
Neural Subdivision

HSUEH-TI DEREK LIU, University of Toronto

VLADIMIR G. KIM, Adobe Research

SIDDHARTHA CHAUDHURI, Adobe Research, IIT Bombay

NOAM AIGERMAN, Adobe Research

ALEC JACOBSON, University of Toronto, Adobe Research

referenceinput mid-point Loop modified butterfly ours

Fig. 1. Our neural subdivision framework performs geometry-aware subdivision, reconstructing the reference rocker arm that we decimated to obtain the

coarse input with high accuracy, even though it was only trained on one single model - the Stanford bunny. Neural subdivision does not suffer from the

inherent limitations of classic subdivisions, such as volume shrinkage and over-smoothing (Loop [1987]), or amplification of tessellation artifacts (modified

butterfly [Zorin et al. 1996]). Throughout this paper, we use green to denote the training shape, and blue for the neural subdivision output.

This paper introduces Neural Subdivision, a novel framework for data-driven

coarse-to-fine geometry modeling. During inference, our method takes a

coarse triangle mesh as input and recursively subdivides it to a finer ge-

ometry by applying the fixed topological updates of Loop Subdivision, but

predicting vertex positions using a neural network conditioned on the local

geometry of a patch. This approach enables us to learn complex non-linear

subdivision schemes, beyond simple linear averaging used in classical tech-

niques. One of our key contributions is a novel self-supervised training

setup that only requires a set of high-resolution meshes for learning net-

work weights. For any training shape, we stochastically generate diverse

low-resolution discretizations of coarse counterparts, while maintaining a

bijective mapping that prescribes the exact target position of every new

vertex during the subdivision process. This leads to a very efficient and

accurate loss function for conditional mesh generation, and enables us to

train a method that generalizes across discretizations and favors preserving

the manifold structure of the output. During training we optimize for the

same set of network weights across all local mesh patches, thus providing an

architecture that is not constrained to a specific input mesh, fixed genus, or

category. Our network encodes patch geometry in a local frame in a rotation-

and translation-invariant manner. Jointly, these design choices enable our

method to generalize well, and we demonstrate that even when trained on a

single high-resolution mesh our method generates reasonable subdivisions

for novel shapes.

Authors’ addresses: Hsueh-Ti Derek Liu, University of Toronto, hsuehtil@cs.toronto.

edu; Vladimir G. Kim, Adobe Research, vokim@adobe.com; Siddhartha Chaudhuri,

Adobe Research, IIT Bombay, sidch@cse.iitb.ac.in; Noam Aigerman, Adobe Re-

search, aigerman@adobe.com; Alec Jacobson, University of Toronto, Adobe Research,

jacobson@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0730-0301/2020/7-ART1 $15.00

https://doi.org/10.1145/3386569.3392418

input level 1 level 2

Fig. 2. Neural subdivision refines different parts of a mesh differently, condi-

tioned on the local geometry. Here, the network was trained on the centaur

model (green) and then evaluated on a coarse gorilla mesh (gray).

ACM Reference Format:
Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aiger-

man, and Alec Jacobson. 2020. Neural Subdivision. ACM Trans. Graph. 39, 4,
Article 1 (July 2020), 16 pages. https://doi.org/10.1145/3386569.3392418

1 INTRODUCTION

Subdivision surfaces are defined by deterministic, recursive up-

sampling of a discrete surface mesh. Classic methods work by

performing two steps: each input mesh element is divided into

many elements (e.g., one triangle becomes three) by splitting edges

and adding vertices. The positions of the mesh vertices are then

smoothed by taking a weighted average of their neighbors’ positions

according to a weighting scheme based purely on the local mesh

connectivity. Subdivision surfaces are well studied and have rich

theory connecting their limit surfaces (applying an infinite number

of subdivide-and-smooth iterations) to traditional splines. They are

a standard paradigm in surface modeling tools, allowing modelers

to sculpt shapes in a coarse-to-fine manner. A modeler may start

with a very coarse cage, adjust vertex positions, then subdivide once,

adjust the finer mesh vertices, and repeat this process until satisfied.

While existing subdivision methods are well-suited for this sort

of interactive modeling, they fall short when used to automatically

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392418
https://doi.org/10.1145/3386569.3392418

1:2 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

input ours (level 2)

Fig. 3. Neural subdivision can adapt to different input triangulations and

output a high-resolution surface mesh accordingly. This enables us to use it

directly in the graphics pipeline such as texture mapping.

upsample a low resolution asset. Without a user’s guidance, classic

methods will overly smooth the entire shape (see Fig. 1). Popular

methods based on simple linear averaging do not identify details

to maintain or accentuate during upsampling. They make no use

of the geometric context of a local patch of a surface. Furthermore,

classic methods based on fixed one-size-fits-all weighting rules are

determined for their general convergence and smoothness proper-

ties. This ignores an opportunity to leverage the massive amount of

information lurking in the wealth of existing 3D models.

We proposeNeural Subdivision. We recursively subdivide an input

triangle mesh by applying the same fixed topological updates of

classic Loop Subdivision, but move vertices according to a neural

network conditioned on the local patch geometry. We train the

shared weights of this network to learn a geometry-dependent non-

linear subdivision that goes beyond classic linear averaging (see

Fig. 2). The choice of training data tailors the network to a particular

class, type or diversity of geometries.

An immediate challenge is how to collect training data pairs.

There is an ever-growing number of 3D models available. However,

many if not most of them were not created using a subdivision

modeling tool. Even among those that were, the final model does

not retain information to replay the modeler’s vertex displacements.

In the absence of paired data for a supervised training approach, we

propose a novel method to self-supervise given only high-resolution

surface meshes of arbitrary origin/connectivity at training time. We

stochastically generate candidate low-resolution versions of a train-

ing exemplar while maintaining a bijective correspondence between

their surfaces. This correspondence enables a novel loss function

that is more efficient and accurate compared to existing methods.

By construction, this training regime ensures generalization across
discretization.

In contrast to existing generative models for surfaces, our output

is a surface mesh with deterministic connectivity based on the input,

enabling direct use in the standard graphics pipeline such as texture

mapping (see Fig. 3). By sharing weights and training across all

local patches of all the training meshes, we learn a rule based on

the local neighborhood rather than the entire shape. Compared to

existing methods, this frees our network from being constrained

to a fixed genus, relying on a template, or requiring an extremely

large collection of shapes during training. We demonstrate that even

when trained on a single shape, our method can generalize to novel

meshes. We design our network to encode vertex position data in a

local frame ensuring rotation and translation invariances without

resorting to handcrafted predefined feature descriptors.

We demonstrate the effectiveness of our method with a variety

of qualitative and quantitative experiments. Our method generates

subdivided meshes that are closer to the true high-resolution shapes

than traditional interpolatory and non-interpolatory subdivision

methods, even when trained with a small number of very dissim-

ilar exemplars. We introduce a quantitative benchmark and show

significant gains over classic subdivision methods when measuring

upsampling fidelity. Finally, we show prototypical applications of

Neural Subdivision to low-poly mesh upsampling and 3D modeling.

2 RELATED WORK

Our work builds directly upon the foundations of classic subdivision

surfaces and connects to the rapidly advancing field of neural ge-

ometry learning. We focus this section on establishing context with

past subdivision schemes and contrasting our geometric learning

contributions with contemporary works.

2.1 Subdivision Surfaces

The basic idea of subdivision is to “define a smooth curve or surface

as the limit of sequence of successive refinements” [Zorin et al. 2000].

This broad definition admits a wide variety or “zoo” of different

subdivision schemes that would be outside the scope of this paper

to cover thoroughly. The history of subdivision surfaces reaches

back to the early work on irregular polygon meshes [Doo 1978; Doo

and Sabin 1998] and the now ubiquitous Catmull-Clark subdivision

which produces quad meshes [Catmull and Clark 1998]. The linear

method of Loop [1987] for triangle meshes has reached similar

popularity, and is the basis for our non-linear neural subdivision.

Classic linear subdivision methods are defined by a combinato-

rial update (splitting faces, adding vertices, and/or flipping edges

[Kobbelt 2000]) and a vertex smoothing (repositioning step) based on

local averaging of neighboring vertex positions. Subdivision meth-

ods are well studied from a theoretical perspective on the existence,

direct evaluation, and continuity of the limit surface [Karciauskas

and Peters 2018; Stam 1998; Zorin 2007]. Modelers typically manipu-

late a subdivision surface in a coarse to fine fashion. Most modeling

tools already visualize the limit surface or some approximation of

it, while the user manipulates the coarse level (cage) (see Fig. 23).

Beyond moving vertices, users can control the surface by adding

creases (sharp edges) [DeRose et al. 1998; Hoppe et al. 1994]. Non-

interpolating methods such as Catmull-Clark or Loop appear to be

the most popular, but interpolating methods do exist (e.g., [Dyn et al.

1990; Kobbelt 1996; Zorin et al. 1996]) and have similar smoothness

guarantees, although fairness is harder to achieve (see Fig. 1). Linear
methods are easier to analyze and design to guarantee smoothness.

As a result, capturing details is left to the modeler or a deterministic

procedural routine (e.g., [Tobler et al. 2002a,b; Velho et al. 2002]).

