered by Zmin, yielding a composite colour and coverage value. Its parameters

are the �rst fragment in the list, and a search mask which de�nes the region over which

the blending is to occur. All the fragments' coverage masks are temporarily clipped to

the search mask to restrict blending to only that region. The purpose of this is to break

a region where fragments overlap in an arbitrary way into several simpler subregions over

which their masks are either disjoint, or the front fragment's mask completely encloses

the rear fragment's. These subregions are individually blended in back-to-front order

using the formulas described in xB.2, and then merged together.

BlendFragment is a recursive function. Its initial call uses a search mask that covers

the entire pixel. Each recursive entry into the function subdivides the search mask into a

submask that overlaps the current fragment and a submask that does not (both possibly

empty on later recursion), and then recursively blends all the remaining fragments using

these submasks as search masks. The blended results over each submask are �nally

combined to yield the blended result over the original search mask, the entire pixel.

In the worst case, each recursion involves splitting the submask into two regions, one

overlapping the fragment and the other not, and both being constrained to the search

10For opaque fragments, the coverage equals the area, so the �ltering scheme becomes one of area-
averaging colours. This is probably why the A-Bu�er's full name is, misleadingly, \the antialiased
area-averaged accumulation bu�er".
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mask.

The pseudocode for the BlendFragment function, as well as a detailed derivation

of all the formulas that it uses, are presented in Appendix B. We conclude this sec-

tion with a brief evaluation of the A-Bu�er's fragment-blending routine. Its strengths

are fast, accurate compositing of overlapping transparent surfaces, as well as highly

accurate edge antialiasing. Its weaknesses are high memory consumption, and an im-

precise representation|and therefore occasionally poor antialiasing|of interpenetrating

surfaces.

4.5 Summary

The polygon renderer we have discussed in this chapter o�ers two features that are critical

for rendering complex geometry at small scales: good spatial antialiasing, and reasonable

speed. The former is achieved by using the A-Bu�er, which provides excellent silhouette

antialiasing, and by supersampling our Phong shading, which mitigates aliasing in the

shading model. The latter is due to the e�cient fragment blending and Phong sampling

algorithms that these techniques respectively use.
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Chapter 5

Results

In this chapter, we complete our discussion of the paintstroke primitive by summarizing

its strengths and weaknesses, and compare it with the alternative rendering methods

discussed in Chapter 2. We begin with a general evaluation of the paintstroke, and then

proceed to the comparisons.

5.1 Evaluating Paintstrokes

5.1.1 Performance

To evaluate the performance of the paintstroke primitive, we shall focus on the two main

elements that determine its rendering speed, given the polygon-based projective rendering

framework in which it operates. The �rst of these is the paintstroke's tessellation quality,

as de�ned below. The second is the expense of obtaining the tessellation.

Quality of Tessellation

We measure a paintstroke's tessellation quality by the ratio of its polygon count to

the (somehow quanti�ed1) quality of the rendered image it produces. Given that a

smooth silhouette, alias-free Phong shading, and consistency in animation (i.e. absence

of popping) are the main criteria of image quality, the tessellation quality of paintstrokes

is very high within their intended range of small to medium scales, albeit with a few

1This type of quanti�cation is di�cult, since our perception of image quality is highly complex. For
example, if the thickness of a rendered paintstroke is slightly o� (i.e. deviates from the model), this
has little impact on perceived image quality. But if the thickness uctuates during an animation (say
between this wrong value and the right value), this degrades the image quality considerably, even though,
on average, the uctuating thickness is more accurate than if it were consistently wrong.

89
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exceptions. By directly tessellating a generalized cylinder's screen projection rather than

its true surface, paintstrokes obviate the large number of breadthwise polygons required

by the latter approach to yield a smooth, round-looking silhouette.

Although a paintstroke's breadthwise distribution of normals di�ers from that of a

true generalized cylinder (particularly at quality level zero), the discrepancy is consistent

from frame to frame and is su�ciently small that it does not appreciably degrade the

image quality, provided that the paintstroke's quality level is suited to its scale. However,

if a paintstroke's shading needs to be particularly accurate, or if it needs to be precisely

rendered when nearly collinear with the view vector, higher quality levels would need to

be used even at small scales, increasing the polygon count accordingly. But unlike other

methods which must always use large numbers of polygons just to ensure a smooth and

consistent silhouette (as we shall see in x5.2), paintstrokes require higher quality levels

only in these particular cases, in which they still tend to use fewer polygons than general

methods that polygonize the eye-space surface. While there are cases where paintstrokes

fail to produce good images (discussed in x5.1.3), in general, they achieve a high degree

of image quality using few polygons.

Cost of Tessellation

The tessellation cost of paintstrokes can be approximated by considering the key opera-

tions involved, which are summarized in the list below. The accompanying cost approx-

imations are based on paintstrokes with no global shading or view-dependent opacity

variation, since these are not strictly part of the tessellation. Nevertheless, there is still

some overhead in supporting these features whether or not they are used. The cost of

each step is expressed using an approximate number of FLOPs of the form [+;�;�;p ]:

1. Transform control points into eye-space. [12,16,0,0] per control point.

2. Generate piecewise interpolants based on control points and check for

inection points. [30,40,0,0] per control point (no inection points); [35,45,1,1]

per control point (with inection points).

3. Lengthwise subdivision. [50,45,5,3] per segment.
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4. Compute colour, opacity, and reectance, based on interpolants. [15,15,0,0]

per segment.

5. Generate ring of vertices and their normals; project vertices into screen-

space. f[35,35,6,2] for quality 0, [45,45,7,2] for quality 1, [60,60,8,2] for quality 2g
per segment. This assumes only front polygons are drawn. Back polygons would

add [10,10,1,0] or [15,15,1,0] per quality-one or quality-two segment, respectively.

6. Check for degenerate polygons in tessellation and correct them. [12,8,0,0]

per simple polygon (typically > 80%); [27,38,1,0] per complex polygon (typically

< 20%);

Overall, the tessellation uses a large number of additions and multiplications, but

a modest number of the more expensive division and square root operations. Pro�ling

tests on a 200 MHz PowerPC 604e system indicate that paintstroke tessellation consumes

between 5 and 10 percent of the total rendering time, depending on the amount of screen

coverage. This statistic is, of course, based on the speed of our software-based polygon

renderer, which is more than an order of magnitude slower than the hardware-based

systems found in graphics workstations. Nevertheless, even if speed improvements in

the polygon rendering were to increase the proportion of tessellation time to as much as

50%, a multiprocessor pipeline architecture could e�ectively reduce the cost to zero by

parallelizing the tessellation of each frame with the rendering of the previous one.

One way to improve the e�ciency of tessellating simple paintstrokes would be to

create a separate version of the algorithm that does not permit view-dependent opacity

variation or reectance interpolation. This would eliminate many of the additions and

multiplications involved in interpolating these quantities. A more signi�cant improve-

ment would be a table-based vector normalization function. Normalization accounts for

all but one of the square-root operations, and the same number of divisions. Because

the range of vector norms encountered by the algorithm is not �xed, a simple reciprocal

square root table, as was used in the Phong shading algorithm of Chapter 4, would not

do. However, if the norm is decomposed into its mantissa and exponent, the former could

be table-indexed and the latter divided by the constant -2, using a combination of right
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shifting and subtraction. In this case, the table index would incorporate the parity of the

original exponent as an additional digit. This simple algorithm could, moreover, easily

be incorporated into hardware.

5.1.2 Other Features

In addition to the e�ciency of their tessellation, paintstrokes o�er further modelling and

rendering advantages. The special rendering e�ects described in x3.3 simulate global

shading and volumetric opacity, which usually require the use of more expensive render-

ing techniques (e.g. shadow bu�ering and ray-tracing). Although these e�ects are only

approximated with paintstrokes and are limited in scope, they nevertheless prove useful

in modelling certain classes of objects.

The paintstroke's representation of a tube, using a spline-based path with variable

attributes at the control points, is e�cient and intuitive. Whereas more general surfaces

are speci�ed with a mesh of control points, this would be di�cult to manually generate

for a generalized cylinder, probably requiring intermediate translation from a simpler rep-

resentation similar to ours. It is also worth pointing out that physically-based simulators

sometimes model tubular objects (e.g. hairs) with simple curves or even point masses.

By outputting points on the curves or the point masses themselves, such programs can

with minimal e�ort produce generalized cylinder descriptions that can be rendered with

paintstrokes.

5.1.3 Limitations and Proposed Improvements

Although the paintstroke primitive as presented accomplishes its basic goal of e�ciently

rendering generalized cylinders at small to medium scales, it leaves plenty of room for

improvement. The following are some of its current limitations, along with ideas on

possible solutions that may �nd their way into future implementations. We begin with

fairly speci�c problems, and then move on to general limitations.
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Quality Level Limitations

Many limitations of the paintstroke primitive are tied to its approximative nature. The

breadthwise distribution of normals and the self-occlusion accompanying sharp screen-

space curvature, both visible in Figure 5.1, exemplify approximations whose �delity varies

with the paintstroke's quality level. At quality level two, they produce very accurate

results, but at quality zero, the approximations are clearly inaccurate. By regulating a

paintstroke's quality level according to the estimated thickness of its screen projection|

something our algorithm can do automatically|this inaccuracy can be prevented from

degrading image quality at larger scales, while still allowing for lower quality paintstrokes

to be used at smaller ones.

(a) Quality 0 (b) Quality 1 (c) Quality 2

Figure 5.1: A paintstroke rendered at the three quality levels.

Endcaps

As is easily seen in Figure 5.1, the endcaps used with quality-one and quality-two paint-

strokes are crude, consisting of simple squares or octagons. Although this is acceptable at

smaller scales (which is where paintstrokes are most useful) it greatly degrades the image

quality of larger paintstrokes, especially those that are beyond 10 pixels of thickness at
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the endcaps. This problem can easily be solved by using higher-degree polygons as the

paintstroke's size increases. Tables could provide the vertex positions (relative to some

�xed coordinate frame) for a number of such polygons, to be used at various scales. This

improvement will likely be incorporated into future versions of the paintstroke primitive.

Quality Level Transitions

Transitions between quality levels pose another challenge for paintstrokes, because the

resulting abrupt changes in normal distribution tend to produce equally abrupt changes

in shading. At present, the only way to completely eliminate this popping artifact is

to hold a paintstroke's quality level constant. This still provides some degree of level-

of-detail adjustment through the paintstroke's adaptive lengthwise tessellation, but it is

clearly not an e�cient solution.

A possible alternative representation of normal vectors that will be outlined in Chap-

ter 6 would greatly improve the accuracy of normal distributions for low-quality paint-

strokes, and virtually eliminate popping artifacts for all changes in quality level. Another

solution may be a morphing approach similar to that of Hoppe's geomorph [Hop97].

