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Figure 1: Not all differential operators encode the same information about shape. Here we visualize eigenfunctions of Laplace-Beltrami (left)
which ignores extrinsic bending, and our relative Dirac operator (right) which ignores intrinsic stretching. In between is a continuous spectrum
of operators that provide a trade off between intrinsic and extrinsic features. Bottom: These operators yield very different shape descriptors,
here emphasizing either a pointy claw with large Gauss curvature (left) or the flat back of a shell with small mean curvature (right).

Abstract

The eigenfunctions and eigenvalues of the Laplace-Beltrami operator have proven to be a powerful tool for digital geometry
processing, providing a description of geometry that is essentially independent of coordinates or the choice of discretization.
However, since Laplace-Beltrami is purely intrinsic it struggles to capture important phenomena such as extrinsic bending, sharp
edges, and fine surface texture. We introduce a new extrinsic differential operator called the relative Dirac operator, leading to a
family of operators with a continuous trade-off between intrinsic and extrinsic features. Previous operators are either fully or
partially intrinsic. In contrast, the proposed family spans the entire spectrum: from completely intrinsic (depending only on the
metric) to completely extrinsic (depending only on the Gauss map). By adding an infinite potential well to this (or any) operator
we can also robustly handle surface patches with irregular boundary. We explore use of these operators for a variety of shape
analysis tasks, and study their performance relative to operators previously found in the geometry processing literature.

1. Introduction

Spectral geometry processing encodes shape in terms of the eigen-
values and eigenfunctions of some (discrete) differential operator.
This perspective has proven to be valuable across a wide variety of
fundamental problems such as shape retrieval and surface segmen-
tation [LZ10], providing a geometric analogue of Fourier analysis
from traditional signal processing. A key feature of the spectral
approach is that it allows one to easily “factor out” aspects of data
that do not reflect features of the shape itself. For instance, since
eigenvalues are typically rigid-motion invariant, one does not have
to perform rigid alignment when comparing two shapes; likewise,

since low-frequency eigenfunctions are insensitive to discretization
error, one can directly compare heterogeneous data (e.g., different
triangulations, or triangulations and point clouds). What other fea-
tures should be factored out? In this paper we adopt the perspective
that there is no one “right” answer to this question: depending on
the particular application or class of objects, one might wish to put
special emphasis on different geometric quantities. In particular we
focus on a one-parameter family of differential operators that pro-
vides a continuous trade-off between purely intrinsic and extrinsic
information (Figure 1), while preserving many of the computational
benefits of existing spectral methods.
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Figure 2: A flat bed sheet, a rolled up newspaper and a canvas tent
are intrinsically indistinguishable, but extrinsically distinct.

Isometry invariance: feature or bug? On surfaces, the prototypi-
cal differential operator is the Laplace-Beltrami operator ∆ (some-
times simply referred to as the Laplacian). This operator is purely
intrinsic: it depends only on point-to-point distances along the sur-
face, and not at all on how the surface sits in space (see Figure 2).
Typically, isometric invariance is presented as a “feature”: since
the operator does not change under isometric deformation, it can
be used to compare, say, human bodies in different poses, which
exhibit extrinsic bending but very little intrinsic stretching (see,
e.g., [RPSS10]). On the other hand, the intrinsic point of view can
fail badly for other types of data—for instance, an intrinsic descrip-
tor cannot even discriminate between the sharp edge of a cube and
the flat Euclidean plane. Likewise, intrinsic measurements provide
no way to detect whether a small bump on the surface points inward
or outward—and yet this discrepancy can encode critical informa-
tion about things like the functional behavior of proteins or pollen
grains [ESP04, CW03].