Our neural subdivision acts similar to non-linear subdivision

methods, with the subdivision rule in this case being a non-linear

function learned by a neural network. Non-linear subdivision has

been studied from the mathematical perspective [Floater and Mic-

chelli 1997; Schaefer et al. 2008] and also as a mechanism to main-

tain certain geometric invariants during each level of subdivision

(e.g., circle-preserving [Sabin and Dodgson 2004], quad planarity

[Bobenko et al. 2020; Liu et al. 2006], developability [Rabinovich

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Neural Subdivision • 1:3

Fig. 4. Our subdivision is data-driven. Training on a set of mechanitical

objects (left, green) or a set of smooth organic objects (right, green) leads to

drastically different styles (blue). ©Gyroid Puzzl by eemmett (top left) and

Hilbert Cube by tbuser (bottom) under CC BY-SA.

uniform
sample

point upsample
[Yifan et al. 2019]

surface
reconstruction

farthest
point sample

Fig. 5. One can use existing point upsampling methods to refine coarse

meshes by (1) sampling, (2) upsampling [Wang et al. 2019b], and (3) recon-

struction [Kazhdan and Hoppe 2013]. However, this may lead to artifacts

since it lacks information about the surface, and requires the use of expen-

sive surface reconstruction as a post-process.

et al. 2018; Tang et al. 2014], Möbius-regularity [Vaxman et al. 2018],

cloth wrinkliness [Kavan et al. 2011]). One general approach is to

combine a linear subdivision with an online geometric optimization,

and recursively apply the non-linear rule an arbitrary, if not infi-

nite number of times, akin to classic linear rules. Our approach can

be viewed as an extreme form of precomputation, where the opti-

mization is the training procedure and the fixed network is applied

generally as a non-linear function evaluation. The choice of data in

the training will influence the “style” of our non-linear subdivision

(see Fig. 4). Although our method is non-linear, it is trained to work

well for a pre-specified finite number of times.

Recently, Preiner et al. [2019] introduced a new non-linear subdi-

vision method that treats the coarse shape probabilistically. Their

contributions are orthogonal to ours, and while we base our method

on Loop subdivision, we could in theory extend our network to

learn on top of this more powerful subdivision method.

2.2 Neural Geometry Learning

Recent advances in generative neural networks enabled the use of

learnable components in 3D modeling applications such as shape

completion [Li et al. 2019], single-view [Tatarchenko et al. 2019]

and multi-view [Sitzmann et al. 2019] reconstruction, and modeling-

by-parts [Chaudhuri et al. 2020].

input mesh ground truth chamfer loss our loss

Fig. 6. We compare the same model trained using (a) chamfer distance

(which only measures error between point sets) and (b) our ℓ2 loss based on

shape correspondences. The model trained using the chamfer distance fails

to capture the surface topology (red). In contrast, our loss function leads to

manifold output meshes (blue). ©Gyroid Puzzle by emmett (top) under CC

BY-SA.

The closest to our neural mesh subdivision application are the

deep point cloud upsampling techniques [Li et al. 2019; Wang et al.

2019b; Yu et al. 2018]. The disadvantage of using a point cloud

as input is that it lacks connectivity information, and requires the

neural network to implicitly estimate the structure of the underlying

manifold. Meshes can also be more efficient at representing feature-

less regions with larger planar elements, providing a wider reception

field to our mesh-based neural network. Mesh output is preferred

for many standard graphics pipelines, thus, a post process is often

required [Kazhdan and Hoppe 2013] to convert the output of point-

based methods to meshes, which prevents building an end-to-end

trainable system. Fig. 5 illustrates the output of a point upsampling

method that was pre-trained on a collection of statues [Wang et al.

2019b] (see App. A for implementation details).

Our work is related to other neural mesh generation techniques.

Free-form generation of meshes as a set of vertices and faces is

infeasible with current deep learning methods, due to the lack of

regular structure, uneven discretization, and combinatorial variabil-

ity in the possible outputs, limiting such approaches to very coarse

outputs [Dai and Nießner 2019]. A common alternative is to deform

a global template either by predicting vertex coordinates [Ranjan

et al. 2018; Tan et al. 2018] or by training a deformation network

that warps the entire 3D domain conditioned on a latent vector

that encodes the deformation target [Groueix et al. 2018a; Yifan

et al. 2020]. While these approaches usually produce meshes with

higher resolution, their output is limited to deformations of a single

shape. Some techniques propose using generic templates such as

spheres [Wang et al. 2018; Wen et al. 2019] or 2D atlases [Groueix

et al. 2018b], which place limitations on the topology of the out-

put. In contrast to these techniques, our method refines the mesh

locally, and thus, respects the topology of the input (which could be

arbitrary). Another advantage of our local refinement approach is

that we do not require co-aligned training data with a well-defined

object space, the output of our subdivision networks is translation

and rotation invariant since it can be described in a local coordinate

system of the input patch.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:4 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

,
..

.

ground truth

training data:

input

..
.

..
.

..
.

..
. { ..
.

..
.

..
.

..
.

..
.

..
.
.

..
.

..
.

level 1 level 2

level m

loss (level 1)

loss (level 2)

loss
(level m)

. . .
,

{ { { {{ { {
{ {{ {

Fig. 7. Neural subdivision takes a coarse triangle mesh (gray) as input and outputs a sequence of subdivided meshes (blue) with different levels of details.

During training, we minimize the ℓ2 loss from the ground truth (green) to the output meshes (blue) across levels. Our training data consists of pairs of coarse

and fine meshes (top left) with a bijective map f between each pair.

There are several options for analyzing amesh patchwith a neural

network, such as using a local [Masci et al. 2015; Poulenard and

Ovsjanikov 2018] or global [Maron et al. 2017] parameterization to

unfold amesh into 2D grid, or apply graph-based techniques adapted

for meshes [Kostrikov et al. 2018; Wang et al. 2019a] (see [Bronstein

et al. 2017] for a more comprehensive survey). Our approach is

inspired by MeshCNN [Hanocka et al. 2019]. Their method directly

learns filters over the local mesh structure via undirected edges, and

shows applications in deterministic tasks. In contrast, we focus on

generative tasks and develop a novel set of features over the half-
flaps – an edge along with its two adjacent triangles. Each half-flap

has a canonical orientation which gives us well-defined local frames

which are crucial for our network’s rigid motion invariance.

Geometry generation techniques are typically trained with recon-

struction losses that measure how well does the generated surface

approximate the known target. Surface-to-surface distances are com-

monly employed, with correspondences defined via closest-point

queries (aka chamfer distance) [Barrow et al. 1977; Fan et al. 2017].

However, the closest-point approach matches many points to the

same point, while leaving other points unmatched, resulting in

self-overlaps and unrepresented areas (see Fig. 6).

Indeed, prior work demonstrates that using higher quality cor-

respondence (e.g., ground truth mapping) significantly improves

results [Groueix et al. 2018a]. While the latter is not available in our

setting, we propose a data generation technique for creating various

coarse variants of the same high-res mesh with a low-distortion

bijective map. Bijectivity is crucial for the quality of our training

data, ensuring no self-overlaps exist and that every part of the target

surface has a pre-image on the coarse mesh.

3 NEURAL SUBDIVISION

In the following we overview the main components of our neu-

ral subdivision: the test-time inference pipeline, training and loss

(Sec. 4), data-generation (Sec. 4), and finally the network architecture

(Sec. 5). Later sections will discuss these components in detail.

Inference. As illustrated in Fig. 7, our method takes a coarse tri-

angle mesh (gray) as input and recursively refines it by subdividing

each triangle to create additional vertices and faces. The output is a

sequence of subdivided meshes (blue) with different levels of details.

Our subdivision process follows a simple topological update rule

(same as Loop), namely inserting new vertices at the midpoints of

all edges. It then uses a neural network to predict new positions for

all vertices, at each new level of subdivision.

Training and loss. The data we generate provides us with corre-

spondences between predicted vertices and points inside the triangle

on the ground truth shape. We train our network with the simple

ℓ2 loss, by measuring the distance between each predicted vertex

position at every level of subdivision and its corresponding point on

the original shape (green). As there is no existing dataset consisting

of pairs of high-quality meshes and subdivision surfaces in corre-

spondence, we instead develop a novel technique for generating

training data, comprising of coarse and fine meshes with bijective

mappings between them.

Data generation. We first note that each vertex v created from a

subdivision step has a well-definedmapping back to the coarse mesh,

defined by mapping that vertex to its corresponding midpoint. Thus,

each subdivided mesh at any level of subdivision can be mapped

back to the initial coarse mesh via a sequence of mid-point-to-vertex

or vertex-to-vertex maps. In practice we use barycentric coordinates

to encode this subdivided-to-coarse bijective mapping, д. Hence,
if we had a bijective mapping f between the coarse mesh and the

original mesh, we could define a unique point on the original mesh

corresponding to v , by compositing the two maps: f (д (v)).
Thus, the only missing part is to create coarse and fine meshes

with bijective mappings between them. We achieve this by taking

a high-resolution training mesh and sequentially coarsening it by

applying random sequences of edge collapses, thereby generating a

sequence of coarsened meshes. We maintain low-distortion corre-

spondences between the coarsened and original mesh by computing

a conformal map between the 1-ring edge neighborhood (before the

collapse) and the 1-ring vertex neighborhood (after the collapse).