Viewing Direction Problems

Paintstrokes that are fairly straight and nearly collinear with the view vector can present

further di�culties. At quality level zero, they become shortened and ultimately disap-

pear, while at the higher quality levels they reveal a polygonal (square or octagonal)

cross-section.2 The problem arises because the paintstroke's central path begins to de-

generate into a point. Since our method relies on this path to reproduce the geometry of

a generalized cylinder, it cannot properly render paintstrokes in this situation. Moreover,

the problem cannot be solved by using smoother endcaps, since the endcaps will not nec-

essarily cover the paintstroke: consider a paintstroke that tapers at the ends, as shown in

Figure 5.2. By judiciously adjusting the paintstroke's quality level to its rendering scale,

the visual impact of this artifact can be minimized.

2As Figure 5.1 demonstrates, this does not happen with curved paintstrokes, even if they do approach
collinearity with the view vector at some point.
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Figure 5.2: A tapering quality-two paintstroke viewed head-on.

Transparency

Transparent paintstrokes of quality one or two exhibit regions of erroneously high opacity

when viewed under high screen curvature, as shown in Figure 5.3. The problem arises

from an overlap among neighbouring paintstroke polygons. Whereas the overlap has no

visual e�ect on opaque paintstrokes, it is easily seen in transparent ones because of its

higher opacity than the surrounding non-overlapping polygons.

Figure 5.3: Transparent paintstrokes under sharp screen curvature.

The ideal solution to this problem would be to �nd a way to eliminate the overlap

that accompanies sharp screen curvature. This is something we accomplished for quality-

zero paintstrokes, but have been unable to do at the higher quality levels. Eliminating

the overlap at all quality levels would not only solve the image quality problems with

transparent paintstrokes, but also improve the e�ciency of rendering opaque ones3 by

eliminating unnecessary rasterization and blending operations.

A simpler but less elegant alternative would be to keep the overlap, but to ignore its

e�ect on opacity. For this purpose, a fragment's tag identi�er, introduced in x4.2, proves
3Note, however, that the regions of overlap are quite small and have only a minor impact on overall

e�ciency.
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useful. Fragments from each polygon could be assigned a unique tag number that is incre-

mented for each successive polygon along the paintstroke's path. The fragment-blending

routine could then inexpensively determine whether a pair of overlapping fragments origi-

nate from neighbouring polygons, simply by comparing their tag numbers. If they do, the

rear fragment in the pair would be skipped, eliminating its e�ect on the pixel's blended

opacity. This approach would also correctly handle the legitimate overlaps of paintstroke

polygons, since such overlaps would never occur between neighbouring polygons.

Shadows

A more general limitation is the absence of shadows in paintstroke rendering. Although

our global shading algorithm is cheap and e�ective when applicable, its scope is quite

narrow, being restricted to a fairly homogeneous layer of paintstrokes covering a convex

shape. A more general global shading technique, like the depth bu�ering algorithm

proposed by Williams in [Wil78], would make a useful addition to our rendering engine.

Because this algorithm is applied at the polygon level, it would require no modi�cation

to work with opaque paintstrokes. Dealing with transparency, on the other hand, would

require much further work.

Fast Phong Shading

Another issue is the technique of fast Phong shading, which is common in hardware

implementations. Fast Phong shading, as described by Bishop [BW86] and Kuijk [KB89],

approximates the Phong intensity function using a Taylor polynomial, which can be

e�ciently evaluated using forward di�erences. The main limitation of this method is that

it cannot be applied to polygons that contain a large amount of normal variation (over

600, according to Bishop), which are precisely the sort of polygons that are generated by

paintstrokes. In fact, even with standard Phong shading, the sizable normal variation of a

quality-zero paintstroke segment will cause the interpolated normal to become very short

at some point (as shown in Figure 3.25), thus changing direction very rapidly during the

interpolation and causing aliasing if not appropriately supersampled.

Note that this problem a�ects all polygonal models with high per-polygon curvature,

especially the triangular prisms that are frequently used to approximate thin tubes in
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hair rendering [Mil88, WS92]. Two solutions, neither of them particularly appealing,

are to use higher quality levels for the paintstrokes, or to increase their nudge factors,

as discussed in x3.2.4, so as to reduce the breadthwise range of normals. The former

maintains image quality at the expense of rendering speed, while the latter does the

opposite by avoiding extra breadthwise subdivisions and giving the paintstroke a non-

circular (but consistent) normal distribution.

Level-Of-Detail Limitations

The level-of-detail adjustment of paintstrokes is unable to simplify a paintstroke-based

object down to very coarse levels: at a minimum, a paintstrokes must have one polygon

per control point (excluding the �rst one). This prevents radical global simpli�cations

possible with many other schemes, as described in [CVM+96, Hop96, LE97]. For example,

given a dense spherical cluster of tubes (or a single tube tightly rolled up in a ball), the

latter algorithms would at some point re-polygonize the model into a simple roughly

spherical surface, whereas paintstrokes would never do this. We do not view this as a

serious shortcoming, however, because paintstrokes are intended for use at scales large

enough that individual tubes (and their parallax and blocking e�ects) are still discernible.

Smaller scales than this are left to other techniques, which may well involve vast global

simpli�cations of the kind just mentioned.

General Limitations

The paintstroke's circular cross-section and absence of texture-mapping are two very

general limitations that present opportunities for future research. We will examine these

possible extensions to the primitive in Chapter 6.

5.2 Comparison with Static Polygonal Models

In order to permit a thorough comparison of paintstrokes with e�cient static models of

generalized cylinders, we have implemented an algorithm that translates a paintstroke

description into an equivalent statically tessellated polygonal model. For obvious rea-

sons, the latter excludes the paintstroke's orientation-based global shading and opacity



98 Chapter 5. Results

variation e�ects, but it captures all of the other features. The algorithm is similar to

one used by Jules Bloomenthal in [Blo85] for polygonizing tree branches, although ours

is adaptive to the lengthwise curvature of the tube.

5.2.1 Polygon Extrusion Algorithm

The polygonal representation produced by our algorithm is the orthogonal extrusion4 of

an n-sided regular polygon along a given path, where the polygon's size may vary, but it

may not rotate about the path.5 By this we mean that the polygon is �xed in the Frenet

frame that travels along the path. A few examples are shown in Figure 5.4. Whereas the

degree (i.e. number of sides) of the polygon is directly set by the modeller, the number

of lengthwise segments is minimized by the algorithm, subject to the tube's world-space

curvature and a user-speci�ed tolerance value.

The polygon vertices generated by the algorithm occupy a number of circular rings,

each centred about some point on the path of extrusion, and lying in a plane normal

to the path's tangent at the point. The resulting model essentially has two dimensions

of complexity, which determine its level of detail: the lengthwise granularity, de�ned by

the number of rings of vertices used; and the breadthwise subdivision granularity, the

number of vertices per ring. The �rst of these is determined jointly by a tolerance value

chosen by the modeller, and by the magnitude of curvature in the path. The second is

directly speci�ed by the modeller.

lengthwise segment

path of extrusion

Figure 5.4: Extrusions of several regular polygons to produce tube tessellations.

The lengthwise subdivision algorithm is similar to that used in paintstrokes, recur-

4By this we mean that the polygon moves orthogonally to the plane spanned by its vertices.
5Allowing the rotation would result in a bumpy silhouette and a spiral-like quality to the shading.
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sively splitting a segment in half until the eye-space analogues of the radius and positional

constraints (as described in 3.12) are satis�ed. Speci�cally, the algorithm compares each

of the x; y; z components of the tube's spline path over a given segment with the linear

interpolant to the spline over the same segment. This is virtually identical to Position

Constraint II of the paintstroke, except that no perspective adjustment is made. The

radius component is compared with its linear interpolant in exactly the same way as the

Radius Constraint of paintstrokes, but again with no perspective adjustment.

5.2.2 Properties of Polygonal Extrusions

As is the case with all statically tessellated models, in order to determine an appropriate

level of tessellation granularity, the approximate range of scales at which the model

will be rendered must be known. As is demonstrated in the work of Gavin Miller and

Watanabe & Suenaga, [Mil88, WS92], very small-scale tubes, such as hairs viewed from

a moderate distance, can typically be modelled with only triangular extrusions and fairly

coarse lengthwise subdivisions. As the scale increases, �ner and �ner granularities become

necessary to maintain image quality.

Experience has shown that low-degree polygonal extrusions can make very good ap-

proximations to a thin circular tube. For example, a triangular extrusion can in some

cases produce acceptable results for tubes up to about 5 pixels in diameter of projection,

despite inaccuracies in the thickness and shading of the image. The projected thickness

of a triangular tube varies between 3=4 and
p
3=2 of the true thickness of the equivalent

circular tube, while the range of surface normals visible to the viewer spans between 1200

and 2400 (i.e. 2=3 to 4=3 of the true range). As shown in Figure 5.5, similar uctua-

tions are present with higher-degree regular polygons, though their ranges decrease as

the degree increases. The decrease in the thickness ranges is not monotonic: extruding a

polygon with an odd number of vertices produces a smaller range of thickness variation

than extruding the polygon with one more vertex. As an example, consider the square,

whose extrusion thickness lies within the range of [1=
p
2; 1] times the diameter. The

magnitude of this variation is 29.3% of the diameter, compared to the triangle's 11.6%.

As a result, polygons with an even number of vertices (and the square in particular) are
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generally poor choices for extruding into a tube|it is better to either add or remove a

vertex to make the polygon's degree odd.

Figure 5.5: View-dependent thickness ranges of polygon extrusions.

It can be shown that all polygonal extrusions whose vertices lie on the circular cross-

section of a tube underestimate its diameter from some viewing angles.6 Hence, a useful

correction is to increase the radius of the ring of vertices to compensate for this and make

the extrusion's average thickness over all possible viewing directions (or some desirable

subset thereof) equal to the tube's true thickness. While this solution improves the accu-

racy of an extrusion's thickness, it does nothing to eliminate the uctuations both in the

thickness and the normals. Fortunately, however, these uctuations are not highly con-

spicuous, because they are gradual. If the (extruded) tube's orientation changes smoothly

with respect to the view vector, the thickness and highlights also change smoothly. That

can be di�cult to notice when the tube itself is moving across the screen, and especially

so when there are a number of tubes in di�ering orientations moving in di�erent direc-

tions. The thickness uctuations can also be camouaged by a lack of contrast with the

background (which may consist of other similarly coloured tubes). These reasons help

to explain why simple triangular extrusions worked so well for modelling hair and fur in

[Mil88, WS92].

There are, however, a number of cases where low-degree polygonal extrusions fail to

produce a reasonable image even at small scales. The worst-case scenario is one where

a tube spins about its tangent vector at some point, which itself does not move. This

has two e�ects: it maximizes the uctuations while keeping the tube's image stationary

at the point. The combination of these produces visible uctuations even at subpixel

6They never overestimate it. If the number of vertices is even, they attain it exactly; otherwise, their
maximum thickness always remains lower than the true diameter.
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thicknesses.7 Another situation in which the thickness inaccuracies can be troublesome

is one where fairly straight tubes are placed in an orderly arrangement, such as an

evenly spaced row or grid of parallel tubes. As the viewing direction changes, gaps

between adjacent tubes will grow and shrink noticeably. Problems can also arise from

the uctuation of the normals, when light rays strike the tube from the side, as seen

by the viewer. As the range of normals uctuates, the illuminated side of the tube will

perceptibly vary between higher (when the range is greater) and lower (when the range

is smaller) intensity. Even at subpixel thicknesses, this artifact is easily visible as a

variation in the tube's overall brightness.