One might argue that spectral data from the Laplace operator is ef-
fectively sufficient to uniquely encode shape, since it is very rare to
find two “isospectral” shapes, i.e., two different embeddings that in-
duce the same metric. For instance, surfaces with positive Gaussian
curvature have a unique isometric embedding, up to rigid motion
[CV27]. From a practical point of view, however, the question is
not simply whether a given operator can theoretically distinguish
between two shapes, but how big the difference is, e.g., for a small
change in the surface, how much does the spectrum change? For
applications, one may actually prefer operators that are unstable in
this sense, since it means one can more easily discriminate between
different shapes. To this end, recent alternative operators incorpo-
rate extrinsic information [HSvTP12, ARAC14], but are difficult to
control: terms introduced to capture extrinsic information still do
not eliminate a strong tendency to match surfaces according to their
intrinsic geometry.

Contributions We introduce a family of differential operators
based on the square of the extrinsic Dirac operator (Sec. 4), which
naturally splits into an intrinsic and extrinsic part. By interpolating
between these two operators we obtain a one-parameter family—
at one extreme is the familiar Laplace-Beltrami operator; at the
other is a novel relative Dirac operator which is “purely extrinsic”
in the sense that it depends only on the Gauss map. The relative
Dirac operator is highly sensitive to features like surface texture
and sharp creases, nicely complementing existing operators that
emphasize global, intrinsic features. All members of this family are
self-adjoint and (weakly) elliptic, ensuring that operators come with
well-defined eigenvalues and eigenbases, and making them com-

patible with standard spectral geometry processing algorithms. For
partial surface analysis, we also show how to mitigate the influence
of irregular boundaries by incorporating an infinite potential well.
On triangle meshes we obtain a discretization by sparse matrices
that agrees with the familiar cotangent Laplacian [Mac49] at the
purely intrinsic extreme. We provide a preliminary investigation
of applications in Sec. 6, showing in several cases improvement
relative to existing operators.

A limitation is that our operators have a clear definition only for
surfaces in R3, whereas some of the operators discussed in Sec. 2
can easily be defined on a manifold of any dimension.

2. Related Work

We first review differential operators on surfaces that have been
used for spectral geometry processing. Why bother considering
alternatives beyond Laplace-Beltrami? The basic hope is to gain
additional flexibility or improved performance by swapping out
an operator that captures specific geometric features of interest. A
fundamental requirement is that an operator provides a well-defined
and discrete (i.e., enumerable) basis of eigenfunctions (φ1,φ2, . . .)
and corresponding eigenvalues (λ1,λ2, . . .). A large number of ge-
ometry processing tasks can then be expressed in terms of (say)
truncated series expansions in this basis, mirroring Fourier analysis.
On a compact surface (typical of geometry processing), a discrete
eigenbasis is available whenever an operator is (i) self-adjoint and
(ii) elliptic. This is analogous to saying that a finite-dimensional
matrix is symmetric and positive-definite. Unfortunately, many of
the differential operators that arise in geometry processing (e.g., the
exterior derivative) do not meet these criteria. We therefore focus
on just a few key examples that do, namely:

• the Laplace-Beltrami operator ∆,
• the Hessian of the modified Dirichlet energy [HSvTP12], and
• the anisotropic Laplacian ∆A [ARAC14].

The latter two operators can distinguish between isometric shapes,
but are not as sensitive to extrinsic changes as one might hope
since intrinsic and extrinsic information is still “mixed together”
in a way that cannot be controlled. In particular, for a surface M
the Laplace-Beltrami operator can be viewed as the Hessian of
the Dirichlet energy ED(ϕ) :=

∫
M |gradϕ|2 dA (where ϕ is a real-

valued function on M); the modified Dirichlet energy re-weights
the Dirichlet energy by the three components Ni of the surface
normal N: EM(ϕ) := ∑

3
i=1 ED(Ni

ϕ). The anisotropic Laplacian is
defined as ∆A f := div(A grad), where A : TpM→ TpM is a linear
map encoding “stretching” in each tangent space TpM; in the method
of Andreux et al. [ARAC14] this stretching is determined by the
directions and magnitudes of the (extrinsic) principal curvatures. We
postpone direct comparisons with these operators until Sec. 4.1.