Composition of these maps creates a dense bijective map f between

the coarse and original meshes, which is then directly applied to

the training (Fig. 9).

Advantages of our training approach. In comparison to closest

point losses that are commonly used to train generative neural

networks, our correspondence-based loss is aware of the mani-

fold structure (Fig. 6) and is orders of magnitude faster to compute

(Fig. 17). Bijectivity and continuity of the map ensure that the en-

tire ground truth surface is captured by some region of the coarse

mesh (Fig. 10). The low distortion encourages uniformity, which in

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Neural Subdivision • 1:5

ground truth

coarse
meshes

ground truth
level 1

ground truth
level 2

Fig. 8. Given a ground truth shape (green), we use random edge collapses to create several coarse meshes (gray). For each coarse mesh, we subdivide the mesh

and use the bijective map to determine the position on the ground truth for all the vertices across different levels. The blue meshes are the ground truth

subdivisions that exhibit one-to-one vertex correspondences to the network predictions.

Fig. 9. Given an edge collapse algorithm of choice, we plug in our succes-

sive self-parameterization described in Sec. 4.1 to compute a bijective map

between the original mesh (green) and its decimated version (gray). We

visualize the map by coloring the fine mesh using the triangulation of the

coarse mesh (right). ©Tarbosaurus Skull by gpvillamil under CC BY-SA.

turn enables the reproduction of the target surface with just a few

uniform subdivisions, and, more importantly reduces the variance

in the signal the network needs to learn. We can further leverage

the low-distortion map to map an additional signal, such as texture

(Fig. 3). As our training data contains many pairs with different

random decimations of the same ground truth (App. E), our network

is able to learn how to generalize across discretization.

Network architecture. Similarly to the subdivision process, the

learnable modules of our network are applied recursively. They op-

erate over atomic local mesh neighborhoods and predict differential

features (meaning they represent geometry in the local coordinates

of the mesh, and not in world coordinates). These features are then

used to compute vertex coordinates at the new level of subdivision.

We define three types of modules applied at three sequential steps.

During the Initialization step, we first compute differential per-

vertex quantities that are based on the local coordinate frame. A

learnable module I is applied to the 1-ring neighborhood of every

vertex to map these differential quantities to a high-dimensional

feature vector stored at the vertex. Note that this high-dimensional

feature vector is a concatenation of a learnable latent space which en-
codes local geometry of the patch, and differential quantities which

directly represent local geometry and enable us to reconstruct the

vertex coordinates.

moved by moved by
For each subsequent subdivi-

sion iteration, we assumes that the

topology is updated following the

Loop subdivision scheme, splitting

each edge at midpoint, and conse-

quently, subdividing each triangle

into four (see inset). A Vertex step uses the moduleV to predict

vertex features for the next level of subdivision based on its 1-ring

neighborhood, where vertices affected by this step only involve cor-

ners of triangles at the previous mesh level. Then, an Edge step uses

the module E to compute features of vertices added at midpoints

based on the pair of vertices that were connected by an edge at the

previous mesh level.

1

2

3

4

half-flap

Our modules share a very simi-

lar architecture and heavily rely

on a learnable operator defined

over a half-flap: a directed edge

and its two adjacent triangles (see

the inset). We use the directed edge to define the local coordinate

frame which is used to estimate the differential features of either

input or output of learnable modules. Note also that the directed

edge allows us to order the four adjacent vertices of the flap in a

canonical way. We concatenate their features and feed them into

shallowmulti-layer perceptrons (MLP). The weights of the MLPs are

shared within each module type and across all levels of subdivision.

Both modules I andV process all half-flaps defined by an outgoing

edge and use average pooling to combine the half-flap features into

per-vertex features. The module E also combines features from two

half-flaps (both directions of the edge) via average pooling. Since

our architecture is local, and uses input and output features that

are invariant to rigid motions, it exhibits an impressive ability to

generalize from example, even when trained on a single fine mesh.

4 DATA GENERATION AND TRAINING

While our network architecture and invariant layers are crucial for

its ability to learn subdivisions, it by its own is only half of the

two main components that together facilitate high-quality neural

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:6 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

ground truth coarse mesh
closest point

(level 6)
with bijectivity

(level 6)

Fig. 10. Given a ground truth/coarse mesh pair, naively using “closest-point-

on-mesh” to estimate correspondences between the level-6 subdivided mesh

and the ground truth results in a non-bijectivemap, causing the loss function

to fail to capture the entire ground truthmesh (third column). Our successive

self-parameterization ensures bijectivity, which implies the entire ground

truth surface will be captured (right)

original uniform qslim

Fig. 11. Different edge-collapse algorithms can be used in a plug-and-play

manner to create, for instance, a uniform-area parameterization (middle)

and an appearance-preserving parameterization (right). This flexibility is

used to create training data with diverse types of discretizations.

subdivisions. The other half consists of the training process, data

and the loss function.

Consider a naive approach to the subdivision training: generate

pairs of coarse/fine meshes by a decimation algorithm; measure

the distance between the network’s predicted subdivision and the

ground truth, for instance by the average distance between predicted

points and their projections on the ground truth mesh; iterate over

coarse/fine pairs while optimizing the loss. This naive approach has

a major caveat. Computing correspondences using the chamfer-like

loss (Fig. 6) or point-to-mesh distance (Fig. 10) is known to lead to

incorrect and self-overlapping matches between shapes. This leads

to a badly training set up because the loss itself exhibits artifacts.

In lieu of this naive approach, we consider the fact that a pair

of coarse and fine meshes both approximate the same underlying

smooth surface. This motivates us to compute the correspondences

based on the intrinsic geometry, instead of an ad-hoc correspon-

dence. The outcome is a high-quality bijective map between each

pair of coarse and fine meshes, enabling us to obtain one-to-one

vertex correspondences. Therefore a simple ℓ2 loss is sufficient to

correctly measure the error between every level of neural subdivi-

sion and the ground truth shape.

4.1 Successive Self-Parameterization

One possible solution is to apply general shape matching techniques.

But ensuring bijectivity in general shape matching is difficult. For

. . .
decimations

Fig. 12. We compute a bijective map for each edge collapse. The bijective

map from the coarsest mesh M0
to the input mesh ML

is then computed

by composing all the maps f l−1l .

instance, it requires the two shapes to have the same number of

vertices [Vestner et al. 2017], or a user-guided common domain

[Praun et al. 2001; Schreiner et al. 2004], or user-provided landmark

correspondences [Aigerman et al. 2014, 2015; Kraevoy and Sheffer

2004] (see [VanKaick et al. 2011] for a survey). However, our problem

is considerably simpler, since we aim to construct a map between

different discretizations of the same shape, and we have full control

on the decimation procedure.

The closest solution to our problem is a seminal work – MAPS

[Lee et al. 1998] – on self-parameterization. Given an input mesh,

MAPS computes the bijective map by successively removing vertices

of the maximum independent set. Since then, several improvements

have been proposed [Guskov et al. 2002, 2000; Khodakovsky et al.

2003]. Unfortunately, they cannot be directly applied to edge col-

lapses for creating training data for our learning task (see App. D).

We need an algorithm that has the flexibility to be used with any

edge decimation method, so that we can generate a diverse collec-

tion of coarse meshes (see Fig. 11). Fortunately, the idea from [Cohen

et al. 1998, 1997, 2003] for minimizing mesh/texture deviation leads

us to generalize the idea of MAPS to any edge collapses.

Our method for computing the bijective map, designed specifi-

cally for creating data to train neural subdivision, combines the idea

of self-parameterization from MAPS [Lee et al. 1998] and the idea of

successive mapping from [Cohen et al. 1998, 1997, 2003]. Thus, we

call it successive self-parameterization. This combination enables us

to compute the parameterization intrinsically to avoid the require-

ment of having a given UV map, such as in the method of Liu et al.

[2017]. The result of the combination is extremely simple. It is a

two-step module that can be applied to any choice of edge-collapse

algorithm (see Fig. 11) and it will output a bijective map after the

decimation. Hence, the inputs to successive self-parameterization

are a triangle mesh and an edge collapse algorithm of choice, and

the output is a decimated mesh with a corresponding bijective map

between the input and the decimated model. For the sake of repro-

ducibility, we reiterate the core ideas from [Cohen et al. 1998, 1997;

Lee et al. 1998], and describe how to combine both ideas.

We denote the input triangle mesh as ML = (VL , FL), where

V
L , FL are vertex positions and face information respectively at the

original level L. The input meshML
is successively simplified into a

series of meshesMl = (Vl , Fl)with 0 ≤ l ≤ L, whereM0 = (V0, F0)

is the coarsest mesh. For each edge collapse Ml → Ml−1
, we

compute the bijective map f l−1l : Ml−1 → Ml
(see Fig. 12) on the

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Neural Subdivision • 1:7

edge collapse

UV edge
collapse

Fig. 13. For each edge collapse, we simultaneously collapse the edge on the

3D mesh (top) and the UV domain (bottom). As the boundary vertices of

the edge’s 1-ring are preserved through the edge collapse, we constrain the

flattened boundary in UV space to be at the same position when computing

the conformal parameterization of the post-collapse 1-ring.