At larger scales, all of the above problems persist, but are compounded by silhouette

inaccuracies, which are no longer hidden by the small image size. When a section of a tube

becomes nearly collinear with the viewing direction, the the polygonal cross-section can

be easily seen, spoiling the illusion of a circular tube.8 An example of this phenomenon

is shown in Figure 5.6. Unlike the thickness and shading uctuations, which are visible

only in animation, this jagged silhouette must be avoided in still images as well.

(a) Octagonal extrusion (b) Quality 2 Paintstroke

Figure 5.6: A tube that becomes nearly collinear with the view vector.

7In fact, it would take a 16-sided polygon to attenuate the uctuations to a reasonable level in this
case.

8With paintstrokes, this only happens if the entire tube is nearly collinear with the view vector, which
is impossible if the tube is moderately curved.
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5.2.3 Benchmark Comparison

Our comparison of the paintstroke's tessellation with the static tessellation of polygonal

extrusions is based on a benchmark that renders all the models of the tube shown in

Figure 5.7 at various scales and viewing angles. Because our current algorithm for endcap

generation in paintstrokes is crudely implemented, we tapered the tube at the ends to

avoid using endcaps. This does not reect a conceptual limitation of the paintstroke's

tessellation, but only one of its implementation.

The methodology of the benchmark is as follows. We constructed a dense 3 � 3� 3

matrix of paintstrokes, and rendered a set of animations of it, each consisting of a single

rotation about a diagonal axis (relative to the matrix), comprising 50 frames in total.

The animations were carried out at three di�erent constant distances from the (centre

of the) matrix, so as to simulate rendering at a large, medium, and small scale. A single

frame from the three scales is shown in Figure 5.8. At each scale, two animations were

made, one using a conservative quality level that produced optimal image quality, and one

using an aggressive one that improved the speed at the slight expense of image quality.

Next, we converted this paintstroke-based scene description into three static polygonal

models, identical except in their tessellation granularities. The �rst one was coarse,

the second medium, and the third �ne. Each of these was optimized for the large,

medium, or small scale of the animation, respectively, by using the minimum number of

polygons required to ensure high image quality (as explained below) at its corresponding

scale. Each polygonal model was then rendered in the same animations used with the

paintstrokes, one at each scale. That yielded a total of nine animation runs, in addition

to the paintstrokes' six. As Figure 5.8 shows, the matrix used was �lled very densely

with the tubes, so the screen-size variation of each tube's image due to perspective

was negligible, even at the closest distance. This put the static models at virtually no

disadvantage (because of their �xed level of detail) when rendered at their respective

ideal scales.

Although the notion of a high quality image is a complex one, in calibrating the static

tessellation algorithm, we were primarily looking to eliminate silhouette discontinuities

and abrupt transitions in the shading, which could both arise either from an overly
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(a) Quality-Two Paintstroke (b) Fine Static Model (558 polygons)

(c) Quality-One Paintstroke (d) Medium Static Model (200 polygons)

(e) Quality-Zero Paintstroke (f) Coarse Static Model (96 polygons)

Figure 5.7: Paintstroke-based and static models of the benchmarked tube.
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(a) Large (b) Medium (c) Small

Figure 5.8: Models of the tube used in our comparison.

permissive lengthwise tolerance, or an excessively coarse breadthwise granularity.9 In

short, we were seeking the same level of image quality as was achieved in the aggressive

paintstroke animations. Although the latter tended to have less accurate breadthwise

shading pro�les than the former, this is generally less important to overall image quality

than a smooth silhouette and smooth highlights, as can be easily seen in Figure 5.7.

On the other hand, if accurate shading is considered essential, then the conservative

paintstrokes allow for a completely fair comparison, o�ering the same level of shading

accuracy as the comparable static models.

The results of these benchmarks are summarized in Table 5.1. Statistics were gathered

for all 1350 tubes rendered (3 � 3 � 3 tubes/frame � 50 frames) and then divided by

1350 to provide a per-tube average. For the paintstroke-rendered animations, the only

di�erence between the conservative and aggressive primitives was in their quality levels;

both used identical lengthwise subdivision tolerances. The di�erences in image quality

between the two were very subtle, being evident only in the shading pro�les the tubes.

At each scale, the most interesting comparisons are between the paintstrokes and the

polygonal model that is best suited to the scale. Figures describing the latter form a

9This was an empirical process that involved repeated trials and errors in reducing the polygon count,
while maintaining the quality of the entire animation sequence.
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Paintstroke Static Polygonal Model
Scale Avg. per Tube

Conservative Aggressive Fine Medium Coarse

Breadthwise Quality 2 1 9-gon 5-gon triangle
Total Polygons 268.4 135.0 558 200 96

Large Polygons Rendered 238.3 118.2 275.9 98.6 46.5
Pixel Area 1186.6 1188.0 1190.6 1182.0 1155.1
Rendering Time (s/60) 11.01 7.48 12.19 6:78� 5:91�

Breadthwise Quality 1 0 9-gon 5-gon triangle
Total Polygons 100.6 46.5 558 200 96

Medium Polygons Rendered 87.6 43.1 277.5 99.3 47.4
Pixel Area 292.7 292.6 295.1 293.0 286.2
Rendering Time (s/60) 4.00 2.59 9.61 4.78 2:71�

Breadthwise Quality 0 0 9-gon 5-gon triangle

Total Polygons 36.4 36.4 558 200 96

Small Polygons Rendered 33.6 33.6 278.3 99.7 47.8

Pixel Area 72.4 72.4 73.6 73.1 71.4

Rendering Time (s/60) 1.48 1.48 8.52 3.45 1.88

Table 5.1: Comparison of paintstrokes with statically tessellated polygonal models.

diagonal of boldfaced entries in Table 5.1. Using a �ner static model than the intended

one produces the same image quality but at greater expense. The �gures for this appear

below the diagonal, and demonstrate the behaviour of static tessellation under non-ideal

scales. Entries above the diagonal represent lower tessellation granularity than is required

for the image scale. While these �gures indicate the lowest rendering cost, they are not

directly comparable to the paintstrokes' (whether conservative or aggressive), because of

the substandard quality of the image that is produced. We now turn to some explanations

and remarks about the statistics in the table.

Total Polygons The total number of polygons processed, prior to backfaceculling

(no clipping was required during the animation). Notice how paintstrokes have much

lower total polygon counts than the comparable static models. This is largely because

very few backfacing polygons are generated by paintstrokes. On a related note, the

storage and bandwidth requirements of the static models are directly proportional to

their polygon counts. Consequently, their data �les and memory requirements were

considerable: approximately 1 MB, 370 K, and 180 K for the three granularities. That

compares with only 18 K for the paintstroke �le, of which about a quarter was devoted

to unused global shading and opacity variation parameters.
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Polygons Rendered The total number of polygons that were rendered after back-

faceculling. While both conservative and aggressive paintstrokes have fewer rendered

polygons per tube than the corresponding static model, the di�erence is much narrower

than with the total polygon counts. In contrast to the static polygonal models, only a

small portion of paintstroke-generated polygons are culled, even at the higher quality

levels.

Pixel Area The total number of pixels rasterized, measured to within a subpixel, or

1/64th of a pixel. Regions that are overlapped by closer ones still contribute to the pixel

area. The slight discrepancies in average pixel area between conservative and aggres-

sive paintstrokes are mainly caused by their di�ering approximations of the screen-space

folds that appear at high screen curvature (shown at a larger scale in Figure 5.1). The

larger discrepancies among the static models arise from their view-dependent thickness

variations. Although we adjusted the radii of the vertex rings used in the tessellations

to yield an accurate average screen-space thickness over a uniform distribution of view-

ing directions around (and orthogonal to) the tube, the animation produces a di�erent

distribution. These area discrepancies have negligible impact on benchmark performance.

Breadthwise Quality For paintstrokes, this refers to the quality level used. For static

models, it describes the degree of the regular polygon that was extruded. Notice how

at each scale, the conservative paintstroke quality level is roughly commensurate with

the degree of the corresponding extruded polygon: quality zero, using one breadthwise

polygon, is matched with the triangle; quality one, using two breadthwise polygons, with

the pentagon; and quality two, having four breadthwise polygons, with the nonagon. This

produces shading pro�les of nearly equal accuracy, though the paintstrokes' are always

perfectly consistent whereas the static models' are not. The aggressive paintstrokes, on

the other hand, have a smaller number of breadthwise polygons than the comparable

static models, resulting in less accurate, though still acceptable, shading.

Rendering Time The time taken to render the complete animation on a 200 MHz

PowerPC 604e system with 32 MB of RAM and 1 MB L2 cache, VM turned o�. All
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polygons were rendered using the software-based A-Bu�er engine with adaptively super-

sampled Phong shading, as described in Chapter 4. The rendering times shown include

the screen update at each frame (which is negligible compared to the rendering time) and

exclude the time to read in the data �le (which was signi�cant, taking up to 4 % of the

rendering time for the static models). They are expressed in ticks, or sixtieths of a second.

Times above the boldfaced diagonal in the `static polygonal model' category are marked

with an asterisk, indicating that they are inadmissible because the image generated was

of noticeably lower quality than that produced with aggressive paintstrokes.

5.2.4 General Remarks

Our comparison shows that paintstrokes can provide a faster and more e�cient means

of rendering generalized cylinders than statically tessellated models, even at the latter's

optimal scale. This is especially evident with the aggressive use of quality levels, as

Table 5.1 clearly shows. This result has signi�cance beyond simple static models, because

it implies that even a dynamic polygonal model, which consistently maintains appropriate

tessellation granularity, is unlikely to outperform paintstrokes in rendering generalized

cylinders, unless it takes advantage of their symmetries and view-invariant properties as

do the paintstrokes.

While these results are encouraging, they come with a few caveats. Hardware-based

polygon renderers tend to work faster (on a per-polygon basis) with static tessellations

than with dynamic ones. This is because such rendering engines rely on a pipeline

architecture to parallelize and thus expedite the rendering process. While a static set

of polygons can trivially keep the pipeline full, a dynamic tessellation scheme, as used

by paintstrokes, may not be able to keep up. Moreover, static models can be combined

with pre-computed modelling transformations into a display list, which further enhances

rendering speed. On the other hand, using such a rendering engine would most likely

require abandoning both the A-Bu�er and the e�cient antialiased Phong shading that

we are using, since these are not widely available in hardware. If that is acceptable,

then a good solution would be the pipeline approach, whereby each frame is dynamically

tessellated into a (static) polygon list while the previous one is being rendered. Given
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a multiprocessor architecture, this is a fast and e�cient solution, which may become

a useful option if fast hardware A-Bu�ers, such as the one proposed by Schilling and

Stra�er in [SS93], become widespread.