This paper explores the use of Dirac operators to enrich the land-
scape of tools used for spectral geometry processing. Just as Laplace-
Beltrami is in a sense the most fundamental operator for real-valued
functions on surfaces, Dirac operators are fundamental for complex
(or hypercomplex) functions (Sec. 4). Our family of operators is
closely linked to the extrinsic Dirac operator recently used to com-
pute conformal surface deformations [CPS11], though the present
work neither computes nor requires conformal maps.
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What kind of applications might benefit from the use of alterna-
tive operators? For shape retrieval, Shape DNA [RWP06] uses
the Laplace-Beltrami spectrum as a global shape descriptor; the
heat kernel signature (HKS) [SOG09] expresses the local decay
rate of heat flow via a truncated harmonic spectral expansion; and
Shape Google [BBGO11] incorporates this descriptor into a “bag
of features” approach. At each point of a surface, the values of
Laplacian eigenfunctions or the heat kernel also provide an em-
bedding of the surface into a higher-dimensional space [BBG94]
which can be useful for a variety of tasks such as segmenta-
tion [WLAT14] or correspondence [Rus07]; likewise, various dis-
tance metrics are easily expressed in terms of eigenfunctions of the
Laplacian or bi-Laplacian [LRF10]. The Laplacian eigenbasis also
serves as the starting point for the recent functional maps frame-
work [OBCS∗12], which has provided leverage for a diverse range
of applications [ABCCO13,ROA∗13,AWO∗14]. One naturally won-
ders how the behavior of each of these tasks changes in the presence
of strong extrinsic information—a question we explore in Sec. 6.

Quaternionic signal analysis has also been used in image process-
ing to construct Gabor filters [BS98], perform frequency domain
filtering [ES07], and detect image saliency [GZ10], but does seem
to appear in the shape analysis literature.

3. Background

We formulate our operators in terms of quaternion-valued differ-
ential forms. A pedagogical introduction to exterior calculus can
be found in [CdGDS13]; for a detailed discussion of quaternionic
forms and their relationship to geometry processing see [Cra13].

3.1. Quaternions and Surfaces

Just as the complex numbers C provide a convenient language for
geometric operations in the plane (e.g., rotations, translations, and
scaling), the quaternions H provide an effective language for opera-
tions in 3D; in geometry, quaternionic analysis provides a powerful
generalization of the traditional complex/Riemann surface point of
view [PP98]. We will identify vectors in R3 with imaginary quater-
nions ImH, i.e., if (x,y,z) is a point in R3, then xı+ y j+ zk ∈ ImH
is the corresponding quaternion. In this way, the geometry of a sur-
face M can be encoded as a map f : M→ ImH; the unit normal (or
Gauss map) is likewise a map N : M→ S2 ⊂ ImH. A map f is an
immersion if its derivative df is nonzero everywhere. In analogy
with the complex unit ı, we will use J to denote a quarter-rotation
of tangent vectors in the counter-clockwise direction. To facilitate
pen-and-paper calculations we will adopt the convention that f is
conformal (i.e., df (JX) = N× df (X)); this convention is akin to
assuming an arc-length parameterization for a curve, and (as with
curves) puts absolutely no restriction on the kind of geometry we
can work with in practice—in particular, we do not have to pro-
vide a conformal mesh parameterization. We use κ1,κ2 to denote
the principal curvatures, and K := κ1κ2, H := 1

2 (κ1 + κ2) to de-
note Gauss and mean curvature, resp. Finally, we use single bars
| · | and brackets 〈·, ·〉 to denote the norm and real inner product
(resp.) of a finite-dimensional vector; we use double bars || · || and
brackets 〈〈·, ·〉〉 to denote the L2 inner product on functions, i.e.,
〈〈φ,ψ〉〉 :=

∫
M φ(p)ψ(p)|df |2, where |df |2 denotes the area element

induced by f .

�1 �2 �3 �4 �5
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Figure 3: The first few eigenfunctions φi of the relative Dirac
operator D f1, f2 , highlighting differences between two surfaces
f1, f2 : M→ R3.