Fig. 14. Since both the pre-collapse and post-collapse parameterizations of

the 1-ring map it into the same 2D domain, we can easily use the shared

UV space to map a point back and forth between Ml
and Ml−1

.

fly. The final map f 0L : M0 → ML
is computed via composition,

f 0L = f L−1L ◦ · · · ◦ f 0
1
. (1)

We now focus our discussion on the computation of a bijective map

for a single edge collapse.

4.2 Single Edge Collapse

In each edge collapse, the triangulation remains the same, except

for the neighborhood of the collapsed edge. Let N(i) be the neigh-
boring vertices of a vertex i and let N(j,k) = N(j) ∪ N(k) denote
the neighboring vertices of an edge (j,k). After each collapse, the

algorithm computes the bijective map for the edge’s 1-ring N(j,k),
in two stages. It first parameterizes the neighborhoodN(j,k) (prior
to the collapse) into 2D. It then performs the edge collapse both

on the 3D mesh, and in UV space, as depicted in Fig. 13. The key

observation from [Cohen et al. 1998, 1997] is that the boundary

vertices ofN(j,k) before the collapse become the boundary vertices

of N(i) after the collapse. Hence the UV parameterization of the

1-ring remains valid and injective after the collapse. Then, for any

given point pl−1 ∈ Ml−1
(represented in barycentric coordinates),

we can utilize the shared UV parameterization to map pl−1 to its

corresponding barycentric point pl ∈ Ml
and vice-versa, as shown

in Fig. 14.

Following the idea of MAPS [Lee et al. 1998], we use conformal

flattening [Mullen et al. 2008] to compute the UV parameterization

of the 1-rings, Fig. 13. After collapsing an edge and inserting the new

vertex v ∈ R3 , we determine this vertex’s UV location by performing

Fig. 15. Using a different parameterization technique that does not result

in a conformal flattening leads to a distorted parameterization (left), in

contrast to the conformal parameterization we use, that reduces the amount

of angle distortion accumulated throughout the edge collapse sequence

(right). ©Hilbert Cube by tbuser under CC BY-SA.

another conformal flattening with fixed boundary. The conformality

of the map is crucial, as it minimizes angle distortion which would

otherwise accumulate throughout the successive parameterizations,

leading to distorted, skewed correspondences and hindered learning

of the network (see Fig. 15).

4.3 Implementation

Successive self-parameterization can be used with any edge collapse

algorithm simply by adding two additional steps (see App. B). The

actual edge collapse algorithm, such as qslim [Garland and Heckbert

1997], takes O(N logN) time, and the flattening is a constant cost

on top of each collapse (assuming valence is bounded). Thus the

complexity of the entire algorithm containing both edge collapses

and successive self-parameterization is still O(N logN).

The robustness of the parameterization algorithm relies heavily

on the robustness of the underlying edge collapse algorithm. Edge

collapses that may lead to self-intersections can result in unusable

maps. In App. C, we summarize our criteria for checking the validity

of an edge collapse. This is crucial to ensure that we can generate

training data using a wide range of shapes (see Fig. 16).

4.4 Training Data & Loss Computation

102

sec.

100

10-2

10-4

x1041 3 5 97
#vertices

chamfer (GPU)

chamfer (CPU, KD tree)

ours (GPU)

ours (CPU)

semi-log runtime

Fig. 17. Our loss computation is

orders of magnitude faster than

the chamfer loss on the GPU

(Kaolin [J. et al. 2019]) or the

CPU (our KD-tree-based imple-

mentation).

Our training data is constructed

by applying the successive self-

parameterization on top of ran-

dom edge collapses. In Fig. 8,

given a high-resolution shape

(green), we use qslim [Garland

and Heckbert 1997] with a ran-

dom sequence of edge collapses

to construct several different dec-

imated models (gray). During the

collapse, we plug in our self-

parameterization to obtain a high-

quality bijective map for each

coarse and fine pair.

After the network subdivides the coarse mesh, we use the map to

retrieve one-to-one correspondences to the input shape. Specifically,

when retrieving the correspondences, we use the Loop topology

update to add points in the middle of each edge, e.g., the point with

barycentric coordinates (0.5, 0.5, 0) in a triangle of the coarse mesh.

We use these barycentric coordinates b on the coarse mesh to obtain

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:8 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

Fig. 16. Checking the criteria of collapsible edges is crucial for the robustness of the successive self-parameterization. From left to right, ©Psycho by Aeva

(2nd, CC BY-SA), Parametric Sculpture by MCompeau (4th, CC BY-NC), Deer Head by TakeshiMurata (5th, CC BY-SA), Brain Slug by Zarquon (6th, CC

BY-NC-SA), Spiral Light Bulb by benglish (7th, CC BY-SA), and Metratron by addy (9th, GNU).

the barycentric coordinates f (b) on the fine mesh, as illustrated in

Fig. 14 using the bijective map f . During training, suppose E(b)

is the vertex position output by the network E. We measure the

per-vertex loss with the ℓ2 distance ∥ f (b) − E(b)∥2. Compared to

the chamfer distance [Barrow et al. 1977], a widely used distance in

training 3D generativemodels [Fan et al. 2017], our loss computation

is orders of magnitude faster (see Fig. 17).

5 NETWORK ARCHITECTURE

Given a mesh at a previous level of subdivision along with a known

topological update rule (mid-point subdivision as used by Loop),

our neural network computes all vertex coordinates for the subdi-

vided mesh. Our process involves three main steps illustrated in

Fig. 18. The Initialization step uses a learnable neural module

I to map input per-vertex features to high-dimensional feature

vector at each vertex. In each subdivision iteration, the Vertex

step uses a learnable module V to update features at corners of

triangles of the input mesh, and the Edge step uses a learnable

module E to compute features of vertices that were generated at

mid-points of edges of the input mesh. Our network is inspired by

classical subdivision algorithms which have two sets of rules: to

update (1) even vertices from previous iterations, and (2) the newly

inserted odd vertices. One difference of our approach is that we

apply V and E in sequence, instead of in parallel. This allows us to

harness neighborhood information from previous steps.

We make several design choices that are critical to the ability

of our network to generalize well even from very small amount of

training data. First, even though all mesh update steps are global

(i.e., they affect every vertex of the mesh), our learnable modules

that are used in these steps operate over local mesh patches and

share weights. Thus, even a single training pair provides many local

mesh patches to train our neural modules. Second, our modules

operate over original discrete elements of the mesh, and do not

require re-parameterizing or re-sampling the surface. Represent-

ing input and output using the mesh discretization enables us to

preserve the topology of the input, and generalize to novel meshes

with different topology. Third, we represent our vertices using dif-

ferential quantities with respect to a local coordinate frame instead

of using global coordinates. Thus our neural modules operate over

representation that is invariant to rigid motion which simplifies

training and improves their ability to generalize.

The key component of our neural module is a learnable operator

that takes half-flap, a 2-face flap adjacent to a half-edge, inspired by

the edge convolution approach of Hanocka et al. [2019]. We choose

to use half-flap (instead of a flap around an undirected edge) since

it provides a unique canonical orientation for the four vertices at

the corners of adjacent faces. It also provides a well-defined local

coordinate frame which we will use to define differential vertex

quantities for the input and output (see the inset). Each flap operator

is a shallow multi-layer perceptron (MLP) defined over features of

four ordered points. We train one operator per module (I, V , E)

across all levels of subdivision and training examples.

Equipped with the half-flap operator, we use average pooling to

aggregate features from different half-flaps to per-vertex features

in all our neural subdivision steps. Initialization and Vertex

steps apply the half-flap operator to every outgoing edge in a 1-ring

neighborhood of a vertex, and average pooling aggregates per-half-

flap outputs into a per-vertex feature. Edge step only considers per-

vertex features at two endpoints of a subdivided edge to compute

the feature of the inserted vertex. Thus, it simply applies half-flap

operator for each directions of the edge and again uses average

pooling to get the vertex feature.

world axes local axesThe final critical element of our

architecture design is the represen-

tation for the input and output. As

mentioned before, we use local dif-

ferential quantities to ensure in-

variance to rigid transformation. The input features for the half-

flaps used in Initialization step by module I consist of three edge

vectors (originating at the source vertex of half-flap) and differential

coordinates of each vertex, as illustrated in Fig. 19, top. The vector

of differential coordinates stores the discrete curvature information

and is defined as the difference between the absolute coordinates

of a vertex and the average of its immediate neighbors in the mesh

[Sorkine 2005]. To achieve rotation invariance we represent our

differential quantities in the local frame of each half-flap (see the

inset), where we treat the half-edge direction as the x-axis, the edge

normal computed via averaging the two adjacent face normals as

the z-axis, and the cross product of the previous two axes becomes

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Neural Subdivision • 1:9

..
.

..
.

av
er

ag
e

po
ol

av
er

ag
e

po
ol

single subdivision iteration

Initialization step Vertex step Edge step

..
.