5.3 Comparison with Dynamic Polygonal Models

5.3.1 Blinn's Optimal Tubes

Jim Blinn's optimal tubes [Bli89] are a simpler modelling primitive than paintstrokes.

For drawing plain cylinders, their rendering speed is certain to be greater than that of

equivalently shaped paintstrokes, because of the fast (usually hardware-based) Gouraud-

shading polygon renderers they are suited to. However, optimal tubes lack many of

the key features that make paintstrokes a useful and exible primitive: radius variation,

adaptive lengthwise subdivision, a specular shading model, normal interpolation (which

provides more accurate Lambertian shading as well as specular), and the ability to ac-

commodate multiple light sources.10 While optimal tubes may be valuable when these

features are not needed, paintstrokes are amenable to a much greater variety of modelling

scenarios.

Because Gouraud-shading does support the Phong shading model, and can therefore

capture specular reectance, one may wonder why optimal tubes cannot do so. Although

Gouraud shading can apply the Phong model at polygon vertices (interpolating the re-

sulting colours rather than the normals themselves), this feature is inherently unsuitable

for optimal tubes. Specular highlights usually involve a fairly abrupt intensity variation,

which can only be accurately captured by a large number of Phong samples. Because

these samples are only taken at polygon vertices, the purpose of optimal tubes, which is

to reduce this number of vertices, is fundamentally incompatible with achieving alias-free

Phong shading.

10Optimal tubes could in fact accommodate additional light sources by introducing extra breadthwise
subdivisions along the shading boundaries of each light. Such a solution would, however, rapidly undercut
their chief advantage of using fewer polygons than more general tessellation schemes.
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5.3.2 General Methods

As we have remarked earlier, one of the main reasons behind the paintstroke's e�ciency

is its speci�city in modelling the generalized cylinder. Unlike general-purpose tessellation

algorithms that tessellate the true surface they are given, paintstrokes only tessellate the

approximated screen projection of a generalized cylinder. This is what allows them to

achieve accurate silhouette and shading approximations using a very small number of

large polygons, which more general methods fail to do.

General dynamic tessellation schemes, as used with NURBS or B�ezier patches, may

vary the overall granularity of the polygon mesh according to curvature or screen size,

but they still tessellate the entire surface|they make no attempt to replace it with a

screen-projection (which is di�cult to do with arbitrary surfaces). At any scale, their

ideal tessellation will be similar to the static models described in x5.2. As we have seen,
even without counting its tessellation cost, such a model renders more slowly than the

equivalent paintstrokes. Moreover, to render a tube with general parametric surfaces, a

mesh of control points would need to cover the tube's surface. At very small scales, the

number of polygon vertices in an e�cient tessellation may be less than the number of these

control points, which all need to be transformed to eye-space prior to the tessellation.

This problem does not arise with paintstrokes, which only specify the tube's path and

thus use a much smaller number of control points.

Dynamic polygon simpli�cation schemes, such as Hoppe's [Hop96, Hop97], achieve

smooth silhouettes by increasing the granularity of their polygon mesh near the edges.

This di�ers from the paintstroke's approach, which is to construct polygons that precisely

conform to the silhouette. Consequently, paintstrokes are able to use fewer polygons

than these simpli�cation schemes. Although the paintstroke's tessellation might be more

expensive, this should make very little di�erence given its 5{10% CPU utilization rate

(based on pro�ling our implementation). Moreover, as mentioned in x5.1.1, a pipelining

architecture could be used to reduce the tessellation cost to virtually zero, provided that

it is at least as fast as the rendering phase.

Hoppe's progressive meshes do o�er two techniques that paintstrokes lack: view-

frustum-based simpli�cation, and geomorphing. The �rst of these would be fairly easy to
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incorporate into paintstrokes, by (conservatively) suppressing tessellation over segments

that extend beyond the view frustum. A conversion of our Catmull-Rom splines to the

B�ezier basis would help in this regard, by providing a convex hull for the paintstroke's

path. A form of geomorphing could also be used with paintstrokes to eliminate possible

popping artifacts when quality levels change, although it would not be needed for the

re-tessellations within a single quality level, which are already free of popping.

As mentioned earlier, polygon simpli�cation methods are able to work on a global

scale, collapsing unrelated surfaces into single polygons. This is something that pure

dynamic tessellation algorithms, such as the paintstroke's, are unable to accomplish.

Although such global surface simpli�cations make valid shape approximations, the normal

distribution of the simpli�ed geometry can di�er markedly from that of the original

geometry, resulting in inaccurate shading. Volumetric textures, discussed in x5.6, provide
an alternative that addresses this important issue.

5.4 Comparison with Particle Systems

5.4.1 Brush Extrusions

Though intuitive and useful for interactive drawing applications, brush extrusions [Whi83]

make a poor general-purpose rendering primitive for particle systems. Their design bears

the fundamental ine�ciency of touching many more pixels than the number that actually

appear in the brush stroke, a consequence of rendering multiple overlapping images of a

particle. Although Whitted proposes an e�cient cache-based implementation of the copy

operations that composite the image of the brush tip into the stroke, this still involves

processing a large number of covered pixels that never appear on the screen. Moreover,

as mentioned in Chapter 1, in order to accurately render a generalized cylinder trail

with nondirectional lighting, the spherical tip would need to be continually re-rendered

as it moves. This would require computing the colours of many pixels that would be

overwritten by later tip samples|clearly not an e�cient solution.

Another problem is that brush extrusions do not correctly handle transparency in

cases where their screen-projected image is self-intersecting. As with paintstrokes, this
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will occur with any curved path in eye-space from some viewing direction. Thus it is a

common occurrence, by no means restricted to paths that self-intersect in eye-space. The

problem is that, regardless of its opacity, a more distant particle is always overwritten

by a closer one. If, as a solution to this, true transparency blending were applied to all

the particles, that would make the pixel-overwriting nature of this approach even more

ine�cient than it already is.

5.4.2 Cone-Spheres

Cone-spheres are quite similar to quality-zero paintstroke sections, but with two signi�-

cant di�erences: they use linear positional interpolants|whereas the latter use splines|

and they render spheres in order to join conical sections, something paintstrokes do not

(and need not) do.

Although the spheres ensure a smooth silhouette at the joint between successive

cones, the cones themselves are straight. Consequently, a large number of cone-spheres

are needed to adequately represent a tube with curves or nonlinear radius variation. This

number is greater than the number of paintstroke segments required for the equivalent

tube. One reason is the paintstroke's adaptive lengthwise subdivision, which is based

on screen-space curvature|cone-spheres are static models that do not attempt to take

advantage of the fact that from some viewing angles, fewer of them are needed to visually

approximate a tube than from other angles. Another reason is that lengthwise normal

variation is interpolated across paintstroke segments, producing properly curved specular

highlights, whereas the cones of cone-spheres have straight highlights that are merely

blended together at the spheres to smooth possible corners.

As a �nal problem, when many short cone-spheres are concatenated to improve the

silhouette and highlights of the resulting tube, the spheres become increasingly enclosed

within the cones, and therefore unexposed. Yet, they are still rendered in their entirety,

only to be covered by the adjacent cones. As with the brush extrusion approach, this

type of pixel overwriting is ine�cient.

Despite these shortcomings, cone-spheres are useful for rendering fairly straight tubes,

especially with texture-mapping or bump-mapping, which paintstrokes are currently un-
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able to provide.

5.4.3 Polylines with Precomputed Shading

When used at a thickness of several subpixels to a pixel, polyline methods with precom-

puted shading prove to be an e�cient and high-quality method for rendering generalized

cylinders. Their shading model eliminates the aliasing artifacts that creep into paint-

strokes at these small scales, and it does so without incurring the expense of massive

oversampling, as the paintstrokes are forced to do. Incorporating this technique's pre-

integrated shading model into quality-zero paintstrokes would extend the latter's scope

to much smaller-scale geometry.

While polylines work extremely well within the above range of thicknesses, they per-

form poorly at larger or smaller scales. One reason for the former is that each line segment

has a constant colour, and therefore cannot express the breadthwise shading variation

one would expect to see in a real tube at close range. Another reason is that adjacent

line segments cannot always be seamlessly joined together, given that they are drawn as

skinny rectangles. From some angles, the joints will either contain cracks or will have

corners jutting out, which, though inconspicuous at small scales, becomes increasingly

noticeable as the tube's screen thickness increases. While the latter problem can be elim-

inated by using mitre joints, this actually means drawing trapezoidal polygons instead

of line segments11, which is more expensive and arguably not a true polyline solution.

At smaller scales, polylines can become prone to aliasing due to their sub-subpixel thick-

nesses. Moreover, larger and larger numbers of these (however inexpensive) primitives

are needed to �ll a certain volume. At this point, constant-time methods such as texture

mapping and volumetric rendering become appropriate alternatives.

Thus, polylines are a superior alternative to paintstrokes when used at a small (sub-

pixel thickness) scale. By incorporating their pre-computed shading model into quality-

zero paintstrokes, the polyline's advantages at small scales could be seamlessly integrated

with the paintstroke's advantages at larger ones, all in a single hybrid primitive. Such

an integration presents an intriguing opportunity for future work.

11This is similar in principle to quality-zero paintstrokes.
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5.5 Comparison with Global Texture-MappingMeth-

ods

Rendering geometrically rich models by texture-mapping is a viable alternative to us-

ing paintstrokes, but only at a very small scale. Because it does not capture the full

three-dimensional geometry of a scene, a texture map quickly loses its image quality as

the scale of the textured objects grows. At larger scales, the e�ects of occlusion and lo-

cal illumination within a geometric model become increasingly view-dependent, and the

failure of texture-mapping to account for this tends to result in unrealistic, at-looking

images, especially when viewed in motion. Moreover, objects incorporated into textures

are di�cult to animate without directly re-rendering the geometry. At small scales (e.g.

fur viewed from far away) animation may not be necessary, as the motions tend to be

inconspicuous. But at larger scales, the need for animation can pose a problem for global

texture-mapping.

Figure 5.9: Example of an image not suitable for rendering with a texture map.

Although the hierarchical image caching approach by Shade et al. [SLS+96] helps

to alleviate the problems with parallax, it essentially trades parallax error for rendering

time. This works well at moderately small scales, but as objects approach the viewer,

the lifespan of their cached images becomes smaller and smaller, requiring them to be

frequently re-rendered. This technique is not really a competitor to the paintstroke, but a
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framework within which paintstrokes and other rendering methods could be incorporated.

5.6 Comparison with Volumetric Textures

Because they entail the signi�cant per-pixel expense of using volumetric ray-tracing, vol-

umetric textures represent an e�cient alternative to paintstrokes only at a tiny scale, well

below any reasonable size for paintstrokes. Their near-constant rendering time involves

a high overhead, so texels need to contain a great deal of detail in order to make this

method worthwhile. Used appropriately, however, volumetric rendering is unparalleled

in its ability to generate images of high quality with very minor aliasing artifacts, and

doing so at a low cost relative to the other methods discussed in this chapter (except

global texture-mapping). These strengths make volumetric textures a vastly superior

method to paintstrokes, polylines, and other methods that attempt to render a scene's

geometry in its full detail at extremely small scales.

Whereas mesh simpli�cation is e�ective for approximating shapes, it fails to accu-

rately maintain the normal distribution of the underlying geometry. Because volumetric

textures contain exact reectance distributions, rather than approximating them from

the geometry, they do not succumb to this problem; their approach is speci�cally geared

to shading microgeometry, which is di�cult and expensive to accomplish with polygonal

representations.

Although considerably slower than the global texture-mapping methods of x5.5, vol-
umetric rendering generates images of much higher quality: By storing density and re-

ectance distributions, texels accurately capture the small-scale appearance and anisotropic

reectance of the true three-dimensional geometry they represent. The two methods are

not incompatible, however|volumetric rendering can serve to provide the cheaper global

texture-mapping methods with high-quality pre-rendered images that are needed to con-

struct their texture maps.
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5.7 Summary

In this chapter we have argued that paintstrokes provide an e�cient alternative to other

methods in rendering generalized cylinders, albeit within a limited range of scales. Al-

though much of our reasoning is based on a comparison with only a statically tessellated

model, the superior performance of paintstrokes even at the latter's ideal level of detail

attests to the advantage of their view-dependent tessellation over the other more general

methods.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 Summary

A wide variety of models used in computer graphics can be reasonably approximated

by generalized cylinders. An e�cient technique for rendering the latter is therefore of

considerable value. While a number of traditional rendering methods have been applied

to the task, they generally fail to achieve a good balance of speed and image quality at

small to medium scales. The purpose of this thesis was to provide an e�cient means of

rendering generalized cylinders at precisely these scales. This was achieved through the

paintstroke primitive and its supporting A-Bu�er-based projective rendering architecture.

By applying a view-adaptive tessellation algorithm that exploits the simplicity and

symmetry of the generalized cylinder's screen-space projection, paintstrokes are able to

accurately approximate this surface using much fewer polygons than competing meth-

ods. Because of their view-dependent arrangement, a paintstroke's polygons capture the

generalized cylinder's appearance from all viewing directions1, despite the coarseness of

their tessellation.

The polygon renderer we have developed incorporates variable-resolution Phong shad-

ing within an A-Bu�er framework, thereby e�ciently reducing spatial aliasing along

silhouettes and near specular highlights. This allows paintstrokes to be used at the rela-

tively small scales for which they are intended, scales at which the faster, non-antialiasing

methods like the Z-Bu�er fail to produce images of reasonable quality.

1With the few exceptions noted in x5.1.3.

117
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6.1.2 Contributions

While the general elements of our solution|view-dependent tessellation, the A-Bu�er,

and adaptive Phong shading|are not new, their integration into a technique for rendering

generalized cylinders is unique. The following are our major contributions toward this

technique.

1. Tessellation of Generalized Cylinders

� Representing a generalized cylinder using a parametric spline path with the

radius speci�ed at points along the path.

� Adaptively subdividing the generalized cylinder along the path, based on the

latter's screen-space curvature.

� Using the geometry of the path to determine the positions and normals of

the view-dependent edges and centre of the generalized cylinder at any point

along the path.

2. View-Dependent Rendering E�ects

� Simulating global shading by estimating the penetration distance of a light

ray to a point within a sphere.

� Simulating volumetric opacity using the path tangent and normal vectors of

a generalized cylinder.

3. Adaptive Phong Shading

� Estimating the maximum rate of angular variation during the componentwise

linear interpolation of a surface normal over a polygon.

� Using the above, along with the polygon's size, orientation, and reectance

properties, to determine an appropriate horizontal and vertical Phong sam-

pling rate over the polygon.

4. A-Bu�er
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� Presenting a rigorous derivation of Carpenter's formulas [Car84] for blending

fragments.

� Improving upon Carpenter's blending formula for intersecting fragments.

6.2 Directions for Future Work

A number of potential enhancements to the paintstroke primitive have been discussed

in the preceding chapters, particularly in Chapter 5. Some of these are straightforward

to implement, while others represent major avenues for future work. In this section we

briey examine the latter.

6.2.1 Alternative Representation of Surface Normals

As we have seen in x3.2.4, the accuracy of a paintstroke's shading is highly dependent

on its quality level. The lower the quality level, the smaller the number of polygons over

which the paintstroke's (large) breadthwise normal variation is interpolated, resulting

in a less accurate approximation of a generalized cylinder's circular pro�le. As we have

established in x3.2.4, linearly interpolating the components of a normal vector across the

breadth of a level-zero paintstroke yields a normal distribution that di�ers noticeably from

that of a generalized cylinder. Moreover, the distribution becomes increasingly prone to

aliasing as the range of interpolation approaches 1800. While quality-zero paintstrokes

redress the latter problem by using using less than 1800 of breadthwise curvature, this

does nothing to correct (and, indeed, exacerbates) the former.

There is an alternative way to represent surface normals, which would enhance the

shading accuracy for all paintstrokes, particularly those of quality zero. Furthermore, it

would make shading di�erences among the three quality levels very small, eliminating

the potential popping that can arise when a paintstroke's quality level changes. The

idea is to represent the normal as a pair of angles � and �, corresponding to the spher-

ical coordinates of a point on the unit sphere, expressed in rectangular coordinates as

[cos � sin�; sin � sin�; cos�]. While the rectangular representation would be used in com-

puting the basic elements of the Phong model, namely, N � L and N � H, the normal

interpolation would be linear in � and �, using a single table of sine values to provide
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quick approximations to sin�, cos�, sin �, and cos �. The four table indices correspond-

ing to the sines and cosines of the initial values for � and � would be computed, and then

simply incremented by constant amounts to locate the sines and cosines for subsequent

angular values.

While this technique may seem expensive compared to the traditional interpolation in

rectangular coordinates, notice that it requires no normalization of the interpolated nor-

mal. This is a big advantage, since even table-assisted normalization requires computing

a vector's norm, and then multiplying it by an appropriate scalar. More importantly,

this approach allows a single polygon to cover a full 1800 of curvature and still closely

approximate the generalized cylinder's \circular" normal distribution. Whereas (one-

dimensional) normal interpolation in rectangular coordinates yields the normal pro�le of

a parabola, this new method produces a distribution based on the curve � ln(cos �), an

antiderivative of tan �. This can be derived by an approach similar to the one presented

in x3.2.4. As Figure 6.1 illustrates, this curve's normal pro�le closely approximates that

of a circle. Note also that the derivative of the normal vector with respect to � (the in-

terpolation distance) approaches in�nity along the circle's edges, whereas for the angular

interpolant, this derivative has a bounded, constant norm. This means the interpolated

distribution is less susceptible to aliasing than the true distribution of a generalized

cylinder, which is ill-behaved near the edges.

To apply this method to paintstrokes, an angular representation of their normals

needs to be derived. While this can be trivially accomplished by computing the normals

in rectangular coordinates (as we currently do) and then converting them to the spherical

representation, it may be more e�cient to directly compute the normals in the spherical

coordinates. Also, if an inexpensive angular-coordinate transformation can be used to

rotate world-space normals into eye-space, this new representation would be feasible for

general polygonal models as well. Clearly, this approach warrants further examination.

6.2.2 Non-Circular Cross-Sections for Paintstrokes

Although a paintstroke's shape is quite general, there are a variety of elongated objects

that the primitive cannot capture. These include blades of grass, feathers, leaves, cer-
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Figure 6.1: Circular vs. angle-interpolated normal pro�les.

tain types of �sh, and similar long, at objects. Extending our primitive's scope to

include tubes of variable cross-section would permit a much wider variety of objects to

be modelled using paintstrokes.

The challenge in implementing this extension is the following: the more a paint-

stroke's shape is generalized, the more its symmetry is reduced and the complexity of

its screen projection increased. Yet, most of the paintstroke's e�ciency derives from the

symmetry of the generalized cylinder and the simplicity of its screen-space projection.

One solution that may provide greater modelling exibility without greatly complicating

the paintstroke's tessellation is to use an elliptical cross-section. As a start, the silhouette

of this primitive could be approximated from most angles with a standard paintstroke

whose radius varies around its girth, according to the viewing direction. This could be

implemented by incorporating a binormal vector into each control point, which, together

with the path's tangent, would specify a Frenet frame. However, providing accurate

shading for such a paintstroke, as well as ensuring a correct head-on view clearly requires

further work.
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6.2.3 Texture-Mapping

A general limitation of paintstrokes is their inability to bear textures. This is a short-

coming we hope to redress in a future version, although, as mentioned in Chapter 3, the

ability to texture-map small-scale objects like paintstrokes is usually not of paramount

importance. At the small end of their useful range of scales, paintstrokes are too thin to

allow a two-dimensional texture on them to be discerned; in this case, simple lengthwise

colour variation, as we have provided, is all that is required. On the other hand, larger

paintstrokes would probably bene�t from texture-mapping.

A simpler but also highly useful feature would be the application of one-dimensional

lengthwise textures. Although this can currently be simulated by using control points

to specify colour variation along the paintstroke's path, the large amount of geometric

overhead involved makes this approach ine�cient. Thus, an e�cient implementation of

one-dimensional textures, and possibly traditional two-dimensional ones, would make a

useful addition to our primitive.
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Details on the Polygon Renderer

This chapter provides additional implementation details on our polygon rendering engine.

It discusses the speci�cs of the rasterization algorithm, and the way in which the variable

sampling rate for the shading model is determined.

A.1 Rasterization Algorithm

The rasterization proceeds as follows. The plane equation and unit increments for each

component of the interpolant vector (as de�ned in x4.3.2) are computed, and then the

polygon is scanned vertically, and at each vertical step, horizontally. The vertical scan-

ning proceeds one subpixel row at a time. The x-position component is interpolated from

top to bottom along the left and right edges of the polygon, while the other elements of

the interpolant vector are scanned only along the left edge. For them we do not require

a right endpoint, since their horizontal increments are already known from the plane

equations, so all we need is a starting point.

The interpolant vectors at the left and right edges begin at the same height, that

of the highest vertex (or vertices). Prior to commencing the actual scanning, they are

shifted vertically a fraction of a subpixel, so as to position them exactly in the vertical

middle of the subpixel row they occupy. This initial nudge serves to align the interpolant

vectors with the vertical component of our sampling grid. A similar nudge occurs prior

to scanning each row, to achieve horizontal alignment. As shown in Figure A.1, a proper

alignment of the sampling positions is important because it provides a fast, accurate, and

123
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subpixel

sample point

Figure A.1: Sampling positions for rasterization.

consistent way of determining which subpixels lie within a polygon and which don't.1

This avoids the problem of doubly covering subpixels along a boundary shared by two

polygons, which, aside from being ine�cient, produces higher-opacity seams along the

edges when the polygons are transparent.

Once the interpolant vectors are vertically aligned, they move down in unison, mark-

ing the endpoints of the long rows of subpixels between them. We call these rows subpixel

scanlines, and the interpolant vectors at their endpoints endpoint vectors. At each sub-

pixel scanline, the endpoint vectors are stored in an array. When all the subpixel scanlines

in a row of fragments have been traversed, the fragment row is scanned horizontally, as

described in the following paragraph. After that, the vertical scanning resumes, captur-

ing the endpoint vectors for the subpixel scanlines of the following fragment row, and so

on. The left endpoint vector contains all the values to be interpolated, while the right

one has only the x-position.