..
.

av
er

ag
e

po
ol

Fig. 18. Our neural subdivision consists of three sequential steps: Initialization , Vertex , and Edge , with three network modules: I, V , and E for each step

respectively. In both Initialization and Vertex steps, we apply V and E for the half-flaps of all the outgoing edges of a vertex, and use average pooling to

combine the output features back to the center vertex (blue). In the Edge step, we apply E to both half-flaps of an undirected edge and use average pooling to

map the output features to the center vertex (green) of the edge.

differential coordinatesedge vectors

input features of network

input features of network &

:

vertex featuresedge vectors

:

Fig. 19. The input feature to module I consists of three edge vectors from

the source vertex (blue) and vectors of the differential coordinates for the

four vertices. The input features to module V and E are three edge vectors

with per-vertex high-dimensional features from the previous steps.

output features of network &

output features of network

&

&

&

&

mid-point

fv

fv

fv

fv

Fig. 20. The outputs of modules I and V are the displacement vector from

the starting vertex and a learned feature vector fv stored at the source

vertex (blue). The outputs of the module E are the displacement from the

edge mid-point (green) and the feature fv stored at the mid-point.

ground truth
w/o

invariance oursinput

Fig. 21. We use differential quantities stored in the local frames as our inputs

and outputs. This design makes our network invariant to rigid motions and

significantly boosts the quality compared to an approachwithout invariance.

our y-axis. The input to half-flap operators used in Vertex and

Edge steps is similar (Fig. 19, bottom), where we use edge vectors

and per-vertex high-dimensional learned features (either produced

by Initialization step or by previous subdivision iteration). The

output of half-flaps used in Vertex and Edge steps includes high-

dimensional learned features and differential quantities that can be

used to reconstruct the vertex position. For the latter we use the

vertex displacement vector from the mid-point subdivided mesh

(see Fig. 20) in the local coordinate system of the half-flap. For the

Initialization and the Vertex networks, the predicted displace-

ments live on the vertices; for the Edge network, the predicted

displacements live on the edge midpoints. In our experiments, we

notice there is no difference between predicting from the mid-point

subdivided surface or other subdivision surfaces (see App. H), so

we choose mid-point subdivision for simplicity. We estimate global

coordinates of vertices after each step to visualize intermediate lev-

els of subdivision and compute the loss function, and convert global

coordinates to local differential per-vertex quantities before each

step to ensure that each network only observes translation- and

rotation- invariant representations.

Fig. 21 illustrates that invariant representation is critical to the

quality of results. We demonstrate that even when trained on an

identical true shape, a slight rigid motion of that shape renders

learned weights completely inapplicable at inference time. We also

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:10 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

Table 1. Hyperparameters of our sub-networks. All networks are fully-

connected multi-layer perceptrons with two hidden layers.

network I network V network E

f
in

3 · 3 + 4 · 3 3 · 3 + 4 · 32 3 · 3 + 4 · 32

fc
1

32 32 32

fc
2

32 32 32

f
out

3 + 29 3 + 29 3 + 29

observe that incorporating the differential coordinates as part of

the input features makes the training converge faster (see App. H).

Thanks to our local half-flap operators and invariant representations

we can train our architecture even with shallow 2-layer MLPs (see

Table 1 for network hyper-parameters). We further evaluate other

design decisions and conclude that details such as whether to predict

displacements from the mid-point or the Loop subdivision, whether

to recursively apply the moduleV , whether to measure loss across

all levels, and whether to use input features proposed in [Hanocka

et al. 2019] offer small improvements to the convergence (see App. H

for details).

We implemented our network in PyTorch [Paszke et al. 2019].

We use ReLu activation [Nair and Hinton 2010], and the ADAM

optimizer [Kingma and Ba 2015] with learning rate 0.002.

6 EVALUATIONS

We evaluate our neural subdivision with a range of results of in-

creasing complexity. We start by showing that we can generalize to

isometric deformations, non-isometric deformations, shapes from

different classes, and shapes from different types of discretizations.

We summarize the details of our experiments in App. F.

In practice, modelers often manipulate the coarse subdivision

cage of a character into different poses, and then apply the subdi-

vision operator. This scenario implies that being able to train on

one single pose and generalize to unseen poses is important for

character animation. In Fig. 22, we train on a single pose (in green)

and show that our network can generalize to unseen poses under

(approximately) isometric deformations.

In addition to poses, in Fig. 23 we mimic the real scenario to man-

ually change the coarse cage and show that the learned subdivision

can also generalize to non-isometric deformations.

Subdivision operators are often used to create novel 3D content,

which implies the importance of generalizing to totally different

shapes. In Fig. 24 we show that even when trained on only a single

shape (green), our network is able to generalize to many other

shapes (blue). We also show that our network trained on classic

Loop subdivision sequences is able to reproduce Loop subdivision

on unseen shapes (App. G).

We further evaluate neural subdivision on shape discretizations

created in a totally independent way. In Fig. 25 we obtain coarse

shapes created by artists, instead of from edge collapses, and show

that neural subdivision can still generalize well.

The ability to generalize even when trained on a single shape

gives us the opportunity to do stylized subdivisions. In Fig. 26 our

neural subdivision operators are aware of the “style” of the training

shape and are able to create different results from the same coarse

Fig. 22. We train our network on a single pose (green) and the network is

able to generalize to unseen poses (blue).

coarse cage

Fig. 23. We mimic the modeling scenario by applying non-isometric de-

formations to the coarse cage (gray). Our subdivision network is able to

generalize to unseen non-isometric deformations.

Fig. 24. Evenwhen trained on only a single shape (green bunny), our network

can generalize to subdividing different geometries (blue). ©Hilbert Cube by

tbuser (right) under CC BY-NC.

geometry. In Fig. 27, we show different results when trained on a

smooth organic shape vs a man-made object with sharp contours.

To quantitatively analyze how our network generalizes to unseen

shapes, we take the TOSCA dataset [Bronstein et al. 2009] which

contains 80 shapeswith 9 categories to perform quantitative analysis.

For the top table of Table 2, we train on a single category (Centaur)
and test on the remaining categories. Our test shapes are generated

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Neural Subdivision • 1:11

input scene

subdivided scene

Fig. 25. In addition to subdividing meshes constructed via decimation, our

network can also generalize to subdivide meshes created by artists.

Fig. 26. Using different shapes in training leads to stylized subdivision

results (blue) biased towards the training shapes (green). ©Egg Chair by

TeamTeamUSA (left) under CC BY.

Fig. 27. Training on a smooth shape leads to a smoother subdivision result

(middle). Training on a man-made object can preserve the sharp creases

(right).

Fig. 28. We train our subdivision network on a mixture of organic and

non-organic shapes. We observe that training on more objects does not

significantly change visual quality in this case.

Table 2. We train on a single category, Centaur (top table), and three cat-

egories, Centaur, David, Horse (bottom table), separately, and evaluate by

subdividing the rest of the TOSCA shapes. The results indicate that neural

subdivision outperforms classic Loop subdivision [Loop 1987] and modified

butterfly subdivision [Zorin et al. 1996] on two popular metrics: Hausdorff

distance H, and mean surface distance M computed via metro [Cignoni

et al. 1998].

Category H
loop

H
m.b.

Hours M
loop

M
m.b.

Mours

Cat 2.75 2.17 2.08 0.73 0.21 0.17
David 2.95 2.13 1.83 0.88 0.27 0.20
Dog 3.26 2.32 2.11 0.84 0.31 0.26
Gorilla 4.53 3.17 2.56 1.27 0.48 0.36
Horse 5.87 4.53 4.04 1.51 0.50 0.45
Michael 3.88 2.71 2.24 1.12 0.38 0.28
Victoria 4.25 3.01 2.36 1.12 0.39 0.30
Wolf 2.83 1.74 1.63 0.69 0.23 0.21

Category H
loop

H
m.b.

Hours M
loop

M
m.b.

Mours

Cat 2.75 2.17 2.09 0.73 0.21 0.16
Dog 3.26 2.32 2.12 0.84 0.31 0.25
Gorilla 4.53 3.17 2.89 1.27 0.48 0.34
Michael 3.88 2.71 2.15 1.12 0.38 0.27
Victoria 4.25 3.01 2.49 1.12 0.39 0.28
Wolf 2.83 1.74 1.65 0.69 0.23 0.20

by coarsening source meshes with qslim down to 350-450 vertices.

We measure the error between the two-level subdivided mesh and

the original shape using Hausdorff distance, as well as mean surface

distance computed by the metro [Cignoni et al. 1998]. Our method

consistently produces smaller errors compared to the classic Loop

[Loop 1987] and modified butterfly [Zorin et al. 1996] subdivisions.

We further evaluate our method when trained on multiple shapes

and categories. In Fig. 28, we train the network on a increasing

number of objects and observe that the results are visually similar.

But our quantitative analysis in the bottom table of Table 2 shows

that training on more categories (Centaur, David, Horse) can slightly

reduce the error.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:12 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

input

continue with Loop
subdivision

continue with
neural subdivision

lv.1 lv.2

lv.3 lv.4

lv.3 lv.4

Fig. 29. Since our method induces a non-linear subdivision, there is no

guarantee for the existence of a limit surface (bottom). An alternative is

to apply neural subdivision at the trained levels, and continue with classic

subdivision (top) to ensure a smooth limit surface.

inputground truth ours

Fig. 30. Our approach is based on local geometry, and thus fails to halluci-

nate semantic features. ©Bratty Dragon by Splotchy Ink under CC BY.