Horizontal scanning interpolates components of the left endpoint vector of each sub-

pixel scanline, moving one pixel to the right at each step and possibly skipping over

any fully covered fragments along the way, depending on the scanline in question. Each

horizontal step involves adding the constant horizontal pixel increment, which equals 8

times the subpixel increment obtained from the plane equations.

At this point, the initial horizontal nudge is applied to ensure horizontal alignment

with the subpixel grid. For reasons that will be explained shortly, only the �rst and fourth

subpixel scanlines, which run approximately through the top and middle of the fragment

1Sample points that straddle an edge are (arbitrarily) considered interior for the left edge and exterior
for the right. If the edge is horizontal, an analogous rule is applied based whether it is the top or bottom
edge.
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row, respectively, are scanned across fully covered fragments. The remainder skip across

them to any partially covered fragments on the right side of the polygon. As Figures

4.7 and A.2 illustrate, the full fragments can only occur in a contiguous block anked by

partially �lled ones. And similarly, full subpixel rows must occur in a contiguous block,

possibly anked by a partially covered row at either end. These facts follow from our

assumption that all rendered polygons are convex.

The reader may be wondering why the endpoint vectors for all the subpixel scanlines

in the fragment row were stored during the vertical scanning, only to be traversed again

during horizontal scanning. Indeed, it seems simpler to horizontally interpolate each

subpixel scanline as its endpoint vectors are computed, rather than storing them in an

array and then using them later. The reason we compute all the endpoint rows before

scanning them is because we need all eight of them to determine which fragments in

the row are fully covered. Since six of the eight subpixel scanlines will skip over these

fragments, we cannot scan them until we know the range of fully covered fragments in

the row.

Fully covered fragments
Full subpixel rows
Partial subpixel rows

subpixel
scanlines

Figure A.2: Close-up of a fragment row.

Figure A.2 shows the three types of fragment rows our algorithm may encounter:

partially covered rows, fully covered rows belonging to partially covered fragments, and

(fully covered) rows belonging to fully covered fragments. Each type is rasterized in a

speci�c way that best capitalizes on the coherence of its coverage. Before we look at the

speci�c cases, we complete our general discussion of horizontal rasterization.

At each subpixel scanline, the x-components of the endpoint vectors are used to
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locate which fragment and subpixel within that fragment begins and ends the scanline.2

These values will be used in constructing the coverage masks of the fragments, as well as

determining the range of fully covered fragments in the row, if there are any.

The colour, opacity, ks, and kd values associated with each fragment in the row are

calculated as a weighted average of the respective interpolated values at each subpixel

in the coverage mask. As will be shown below, we compute these quantities without

actually sampling each subpixel by recognizing that for convex polygons the subpixels

must always be covered in contiguous rows and columns. While the normal components

could also be averaged over the fragment, they are not; their raw interpolated values are

directly used by the shading model, as was explained in x4.3.6
The x- and z- values of the left endpoint vector and the plane equation of the poly-

gon are used to derive the minimum and maximum z-values for each subpixel row of the

leftmost pixel. These extrema are computed for subsequent fragments along the subpixel

scanlines by adding the constant horizontal z-increment, based on the appropriate plane

equation. Because the z-values are sampled at the vertical middle of a subpixel scanline,

they do not yield exact extrema (which occur at subpixel corners). This sampling error,

while signi�cant with respect to the subpixel, is very small relative to the full fragment,

since any sample within the closest and farthest subpixels is still a good approxima-

tion for Zmin and Zmax. Moreover, the formula that uses these values is something of an

approximation itself (see xB.2.7), so the small inaccuracy is of no consequence.

Partially covered rows are the worst-case scenario for our scan-conversion algorithm,

requiring two samples per subpixel row. The bitmap for the subpixel row is produced

using the formula (28�left� 1) xor (27�right� 1), where left and right denote the integer

endpoints in subpixel coordinates. This value is then left-shifted by the appropriate

number of bits to place it in the correct row within the coverage mask, leaving the

others �lled with zeros. The result is ored with the coverage mask under construction,

e�ectively inserting the new row into the �nal mask. The colour and opacity values are

found by sampling at the horizontal and vertical middle of the row, the former given

2This involves dividing by the horizontal subpixel resolution and obtaining the remainder. Since the
resolution is a power of two, the remainder can be quickly computed using a logical and operation.
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by the expression left+right
2

, and the latter taking a value of 0:5; 1:5; : : : ; 7:5 in subpixel

coordinates. This yields an accurate subpixel-area-weighted average, unlike with the

faster method that samples a partially covered pixel only once, such as the one in [Car84].

Finally, the z-values at the endpoints of the row are compared with the with z-extrema

of the other rows in the fragment, as candidates for Zmin and Zmax. This routine is further

optimized for the special cases where right = 7 or left = 0, corresponding to the leftmost

and rightmost fragments in a multipixel row.

Any rows that are fully covered but belong to a partially covered fragment can be

handled more expeditiously. There are eight possible coverage masks having exactly

one full row of subpixels, and their numeric representations are obtained by shifting the

integer 28 � 1 by 0; 8; 16; : : : ; 56 bits to the left. Depending on the row in question,

the appropriate value is ored with the coverage mask under construction. The colour,

opacity, and reectance values are sampled at the horizontal and vertical centre of the

row, multiplied by a weighting factor of 8, and added to the fragment's opacity and

colour �elds. Once all the subpixel scanlines within the pixel row have been traversed,

the values in these �elds for each fragment are divided by its subpixel count to obtain

the respective average values. The Zmin and Zmax are determined by sampling the �rst and

last subpixels in the row. Once these values are computed for the leftmost fragment, they

are incremented by 8 times their respective subpixel increments, e�ectively scanning the

subsequent fragments one at a time. This continues until either a block of fully covered

fragments is reached or a partially covered row marks the end of the subpixel scanline. In

the former case, the block of fully covered fragments is either skipped, by incrementing

the interpolant accordingly, or it continues, depending on which subpixel scanline it is.

The rasterization of fully covered fragments is the most highly optimized. The entire

coverage mask can be generated in a single step by assigning the value of 264�1 (or, using
two's complement, -1) to a 64-bit integer variable that stores the bitmap. A single sample

positioned near the centre of the coverage mask grid3 yields a very close approximation

to the average value for the colour, opacity, and reectance values of the fragment. For

3The subpixel position is (4,3.5). The vertical component is slightly o�-centre because the samples
occur along the fourth subpixel row, and each subpixel row is sampled at its vertical centre. The error
of half a subpixel is negligible relative to 8 subpixel height of the fragment.



128 Appendix A. Details on the Polygon Renderer

the Zmin and Zmax values, we �rst determine the z-value of the top corner subpixel where

either Zmin or Zmax occurs, and then apply an o�set to it, based on the polygon's plane

equation, to obtain the other extremum. Once we have the z-extrema of the leftmost

fully covered fragment, we apply �xed horizontal increments to them to obtain their

values for subsequent fragments to the right. Finding these o�sets and matching the top

corner to an extremum are easily accomplished by using the appropriate plane equation

of the polygon. Because the z-samples are taken along the top of the fragment row, the

interpolation occurs only on the �rst scanline. So to summarize, the Zmin and Zmax are

interpolated along the �rst scanline, and the other interpolated components along the

fourth. All the other scanlines are skipped over. As usual, the normal component is an

exception. Its interpolation is discussed in the following section.

No perspective correction is applied to the non-positional interpolated quantities,

since the primary target of our rendering engine|the paintstroke polygon|exhibits only

minor perspective e�ects at its intended scale, so the additional per-pixel division that

is required would have little bene�t to counterbalance its cost.

A.2 Determining the Sampling Rate of the Shading

Model

The sampling grid used at each pixel is based on the required horizontal and vertical

sampling rates, which are independently computed once per polygon. Fully covered

fragments are sampled exactly according to this grid. But for partially covered fragments,

the grid's horizontal and vertical densities are increased, if necessary, to ensure that at

least one sample per (horizontal and vertical) dimension occurs. For example, a fragment

with only one subpixel of coverage will always be sampled at the maximum sampling rate,

ensuring that the one sample is taken. For an arbitrary partially covered fragment, we

determine the horizontal and vertical span of its contiguous subpixel coverage (these are

computed while the coverage masks are being built), and set the sampling rates for that

fragment to the lowest values such that the horizontal and vertical distances between

sample points do not exceed the horizontal and vertical coverage spans. This prevents

the coverage mask from \falling through the cracks" of the sampling grid.
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Once the horizontal and vertical unit increments of the normals have been computed

from the polygon's plane equations, the next step is to �nd the maximum rate of angular

normal variation in the horizontal and vertical directions. These values are dependent

on the amount of curvature the polygon interpolates, based on the normal values at

its vertices. To obtain the values, we �rst need the shortest length attained by the

interpolated normal over the entire polygon. That length, along with the lengths of the

unit increments, will provide a measure of the maximum angular change per horizontal or

vertical step. The shortest length, which we denote by the scalar Nmin, can be calculated

given the magnitude of the maximum range of normals over the polygon, R. We compute

R as the maximum norm of the di�erences in normals between any pair of vertices i and

j:

R = max
i;j

kNi �Njk (A.1)

When the value of R is found, it is easy to obtain Nmin using the equation below,

as illustrated in Figure A.3. But before we do this, we check to see if the value of R is

extremely small. If it is, we consider the polygon \at" and simply set the horizontal and

the vertical sampling rates to once per pixel (the lowest rate), and skip the remaining

tests.

Nmin =
1p

1� (R=2)2
(A.2)

Finally, the sines of the angular steps �h and �v, corresponding to one subpixel of

horizontal or vertical normal variation (�Nh or �Nv) are given by

sin �h =
�Nhp

(�Nh)2 +N2
min

(A.3)

sin �v =
�Nvp

(�Nv)2 +N2
min

(A.4)

The horizontal and vertical sampling rates sh and sv are then chosen, each bearing a

value of 1, 2, 4, or 8 samples per pixel. The value for sh is the lowest of these that keeps

8
sh

sin �h below a user-speci�ed threshold tols. The equivalent criterion is also applied

to sv. To improve performance, the formulas are squared and multiplied out so as to

eliminate the expensive square root and division operations.
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∆Nh R/2

R

1 1
Nmin

θh

Figure A.3: �h, the greatest angular increment for the horizontal scanning direction. (�v
is analogous.)

Next, three tests are applied. If any component of the halfway vector lies outside

the corresponding component's range of the polygon's normals, the maximum absolute

di�erence between the two is used to adjust tols to favour a lower sampling rate. Similarly,

if the maximum value of ks over the entire polygon is low, that is used to relax the

threshold further. Lastly, a small value of es (a constant over the polygon), relaxes the

threshold further still. The cumulative e�ect of the adjustments is captured through

multiplication: given adjustment factors a1, a2, and a3, based on the three tests, the

original threshold value tols is re-assigned as follows:

tols := a1a2a3 tols (A.5)
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Blending the A-Bu�er Fragments

In this chapter we present the pseudocode structure of the BlendFragment function, and

derive the blending formulas it uses.

B.1 The BlendFragment Function

The BlendFragment function takes four parameters: the top fragment top, the search

mask smask, and the blended colour and alpha values Cblend and �blend. Whereas the

�rst two parameters contain input, the last two are used to store the output.

BlendFragment(Fragment: top; Mask: smask; var Colour: Cblend; var Alpha: �blend)

Min := smask \ topmask

Ain :=BitCount(topmask)=64

�blend := topopacity � Ain

if topnext = nil then

This is the last fragment in the list. We return its colour
and coverage.

Cblend := topcolour

return

end if

Mout := smask \ :topmask
under := topnext

Minter := Min \ undermask

131
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if topZmax > underZmin and Minter 6= ; then

The top two fragments intersect. We blend them using
Blending Formula 4(b) [see xB.2.8].
k := underZmax�topZmin

topZmax�topZmin+underZmax�underZmin

�top := �blend

Aunder :=BitCount(undermask)=64

�under := underopacity � Aunder

�blend := �top + �under � (1� topopacity)

Cblend :=
topcolour �[�top�(1�k)��under �topopacity ]+undercolour ��under�(1�k�topopacity)

�blend

if undernext 6=nil and Ain > 0 and �blend < Ain then

We now blend the (blended) intersecting fragments with
all the fragments underneath them, using Blending For-
mula 4(a) [see xB.2.8].
BlendFragment(undernext;Min; Cunder; �under)

�inter := �blend

Cinter := Cblend

ointer := �blend=Ain

�blend := �inter + (1� ointer) � �under

Cblend :=
Cinter ��inter+Cunder�(1�ointer)��under

�blend

end if

if Mout 6= ; then

Lastly, we blend the above result with the surrounding
region within the search mask. We use Blending Formula
2 [see xB.2.6].
BlendFragment(topnext ;Mout; Cout; �out)

�in := �blend

Cin := Cblend

�blend := �in + �out

Cblend :=
�in�Cin+�out�Cout

�blend

end if

else if topopacity < 1 then
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Top fragment is transparent and does not intersect the
next one. We apply Blending Formula 4(a) [see xB.2.8].
BlendFragment(under;Min; Cunder; �under)

�top := �blend

�blend := �top + (1� topopacity) � �under

Cblend :=
topcolour ��top+Cunder�(1�topopacity)��under

�blend

if Mout 6= ; then

We blend the above result with the surrounding region
within the search, using Blending Formula 2 [see xB.2.6].
BlendFragment(under;Mout; Cout; �out)

�in := �blend

Cin := Cblend

�blend := �in + �out

Cblend :=
�in�Cin+�out�Cout

�blend

end if

else
Top fragment is opaque and does not intersect the next
one. (This is the most common case.) We apply Blending
Formula 2 [see xB.2.6] to blend it with the surrounding
region within the search mask.

if Mout = ; then

Cblend := topcolour

else

BlendFragment(under;Mout; Cout; �out)

�in := �blend

�blend := �in + �out

Cblend :=
�in�topcolour+�out�Cout

�blend

end if

end if

end

Before proceeding to the blending formulas, we present a few implementation details
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which aid in understanding the overall algorithm. The set operators \ and [, which are

used to combine coverage masks, are implemented using bitwise and and or operators,

respectively. The speed at which these operations can be performed in large measure

accounts for the A-Bu�er's e�ciency. The BitCount() function counts the number of

one bits in a coverage mask, stripping o� eight bits at a time and using their numeric

representation as an index into a table of precomputed bit counts. The formulas involving

colour are essentially vector equations; the three colour components can be treated as

independent scalars.

B.2 The Blending Formulas

We begin by introducing some basic de�nitions and axioms, which will serve as a foun-

dation for the derivations that lie ahead.

B.2.1 Basic De�nitions

Let a be an arbitrary fragment. The following de�nitions of a's attributes are device-

independent analogues of the �elds described in section 4.2. We have shortened their

names in order to keep our equations at a reasonable length.

Def'n I Ma is the coverage mask of a, represented as a function that maps a point from the

unit square to a value of zero or one. Because it is convenient to use set notation

when dealing with Ma, we de�ne some useful set operators in terms of arbitrary

fragments a and b:

(a) Ma : (x; y) �! m, where (x; y) 2 R2 and m 2 Z, such that 0 � x; y;m � 1

(b)

(Ma [Mb)(x; y) =

8<
:

1 Ma(x; y) = 1 or Mb(x; y) = 1

0 otherwise

(c)

(Ma \Mb)(x; y) =

8<
:

1 Ma(x; y) = 1 and Mb(x; y) = 1

0 otherwise
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(d) Ma = ; if and only if Ma(x; y) = 0; 8 x; y

Def'n II Aa is the area of the fragment a's coverage mask. It is a real number obtained by

integrating Ma over the unit square.

Aa =
R 1

0

R 1

0
Ma(x; y)dy dx

Def'n III Ca is the colour of a, represented as an arbitrary vector.

Def'n IV oa is the opacity of a. It is a real number in the range [0; 1], where a value of zero

represents complete transparency and a value of one complete opacity.

Def'n V �a is the coverage of a. It is de�ned as area times opacity, and represents the degree

to which the colour of a inuences the �nal blended colour of the pixel.

�a = Aaoa

Def'n VI Zmina and Zmaxa are the respective minimum and maximum z-values attained

by a, expressed as real numbers. We assume that the positive z-axis points away

from the viewer.

Def'n VII a � b is a virtual fragment derived from blending a with an arbitrary fragment b.

The properties of a� b are de�ned by the axioms below.

Def'n VIII b is said to be behind a i� Zmina � Zminb. Note that this de�nition allows for a

and b to intersect, as described in the following de�nition.

Def'n IX If b is behind a and Zmaxa > Zminb and Ma \Mb 6= ;, then a and b are said to

intersect.1

Def'n X a and b are said to be disjoint i�Ma\Mb = ;. Otherwise, they are considered over-

lapping. In the latter case, if Ma = Mb, they are fully overlapping, and otherwise,

partially overlapping.

1Note that this meaning of intersection does not imply a geometric intersection between the polygons
from which fragments a and b are derived, although it is intended to model this.
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B.2.2 Axioms

The following three axioms provide a fundamental set of rules for blending the coverage

masks, opacities, and colours of two arbitrary fragments a and b. Note that the �nal

axiom describes how the colours may be blended, without giving an explicit formula. As

we shall see, di�erent relations between a and b call for di�erent colour blending formulas;

however, they all must abide by this axiom.

Axiom I Ma�b =Ma [Mb

Axiom II (a) oa�b =
Aaoa+Abob
Aa+Ab

for Ma \Mb = ;

(b) oa�b = oa + ob(1� oa) for Ma = Mb and Zmaxa � Zminb

Axiom III Ca�b =
sCa+tCb

�a�b
; such that

(a) s + t = �a�b

(b) s / �a if Ma \Mb = ; or Ma = Mb

(c) t / �b if Ma \Mb = ; or Ma = Mb

B.2.3 Useful Derivations

The following derivations are based on the above de�nitions and axioms. They will be

used in the recursive blending formulas described in the following section.

1. First, we establish that the blended area of a pair of disjoint fragments is the sum of

their individual areas. We do this by considering De�nitions I and II, and applying

Axiom I.

For Ma \Mb = ;,

Aa�b =

Z 1

0

Z 1

0

Ma�b(x; y)dy dx (B.1)

=

Z 1

0

Z 1

0

(Ma [Mb)(x; y)dy dx (B.2)

=

Z 1

0

Z 1

0

[Ma +Mb � (Ma \Mb)] (x; y)dy dx (B.3)
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=

Z 1

0

Z 1

0

Ma(x; y) dy dx +

Z 1

0

Z 1

0

Mb(x; y) dy dx (B.4)

= Aa + Ab (B.5)

2. We now use the above derivation along with Axiom II(a) to determine the blended

coverage for a pair of fragments with disjoint coverage masks:

For Ma \Mb = ;,

�a�b = Aa�boa�b (B.6)

= Aa�b
Aaoa + Abob
Aa + Ab

(B.7)

= (Aa + Ab)
Aaoa + Abob
Aa + Ab

(B.8)

= Aaoa + Abob (B.9)

= �a + �b (B.10)

3. Finally, we apply Axiom II(b) to derive the blended coverage for a pair of non-

intersecting fragments with identical coverage masks:

For Ma =Mb and Zmaxa � Zminb,

�a�b = Aa�boa�b (B.11)

= Aa�b [oa + ob(1� oa)] (B.12)

= Aa�boa + Aa�bob(1� oa) (B.13)

= Aaoa + Abob(1� oa) (B.14)

= �a + �b(1� oa) (B.15)
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B.2.4 Recursive Blending Formulas

We now have the necessary tools to derive the recursive blending formulas used in

BlendFragment. We begin by introducing the recursive blending operator, ~ , which

is our notational equivalent of the BlendFragment function. Given an arbitrary frag-

ment a, the expression ~a denotes a virtual fragment computed by recursively blending a

with all the fragments behind it. Our goal is to compute M~a; �~a, and C~a.

Base Case If a is the only fragment to be blended, then ~a is trivially equal to a.

Recursive Case If there are two or more fragments to be blended, we label them a,

b, c, . . . , such that Zmina � Zminb � Zminc � : : :. Except for the case where a and b

intersect, ~a is equivalent to a� ~b. The intersecting case will be handled separately.

B.2.5 Blending Formula 1: M~a

The formula for the blended coverage mask is trivial, since Axiom I applies to all frag-

ments:

M~a = Ma�~b (B.16)

= Ma [M~b (B.17)

B.2.6 Blending Formula 2: �~a and C~a when Ma \M~b = ;

In order to apply these formulas, one must ensure that the coverage masks of a and ~b

are disjoint. The BlendFragment function does this without explicitly computingM~b, by

restricting the blending of ~b to the region outside of Ma, using the search mask.

The formulas follow directly from Derivation II and Axiom III.

For Ma \M~b = ;,

�~a = �a�~b (B.18)

= �a + �~b (B.19)

C~a = Ca�~b (B.20)
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Figure B.1: Fragment arrangement suitable for Blending Formula 2.
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Figure B.2: Fragment arrangement suitable for Blending Formula 3(a).

...

{
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~Ma Mb

~

Mb
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z

Figure B.3: Fragment arrangement suitable for Blending Formula 3(b).

=
Ca�a + C~b�~b

�~a
(B.21)

B.2.7 Blending Formula 3: �~a and C~a when Ma =M~b

There are two possibilities here: the two foremost fragments, a and b, may intersect

(in the sense of De�nition IX) or not, depending on their respective coverage masks

and Zmin and Zmax values. If a and b do intersect, we add the further restriction

that Mb = M~b, which can be satis�ed by clipping all fragments behind b to Mb. This

restriction signi�cantly simpli�es the formulas.
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Blending Formula 3(a): Non-Intersecting Top Fragments (Ma =M~b and Zmaxa �
Zminb)

These formulas follow trivially from Derivation III and Axiom III.