7 LIMITATIONS & FUTURE WORK

Extending the neural subdivision framework to quadrilateral meshes

and surface with boundaries would be closer to real-world modeling

scenarios. Making neural subdivision scale-invariant and converge

to a limit surface (see Fig. 29) are also desirable in practice. Incor-

porating global information in the training could help the network

hallucinate semantic features (see Fig. 30). Applying architectures

(e.g., Recurrent Neural Net) that are more suitable for sequence

predictions could help the network to harness information from

a wider neighborhood and to dive to a deeper subdivision level.

Training on data that contain a wide range of triangle aspect ratios

and curvature information could further improve the robustness of

the network. Since our data-generation algorithm is extremely effi-

cient, it could be naturally used in an online-learning setting, where

our algorithm constantly draws new randomly-coarsened meshes

on-the-fly. This can be extremely useful in, e.g., a GAN setting. As a

first step towards neural subdivision, we showed reconstruction of

fine meshes from coarse ones. Fully-fledged super-resolution, detail

hallucination, and surface stylization are interesting next steps. All

of these questions provide interesting topics for the future research

on neural subdivision.

ACKNOWLEDGMENTS

Our research is funded in part by New Frontiers of Research Fund

(NFRFE–201), the Ontario Early Research Award program, NSERC

Discovery (RGPIN2017–05235, RGPAS–2017–507938), the Canada

Research Chairs Program, the Fields Centre for Quantitative Analy-

sis and Modelling and gifts by Adobe Systems, Autodesk and MESH

Inc. We thank members of Dynamic Graphics Project at the Uni-

versity of Toronto; Thomas Davies, Oded Stein, Michael Tao, and

Jackson Wang for early discussions; Rahul Arora, Seungbae Bang,

Jiannan Li, Abhishek Madan, and Silvia Sellán for experiments and

generating test data; Honglin Chen, Eitan Grinspun, and Sarah

Kushner for proofreading. We thank Mirela Ben-Chen for the en-

lightening advice on the experiments and the writing; Yifan Wang

for running comparisons; Ahmad Nasikun for evaluations; Nick

Sharp for suggestions on the visualization; and John Hancock for

the IT support. We obtained our test models from Thingi10K [Zhou

and Jacobson 2016] and we thank all the artists for sharing a rich

variety of 3D models.

REFERENCES

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2014. Lifted bijections for low

distortion surface mappings. ACM Transactions on Graphics (TOG) 33, 4 (2014), 69.
Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless surface mappings.

ACM Transactions on Graphics (TOG) 34, 4 (2015), 72.
Harry G. Barrow, Jay M. Tenenbaum, Robert C. Bolles, and Helen C. Wolf. 1977. Para-

metric Correspondence and Chamfer Matching: Two New Techniques for Image

Matching. In Proceedings of the 5th International Joint Conference on Artificial Intelli-
gence. Cambridge, MA, USA, August 22-25, 1977, Raj Reddy (Ed.). William Kaufmann,

659–663.

Alexander I. Bobenko, Helmut Pottmann, and Thilo Rörig. 2020. Multi-Nets. Classifica-

tion of Discrete and Smooth Surfaces with Characteristic Properties on Arbitrary

Parameter Rectangles. Discret. Comput. Geom. 63, 3 (2020), 624–655.
Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2009. Numerical

Geometry of Non-Rigid Shapes. Springer.
Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE
Signal Process. Mag. 34, 4 (2017), 18–42.

E. Catmull and J. Clark. 1998. Recursively Generated B-Spline Surfaces on Arbitrary
Topological Meshes. Association for Computing Machinery, New York, NY, USA,

183–188.

Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu, and Hao (Richard) Zhang.

2020. Learning to Generate 3D Structures. In Eurographics State-of-the-Art Report
(STAR).

Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. 1998. Metro: measuring error

on simplified surfaces. In Computer graphics forum, Vol. 17. Wiley Online Library,

167–174.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. 1998. Appearance-Preserving

Simplification. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’98). Association for Computing Machinery,

New York, NY, USA, 115–122.

Jonathan D. Cohen, Dinesh Manocha, and Marc Olano. 1997. Simplifying polygonal

models using successive mappings. In IEEE Visualization ’97, Proceedings, Phoenix,
AZ, USA, October 19-24, 1997. IEEE Computer Society and ACM, 395–402.

Jonathan D. Cohen, Dinesh Manocha, and Marc Olano. 2003. Successive Mappings: An

Approach to Polygonal Mesh Simplification with Guaranteed Error Bounds. Int. J.
Comput. Geometry Appl. 13, 1 (2003), 61.

Angela Dai and Matthias Nießner. 2019. Scan2Mesh: From Unstructured Range Scans

to 3D Meshes. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE,

5574–5583.

Tony DeRose, Michael Kass, and Tien Truong. 1998. Subdivision Surfaces in Character

Animation. In Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 1998, Orlando, FL, USA, July 19-24, 1998, Steve
Cunningham, Walt Bransford, and Michael F. Cohen (Eds.). ACM, 85–94.

Tamal K Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V Nekhayev. 1999.

Topology preserving edge contraction. Publ. Inst. Math.(Beograd)(NS) 66, 80 (1999),
23–45.

Daniel Doo. 1978. A subdivision algorithm for smoothing down irregularly shaped

polyhederons. Computer Aided Design (1978), 157–165.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Neural Subdivision • 1:13

D. Doo and M. Sabin. 1998. Behaviour of Recursive Division Surfaces near Extraordinary
Points. Association for Computing Machinery, New York, NY, USA, 177–181.

Nira Dyn, David Levine, and John A. Gregory. 1990. A butterfly subdivision scheme for

surface interpolation with tension control. ACM Trans. Graph. 9, 2 (1990), 160–169.
Haoqiang Fan, Hao Su, and Leonidas J. Guibas. 2017. A Point Set Generation Network

for 3D Object Reconstruction from a Single Image. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017. IEEE Computer Society, 2463–2471.

Michael S. Floater and Charles A. Micchelli. 1997. Nonlinear Stationary Subdivision.

Journal of Approximation Theory (1997).

Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric

error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1997, Los Angeles, CA, USA, August 3-8, 1997,
G. Scott Owen, Turner Whitted, and Barbara Mones-Hattal (Eds.). ACM, 209–216.

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu

Aubry. 2018a. 3D-CODED: 3D Correspondences by Deep Deformation. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part II (Lecture Notes in Computer Science), Vittorio Ferrari, Martial

Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.), Vol. 11206. Springer, 235–251.

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu

Aubry. 2018b. A Papier-Mâché Approach to Learning 3D Surface Generation. In

2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 216–224.

Igor Guskov, Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. 2002. Hybrid

meshes: multiresolution using regular and irregular refinement. In Proceedings of
the 18th Annual Symposium on Computational Geometry, Barcelona, Spain, June 5-7,
2002, Ferran Hurtado, Vera Sacristán, Chandrajit Bajaj, and Subhash Suri (Eds.).

ACM, 264–272.

Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter Schröder. 2000. Normal meshes.

In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2000, New Orleans, LA, USA, July 23-28, 2000, Judith R. Brown

and Kurt Akeley (Eds.). ACM, 95–102.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel

Cohen-Or. 2019. MeshCNN: A Network with an Edge. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 90.

Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark A. Halstead, Hubert Jin, John Alan

McDonald, Jean Schweitzer, and Werner Stuetzle. 1994. Piecewise smooth surface

reconstruction. In Proceedings of the 21th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1994, Orlando, FL, USA, July 24-29, 1994, Dino
Schweitzer, Andrew S. Glassner, and Mike Keeler (Eds.). ACM, 295–302.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John Alan McDonald, and Werner Stuet-

zle. 1993. Mesh optimization. In Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1993, Anaheim, CA, USA,
August 2-6, 1993, Mary C. Whitton (Ed.). ACM, 19–26.

Krishna Murthy J., Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang, Artem

Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja Fidler.

2019. Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research.

arXiv:1911.05063 (2019).
Kestutis Karciauskas and Jörg Peters. 2018. A New Class of Guided C2 Subdivision

Surfaces Combining Good Shape with Nested Refinement. Comput. Graph. Forum
37, 6 (2018), 84–95.

Ladislav Kavan, Dan Gerszewski, AdamW. Bargteil, and Peter-Pike Sloan. 2011. Physics-

Inspired Upsampling for Cloth Simulation in Games. ACMTrans. Graph. 30, 4, Article
Article 93 (July 2011), 10 pages.

Michael M. Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.

ACM Trans. Graph. 32, 3 (2013), 29:1–29:13.
Andrei Khodakovsky, Nathan Litke, and Peter Schröder. 2003. Globally Smooth Pa-

rameterizations with Low Distortion. ACM Trans. Graph. 22, 3 (July 2003), 350–357.

https://doi.org/10.1145/882262.882275

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.).

Leif Kobbelt. 1996. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary

Topology. Comput. Graph. Forum 15, 3 (1996), 409–420.

Leif Kobbelt. 2000. 3-subdivision. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 2000, New Orleans, LA,
USA, July 23-28, 2000, Judith R. Brown and Kurt Akeley (Eds.). ACM, 103–112.

Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2018.

Surface Networks. In 2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society,

2540–2548.

Vladislav Kraevoy and Alla Sheffer. 2004. Cross-parameterization and compatible

remeshing of 3D models. ACM Transactions on Graphics (TOG) 23, 3 (2004), 861–
869.

Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence C. Cowsar, and David P.

Dobkin. 1998. MAPS: Multiresolution Adaptive Parameterization of Surfaces. In

Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1998, Orlando, FL, USA, July 19-24, 1998, Steve Cunningham,

Walt Bransford, and Michael F. Cohen (Eds.). ACM, 95–104.

Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2019.

PU-GAN: A Point Cloud Upsampling Adversarial Network. In 2019 IEEE/CVF Inter-
national Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27
- November 2, 2019. IEEE, 7202–7211.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam I. Gingold. 2017. Seamless:

seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Trans. Graph. 36, 6 (2017), 216:1–216:15.

Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang.

2006. Geometric modeling with conical meshes and developable surfaces. In ACM
transactions on graphics (TOG), Vol. 25. ACM, 681–689.

Charles Loop. 1987. Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, Department of Mathematics (1987).

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,

Vladimir G. Kim, and Yaron Lipman. 2017. Convolutional neural networks on

surfaces via seamless toric covers. ACM Trans. Graph. 36, 4 (2017), 71:1–71:10.
Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.

2015. Geodesic Convolutional Neural Networks on Riemannian Manifolds. In 2015
IEEE International Conference on Computer Vision Workshop, ICCV Workshops 2015,
Santiago, Chile, December 7-13, 2015. IEEE Computer Society, 832–840.

Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. 2008. Spectral

Conformal Parameterization. Comput. Graph. Forum 27, 5 (2008), 1487–1494.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Restricted

Boltzmann Machines. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), June 21-24, 2010, Haifa, Israel, Johannes Fürnkranz and Thorsten
Joachims (Eds.). Omnipress, 807–814.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 8024–8035.

Adrien Poulenard and Maks Ovsjanikov. 2018. Multi-directional geodesic neural net-

works via equivariant convolution. ACM Trans. Graph. 37, 6 (2018), 236:1–236:14.
Emil Praun, Wim Sweldens, and Peter Schröder. 2001. Consistent Mesh Parameter-

izations. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’01). Association for Computing Machinery, New

York, NY, USA, 179–184.

Reinhold Preiner, Tamy Boubekeur, and Michael Wimmer. 2019. Gaussian-product

subdivision surfaces. ACM Trans. Graph. 38, 4 (2019), 35:1–35:11.
Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018. The shape space

of discrete orthogonal geodesic nets. ACM Trans. Graph. 37, 6 (2018), 228:1–228:17.
Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. 2018. Generating

3D Faces Using Convolutional Mesh Autoencoders. In Computer Vision - ECCV 2018
- 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
III (Lecture Notes in Computer Science), Vittorio Ferrari, Martial Hebert, Cristian

Sminchisescu, and Yair Weiss (Eds.), Vol. 11207. Springer, 725–741.

Malcolm Sabin and Neil Dodgson. 2004. A Circle-Preserving Variant of the Four-Point

Subdivision Scheme. Mathematical Methods for Curves and Surfaces: Tromsø 2004
(01 2004).

Scott Schaefer, E. Vouga, and Ron Goldman. 2008. Nonlinear subdivision through

nonlinear averaging. Comput. Aided Geom. Des. 25, 3 (2008), 162–180.
John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-surface

mapping. ACM Trans. Graph. 23, 3 (2004), 870–877.
Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and

Michael Zollhöfer. 2019. DeepVoxels: Learning Persistent 3D Feature Embeddings.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2437–2446.

Olga Sorkine. 2005. Laplacian Mesh Processing. In Eurographics 2005 - State of the Art
Reports, Dublin, Ireland, August 29 - September 2, 2005, Yiorgos Chrysanthou and

Marcus A. Magnor (Eds.). Eurographics Association, 53–70.

Jos Stam. 1998. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary

Parameter Values. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1998, Orlando, FL, USA, July 19-24, 1998, Steve
Cunningham, Walt Bransford, and Michael F. Cohen (Eds.). ACM, 395–404.

Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018. Variational Autoencoders

for Deforming 3D Mesh Models. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE
Computer Society, 5841–5850.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/882262.882275

1:14 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut

Pottmann. 2014. Form-Finding with Polyhedral Meshes Made Simple. ACM Trans.
Graph. 33, 4, Article Article 70 (July 2014), 9 pages.

Maxim Tatarchenko, Stephan R. Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and

Thomas Brox. 2019. What Do Single-View 3D Reconstruction Networks Learn?. In

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 3405–3414.

Robert F. Tobler, Stefan Maierhofer, and Alexander Wilkie. 2002a. Mesh-Based

Parametrized L-Systems and Generalized Subdivision for Generating Complex Ge-

ometry. International Journal of Shape Modeling 8, 2 (2002), 173–191.

Robert F. Tobler, Stefan Maierhofer, and Alexander Wilkie. 2002b. A Multiresolution

Mesh Generation Approach for Procedural Definition of Complex Geometry. In

2002 International Conference on Shape Modeling and Applications (SMI 2002), 17-22
May 2002, Banff, Alberta, Canada. IEEE Computer Society, 35–42.

Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A survey

on shape correspondence. InComputer Graphics Forum, Vol. 30.Wiley Online Library,

1681–1707.

Amir Vaxman, Christian Müller, and Ofir Weber. 2018. Canonical Möbius subdivision.

ACM Trans. Graph. 37, 6 (2018), 227:1–227:15.
Luiz Velho, Ken Perlin, Henning Biermann, and Lexing Ying. 2002. Algorithmic shape

modeling with subdivision surfaces. Comput. Graph. 26, 6 (2002), 865–875.
Matthias Vestner, Roee Litman, Emanuele Rodolà, Alex Bronstein, and Daniel Cremers.

2017. Product manifold filter: Non-rigid shape correspondence via kernel density

estimation in the product space. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 3327–3336.

NanyangWang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. 2018.

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-
14, 2018, Proceedings, Part XI (Lecture Notes in Computer Science), Vittorio Ferrari,

Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.), Vol. 11215. Springer,

55–71.

Yu Wang, Vladimir G. Kim, Michael Bronstein, and Justin Solomon. 2019a. Learning

Geometric Operators on Meshes. ICLR Workshop on Representation Learning on
Graphs and Manifolds (2019).

Yifan Wang, Shihao Wu, Hui Huang, Daniel Cohen-Or, and Olga Sorkine-Hornung.

2019b. Patch-Based Progressive 3D Point Set Upsampling. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019. Computer Vision Foundation / IEEE, 5958–5967.

Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. 2019. Pixel2Mesh++: Multi-View

3D Mesh Generation via Deformation. In 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019.
IEEE, 1042–1051.

Wang Yifan, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, and Olga

Sorkine-Hornung. 2020. Neural Cages for Detail-Preserving 3D Deformations. In

CVPR.
Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018.

PU-Net: Point Cloud Upsampling Network. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.
IEEE Computer Society, 2790–2799.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016). https://ten-thousand-models.

appspot.com

Denis Zorin. 2007. Subdivision on arbitrary meshes: algorithms and theory. In Math-
ematics and Computation in Imaging Science and Information Processing. World

Scientific, 1–46.

Denis Zorin, Peter Schröder, T De Rose, L Kobbelt, A Levin, and W Sweldens. 2000.

Subdivision for modeling and animation. SIGGRAPH Course Notes (2000).
Denis Zorin, Peter Schröder, and Wim Sweldens. 1996. Interpolating Subdivision

for Meshes with Arbitrary Topology. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). Association for

Computing Machinery, New York, NY, USA, 189–192.

A IMPLEMENTATION OF POINT CLOUD UPSAMPLING

An alternative way to upsample a mesh is to first convert the mesh

into point cloud via sampling over the surface, run point cloud

upsampling algorithms, and then perform a surface reconstruction

to convert the upsampled point cloud back to a mesh. However, this

procedure is expensive to incorporate into the interactive graphics

pipeline, fails to produce surfaces with different levels of detail

(see Fig. 2), and it fails to preserve textures (see Fig. 3). In addition,

many non-trivial design decisions such as the number of samples

to use and how to sample the surface would influence the quality of

the results. For example in Fig. 5, we first sample 5000 points with

uniform and farthest point sampling, followed by the method of

Wang et al. [2019b] pre-trained on statues to upsample the point

cloud by 16×, and then use the screened poisson reconstruction

[Kazhdan and Hoppe 2013] to reconstruct the surface. In the figure

we show that different sampling methods lead to different results.

The lack of connectivity information also results in some surface

artifacts.

B IMPLEMENTATION OF SUCCESSIVE

SELF-PARAMETERIZATION

Incorporating successive self-parameterization only requires adding

two additional local conformal parameterizations to the edge col-

lapse algorithm of choice. Suppose we want to collapse an edge (j,k).
We first flatten the edge’s 1-ring N(j,k), then we collapse the edge,

then we perform another conformal flattening on the 1-ring N(i)
of the newly inserted vertex i after the collapse, with the boundary

held to place from the previous flattening. This yields a bijective

map with small computational cost because each flattening only

involves a 1-ring (assuming the vertex valence is bounded).