For Ma = M~b and Zmaxa � Zminb,

�~a = �a�~b (B.22)

= �a + �~b(1� oa) (B.23)

C~a = Ca�~b (B.24)

=
Ca�a + C~b�~b(1� oa)

�~a

(B.25)

Blending Formula 3(b): Intersecting Top Fragments (Ma = M~b = Mb and
Zmaxa > Zminb)

Dealing with intersecting fragments requires using a front visibility factor, denoted by

k � (0; 1). This factor estimates the proportion of fragment a that is not obscured by

fragment b. The portion of b not obscured by a is then weighted 1 � k. If each frag-

ment contained a plane equation representing the orientation of its originating polygon,

it would be possible (though expensive) to compute an exact visibility factor for a pair of

intersecting fragments by determining the line or plane of geometric intersection. How-

ever, the only geometric information stored in a fragment is the coverage mask and the

z-value extremes. This is not enough to determine the true visibility factor, so we use

Carpenter's approximation [Car84].

k =
Zmaxb � Zmina

Zmaxa � Zmina + Zmaxb � Zminb
(B.26)

The geometric interpretation for this formula is shown in Figure B.4(a). It is important

to remember that this is only an approximation and although it works well most of the

time, it may produce inaccurate results, as illustrated in Figure B.4(b). As the �gure

shows, overlap in the coverage masks and z-extrema of two fragments does not even

guarantee a true geometric intersection, much less specify the exact visibility of each

one.
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Zmina

ZmaxaZminb

Zmaxb

k
a b }

z

(a) Good approximation

Zmina

ZmaxaZminb

Zmaxb

k
a

b }
z

(b) Poor approximation

Figure B.4: Geometric interpretation of k for intersecting fragments a and b.

The challenge in computing ~a when the top two fragments intersect is that we cannot

simply decompose it into a� ~b, as we have done in the other cases. To explain why, we

refer to Figure B.5. Note that portion b1 of fragment b should be blended with portion

a2 of fragment a, as well as the fragments behind b. The algorithm presented in [Car84]

overlooks this, simply blending the front fragment with the combined result of the ones

behind it. The problems of this are most evident in the following situation. Consider

a transparent polygon intersecting an opaque one. Along the edge of intersection, the

pixels will contain colour from items behind the opaque polygon, clearly an impossibility.

a

b

b2

b1 a2

a1

z

Figure B.5: Regions of Intersection.

Our solution to the problem is simple: we blend the two intersecting fragments at the

top separately, and then blend that with the blended result of the rest of the fragments.

This approach yields ~a = (a� b)� ~c, where c is the fragment following b. This eliminates

the above anomaly by preserving the opacity of an intersection of a transparent fragment

with an opaque one, thereby preventing colour contamination from subsequent fragments.

Since our algorithm assumes that intersections involve exactly two fragments, the blend-
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ing of a � b with ~c does not involve any further intersections, and is thus amenable to

Blending Formula 3(a).2

In order to blend the intersecting fragments a and b, we treat them as two disjoint

pairs of overlapping fragments: portions a1; b2 and b1; a2 in Figure B.5. The �rst pair has

a in front followed by b, and has area kAa (since Aa = Ab, by our assumption of identical

coverage masks). The second has b in front and a behind, with area (1� k)Aa.

For Ma = Mb and Zmaxa > Zminb,

�a�b = k [�a + (1� oa)�b] + (1� k) [�b + (1� ob)�a] (B.27)

= k [�a + (1� oa)�b] + �a + �b � �aob � k [�b + �a � �aob] (B.28)

= k [�a + �b � Aboboa] + �a + �b � Aaoaob � k [�b + �a � �aob] (B.29)

= k [�a + �b � Aaoboa] + �a + �b � Aboaob � k [�b + �a � �aob] (B.30)

= k [�a + �b � �aob] + �a + �b � �boa � k [�b + �a � �aob] (B.31)

= �a + �b(1� oa) (B.32)

Unsurprisingly, the value k disappears from the formula; the blending order of fragments

is irrelevant to the coverage. That is why splitting a and b at the intersection (where

their order reverses) and merging the results yields the same coverage as ignoring the

intersection and blending the entire fragments using Derivation 3.

To determine the colour of a� b, we proceed in the same fashion. As one may expect,

the k factor is retained in this formula, since blending order does a�ect colour.

For Ma = Mb and Zmaxa > Zminb,

Ca�b =
k [�aCa + (1� oa)�bCb] + (1� k) [�bCb + (1� ob)�aCa]

�a�b

(B.33)

=
Ca�a [1� (1� k)ob] + Cb�b(1� koa)

�a�b
(B.34)

2Although there can be multiple intersections within a chain of fragments attached to a given pixel, a
single intersection (in the sense of De�nition IX) involving more than two fragments is unde�ned. If three
or more surfaces do intersect at a single point, our formula will only capture the foremost intersection,
treating the rest of the fragments as overlapping but not intersecting the front two. In practice, this
rarely causes any discernible colour distortion.
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For this formula, unlike with the others we have presented so far, it is not obvious that

parts (a), (b), and (c) of Axiom III are satis�ed, so we must verify that they are.

s = �a [1� (1� k)ob] (B.35)

t = �b(1� koa) (B.36)

s+ t = �a [1� (1� k)ob] + �b(1� koa) (B.37)

= �a + �b + (1� k)�aob + k�boa (B.38)

= �a + �b + (1� k)Aaoaob + k�boa (B.39)

= �a + �b + (1� k)Aboaob + k�boa (B.40)

= �a + �b + (1� k)�boa + k�boa (B.41)

= �a + �b(1� oa) (B.42)

= �a�b (B.43)

Since [1� (1� k)ob] � 0 and is not a function of �a, s / �a. Similarly, since 1� koa � 0

and is independent of �b, t / �b.

B.2.8 Blending Formula 4: �~a and C~a when M~b � Ma

In this �nal set of formulas, we ease the requirement that the coverage masks of a and ~b

be identical, and allow the rear mask to be a subset of the front mask. Our motivation is

to provide a single blending formula that handles this common case, rather than forcing

the BlendFragment function to subdivide the fragments, apply Blending Formula 3 to

the subfragments, and then merge the results. Again, we consider intersecting and non-

intersecting fragments as separate cases. As with Formula 3, we assume thatM~b = Mb in

the case of intersecting fragments. The BlendFragment function satis�es this assumption

by clipping all the fragments beyond b to Mb.

At this point we introduce some new syntax. Given fragments a and b, such that

Zmina � Zminb and Mb �Ma, let â denote fragment a clipped to the mask Mb, and let

�a denote the fragment a clipped to the maskMa�Mb. Hence,Mâ =Mb andM�a\Mb = ;.
Of course, oâ = o�a = oa and Câ = C�a = Ca.
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} Ma-

Figure B.6: Fragment arrangement suitable for Blending Formula 4(a).
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Figure B.7: Fragment arrangement suitable for Blending Formula 4(b).

Blending Formula 4(a): Non-Intersecting Top Fragments (M~b �Ma and Zmaxa �
Zminb)

Applying Derivation II, and then III, we reason as follows:

For M~b �Ma and Zmaxa � Zminb,

�~a = �(â�~b)��a (B.44)

= �â + �~b(1� oâ) + ��a (B.45)

= A~boa + �~b(1� oa) + (Aa � A~b)oa (B.46)

= �~b(1� oa) + Aaoa (B.47)

= �a + �~b(1� oa) (B.48)

C~a = C(â�~b)��a (B.49)

=
Câ�~b [�â + �~b(1� oâ)] + C�a��a

�~a

(B.50)

=

Câ�â+C~b
�~b(1�oâ)

�â+�~b(1�oâ)
[�â + �~b(1� oâ)] + C�a��a

�~a
(B.51)
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=
Câ�â + C~b�~b(1� oâ) + C�a��a

�~a
(B.52)

=
CaA~boa + C~b�~b(1� oa) + Ca(Aa � A~b)oa

�~a
(B.53)

=
CaAaoa + C~b�~b(1� oa)

�~a

(B.54)

=
Ca�a + C~b�~b(1� oa)

�~a
(B.55)

Interestingly, although Formula 4(a) applies to a more general blending scenario

(M~b � Ma) than Formula 3(a) (M~b = Ma), their coverage and colour equations turn

out to be identical. Equally interesting is the fact that if we consider the case where

Ma � M~b, the colour equation becomes di�erent from the other two cases, namely

C~a =
Ca�a+C~b

(�~b��~ao~b)

�~a
. We have no occasion to use this equation in BlendFragment,

so we omit a derivation for it.

Blending Blending Formula 4(b): Intersecting Top Fragments(Ma � Mb and
Zmaxa > Zminb)

As in Formula 3(a), the coverage and colour of ~a are obtained by blending (a�b)��c. We

compute a� b with the formulas below, and then blend that result with �c using Formula

4(a). Again, we assume intersections involve only two fragments, and M~b =Mb.

For M~b =Mb �Ma and Zmaxa > Zminb,

�a�b = �(â�b)��a (B.56)

= �â + �b(1� oâ) + ��a (B.57)

= Aboa + �b(1� oa) + (Aa � Ab)oa (B.58)

= �b(1� oa) + Aaoa (B.59)

= �a + �b(1� oa) (B.60)

Ca�b = C(â�b)��a (B.61)

=
Câ�b [�â + �b(1� oâ)] + C�a��a

�a�b
(B.62)

=

Câ�â[1�(1�k)ob]+Cb�b(1�koâ)
�â+�b(1�oâ)

[�â + �b(1� oâ)] + C�a��a

�a�b
(B.63)
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=
CaAboa [1� (1� k)ob] + Cb�b(1� koa) + Caoa(Aa � Ab)

�a�b
(B.64)

=
�Ca�boa(1� k) + Ca�a + Cb�b(1� koa)

�a�b
(B.65)

=
Ca [�a � (1� k)�boa] + Cb�b(1� koa)

�a�b

(B.66)

Finally, we verify Axiom III(a) for the color formula. Note that parts (b) and (c) do

not apply, since Ma and Mb are neither disjoint nor identical.
3

s = �a � (1� k)�boa (B.67)

t = �b(1� koa) (B.68)

(B.69)

s+ t = �a � (1� k)�boa + �b(1� koa) (B.70)

= �a + k�boa(1� 1) + �b(1� oa) (B.71)

= �a + �b(1� oa) (B.72)

3If we were to apply Axiom III(b) and III(c) nevertheless, we would see that the former does not
hold. This is because part of fragment b that lies in front of a (due to the intersection) causes a's colour
contribution over that region to be constant with respect to Aa|since Mb � Ma, the contribution is
just a function of k, Ab, and oa. Hence, a's total colour contribution s, as a function of Aa, is linear but
contains a constant arising from the above region: s = c1Aa + c2. This explains why the expression for
s in line B.67 has two terms that di�er by a factor of Aa and why we therefore cannot say that s / �a.
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