C CRITERIA FOR COLLAPSIBLE EDGES

During edge collapses, many issues such as flipped faces and non-

manifold edges may appear. Resolving these issues is crucial to

the robustness of successive self-parameterization (see Fig. 16). We

summarize our criteria for checking the validity of an edge collapse.

If invalid, we simply avoid collapsing the edge at that iteration.

Euclidean face flips. Certain faces
in the Euclidean space may suffer

from normal flips after an edge col-

lapse. To prevent flipped faces, we

simply compare the unit face nor-

mal n̂ of each neighboring face fi before and after the collapse

n̂
before

fi
· n̂afterfi

> δ . (2)

Our default δ = 0.2 which is sufficient to avoid face flips in all our

experiments.

UV face flips. Flipped faces may also appear in the UV space due

to both the conformal flattening and the edge collapse. We simply

check whether the signed area of each UV face is positive before

and after collapses to prevent having UV face flips.

Overlapped UV faces. Even if all

the UV faces are oriented correctly,

some of the faces may still over-

lap with each other depending on

the flattening algorithm in use. We

check whether the total angle sum of each interior vertex is 2π to

determine the validity of a collapse.

Non-manifold edges. To prevent
the appearance of non-manifold

edges, we must check the link con-
dition [Dey et al. 1999; Hoppe et al.
1993]. Briefly, the link condition

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://ten-thousand-models.appspot.com
https://ten-thousand-models.appspot.com

Neural Subdivision • 1:15

input shape random decimated meshes

Fig. 31. We perform qslim with a random sequence of edge collapses to create different coarse discretizations (gray) from a single ground truth mesh (green).

says that if an edge ei j connecting vertices i, j is valid, the intersec-
tion between the vertex 1-ring of i and the vertex 1-ring of j must

contain only two vertices, and the two vertices cannot be an edge.

Skinny triangles. To prevent badly shaped triangles from causing

numerical issues, we need to keep track of the triangle quality for

each edge collapse. The quality of a triangle is measured by

Qi jk =
4

√
3 Ai jk

l2i j + l
2

jk + l
2

ki

(3)

where A is the area of the triangle and l are the lengths of triangle
edges. When Q → 1, it approaches an equilateral triangle; when

Q → 0 , it approaches a skinny degenerated one. For each edge,

we check Q for all the neighboring faces in both UV and Euclidean

domains after the collapse. By default, a valid edge requiresQ > 0.2

for all neighboring triangles.

D COMPARISON TO [Lee et al. 1998]

One possible solution to construct a bijective map between the input

and the decimated model is via MAPS [Lee et al. 1998]. However,

MAPS constructs the parameterization via successively removing

the maximum vertex independent sets. The main reason for remov-

ing the maximum independent set is to bound the number of levels

of the mesh hierarchy, but it leads to limitations such as sensitivity

to the input triangulation.

One experiment to verify this is to apply subdivision remeshing

presented in Sec. 4.1 in [Lee et al. 1998]. In Fig. 32 we create a stress

test using a very uneven triangulation, and MAPS suffers from

creating non-uniform parameterization. In contrast our successive

self-parameterization enjoys the benefits of area-weighted qslim to

obtain a more uniform parameterization.

E DATA GENERATION FROM RANDOM COLLAPSES

The training data for neural subdivision is a sequence of subdivided

meshes where the vertex positions are computed using successive

ours [Lee et al. 1998]

Fig. 32. We decimate the mesh down to the same number of vertices and

compare our method with MAPS on the task of subdivision remeshing. Our

method creates a more uniform parameterization (left), but MAPS is more

sensitive to the input triangulation (right).

self-parameterization (Fig. 8). For each dense input mesh, we per-

form semi-random edge collapses in order to generate many dif-

ferent coarse meshes. The goal is to help the network to be robust

to different discretizations. In Fig. 31 we show input meshes (left)

can be decimated differently to get many coarse meshes that have

different number of vertices and with different triangulations.

Our semi-random edge collapse starts by randomly selecting 100

edges and finding the one with the minimum quadric error [Garland
and Heckbert 1997] to collapse. For each edge collapse, we insert the

new vertex the same way as qslim . We terminate the edge collapses

when a randomly selected target number of vertices between 150

and 300 is reached.

F EXPERIMENTAL SETUP

Our experimental setup is consistent throughout the document. The

training shape is presented in green in every figure. For each shape,

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:16 • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson

input ours level 1 ours level 2 ours level 3

Fig. 33. Although most experiments are trained on performing 2-level sub-

divisions, our neural subdivision network can still be trained on more level

of the subdivisions.

input level 1 level 2
ground truth
Loop subdiv.

Fig. 34. When trained onmeshes created by classic Loop subdivision (green),

our network can reproduce the Loop scheme on new meshes, and creates vi-

sually indistinguishable results (blue) compared to the ground truth created

by the classic Loop method (right).

we use the parameters described in App. E to generate 200 training

discretizations and train for 700 epochs. Our method can learn to

produce several subdivision levels Fig. 33, but we set the number

of training subdivisions to two levels for consistency across the

experiments. If the experiment consists of multiple training shapes,

such as the experiments in Fig. 28 and Table 2, we evenly distribute

the number of training discretizations so that they still sum up to

200 discretizations in total.

G LEARNING CLASSIC LOOP SUBDIVISION

Although we have shown in Sec. 6 that neural subdivision is able

to subdivide a mesh adaptively, one might be interested in seeing

whether neural subdivision can also learn to reproduce classic Loop

subdivision with appropriate training data. In Fig. 34, we trained

our network on a sequence of meshes created with Loop subdivi-

sion. Given an original mesh, we create 200 mashes using random

edge collapses, then subdivide each coarsened mesh for two levels

using Loop to obtain the corresponding ground truth subdivided

sequences for measuring the reconstruction loss. We see that when

testing on novel meshes, the network is able to reproduce the Loop

scheme to create visually indistinguishable results. The average per-

vertex numerical error is just 0.3% of the bounding box diagonal.

H ABLATION STUDIES (CONTINUED)

10-2

log loss

10-3

10-4

10-5

#epochs

w/ diff. coord.

w/o diff. coord.

This section summarizes the ab-

lation studies of other design de-

cisions we made in the network

design. These components are not

as crucial as the components men-

tioned in the main text, but they

still offer improvements while

training. The first analysis is the influence of differential coordinates

in the input (see Fig. 19). Our result in the inset indicates that adding

differential coordinates can improve convergence.

log loss (at level 1)

10-2

10-3

10-4

10-5

w/o cross level loss

w/ cross level loss

#epochs

We also measure the effect of

adding cross-level loss compared

to only measuring the loss at the fi-

nal level. In the inset, we visualize

the error in the intermediate level.

The result suggests that adding

cross-level loss can improve sub-

division results in the intermediate levels, which is important for

creating meshes with different levels of detail (see Fig. 2).

log loss

10-3

10-4

10-5

#epochs

from mid-point
from Loop

The third study is on the start-

ing position of the predicted dis-

placement vector as shown in

Fig. 20. Specifically, we compare

predicting the displacement from

the mid-point of an edge with

predicting displacement from the

Loop-subdivided mesh. Our result in the inset suggests that using

different starting positions has no influence to the quality of the

output. Thus we choose the mid-point for simplicity.

log loss

10-3

10-4

10-5

w/ recursive vertex step

w/o recursive vertex step

#epochs

The fourth study is on the num-

ber of vertex steps to perform.

In Fig. 18, we can actually recur-

sively perform the vertex step to

gather information from larger

rings. However our experiments

in the inset indicates that recur-

sively performing the vertex step does not offer improvements.

Thus we only perform the vertex step once. We suspect that the

2-ring information on the coarse mesh (one from initialization, one

from the vertex step) may already be sufficient for the network to

perform subdivisions.

log loss

10-3

10-4

10-5 our features

#epochs

MeshCNN features

In MeshCNN, Hanocka et al.

[2019] propose a set of features

to characterize an undirected edge

(via features of a flap), including

the dihedral angle, two inner an-

gles, and two edge length ratios

(see Sec. 3 in [Hanocka et al. 2019]).

We tried their proposed features in our neural subdivision network.

In the inset, we observe that using our features, edge vectors and the

vectors of differential coordinates, converges to a better solution.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Subdivision Surfaces
	2.2 Neural Geometry Learning

	3 Neural Subdivision
	4 Data Generation and Training
	4.1 Successive Self-Parameterization
	4.2 Single Edge Collapse
	4.3 Implementation
	4.4 Training Data & Loss Computation

	5 Network Architecture
	6 Evaluations
	7 Limitations & Future Work
	Acknowledgments
	References
	A Implementation of Point Cloud Upsampling
	B Implementation of Successive Self-Parameterization
	C Criteria for Collapsible Edges
	D Comparison to lee1998maps
	E Data Generation from Random Collapses
	F Experimental Setup
	G Learning Classic Loop Subdivision
	H Ablation Studies (continued)