3.2. Dirac Operators

For real-valued functions on a surface, the second-order Laplace-
Beltrami operator ∆ is the lowest-order (nontrivial) linear differential
operator that is both self-adjoint and elliptic, i.e., it is in some sense
the “simplest” operator with which one can hope to do spectral
geometry processing. For complex (or hypercomplex) functions,
however, one can find first-order differential operators that also ex-
hibit a meaningful spectrum and eigenbasis—such operators are
generally referred to as Dirac operators, with the most familiar ex-
ample being the Cauchy-Riemann operator ∂̄ from complex analysis.
Another example is the intrinsic Hodge-Dirac operator ?d +d? on
differential forms, recently discretized by Leopardi & Stern for prob-
lems in vector field analysis [LS14]. Because we are interested in
capturing the extrinsic geometry of a surface, we use as a starting
point the extrinsic Dirac operator

Dψ :=−df ∧dψ

|df |2
.

where ψ is any quaternion-valued function on M, and division by
|df |2 corresponds to applying the 2-form Hodge star with respect to
the metric induced by f [CPS11]. The basic intuition for this opera-
tor is that it generalizes the Cauchy-Riemann operator to surfaces in
3D: just as the relationship ∂̄ψ = 0 characterizes conformal maps
in the plane, the relationship (D−ρ)ψ = 0 describes a conformal
surface deformation, with the new curvature determined by a real-
valued function ρ. Dirac operators also naturally arise in problems
from quantum mechanics and particle physics—here the quadratic
form 〈〈Dψ,ψ〉〉 encodes the energy level of a spin-1/2 particle (like
the electron) with probability distribution |ψ|2, i.e., particles with
“smoother” distributions have less energy. Eigenfunctions φi corre-
spond to critical points of this energy, i.e., wave functions or spinors
describing the state of quantum spin at discrete energy levels λi. The
wave function interpretation will be useful in formulating robust
boundary conditions in Sec. 5.
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4. Relative Dirac Operator

Although Dirac operators are often introduced as “square roots of
the Laplacian,” it is much more straightforward to see things the
other way around: squaring a Dirac operator yields a Laplace-like
operator. In the case of the extrinsic Dirac operator D, we get

D2
ψ = ∆ψ+

dN∧dψ

|df |2
.

(See [Cra13, Section 3.3].) Here ∆ can be thought of as the
usual (real) Laplace-Beltrami operator, acting componentwise on
quaternion-valued functions. A key feature of this expression is that
it cleanly separates into an intrinsic part (given by the Laplacian
∆) and an extrinsic part involving the derivative dN of the Gauss
map, also known as the shape operator. To date, however, the latter
term has not been studied as an operator in its own right. Relative to
the extrinsic Dirac operator D, the only thing that changes is the ap-
pearance of dN rather than df in the numerator. In fact, many of the
statements we want to make about this operator will hold not only
for the Gauss map N, but for any pair of surfaces f1, f2 : M→ R3.
Hence, we define the operator

D f1, f2 ψ :=−d f2∧dψ

|d f1|2
.

We call this operator the relative Dirac operator, in reference to
relative differential geometry, where the Gauss map N is replaced
with another surface (in this case, f2).

In practice, to evaluate this operator one must have a correspon-
dence between the two surfaces, which in many applications is not
immediately available. We will therefore mainly study the operator

DN := D f ,N =−dN∧dψ

|df |2

associated with a single surface f , though applying the relative
Dirac operator D f1, f2 in applications like shape deformation or shape
differences may also prove interesting (see Figure 3 for one simple
example). More generally, we consider the one-parameter family of
operators obtained by interpolating between DN and ∆:

L(τ) := (1− τ)∆+ τDN .

For τ > 0 this family is no longer isometry invariant due to the
dependence on the shape operator dN. In fact the operator itself
is only translationally (and not rotationally) invariant, due to the

Figure 4: Eigenfunctions on the sphere for the extrinsic part of the
modified Dirichlet energy (top) and relative Dirac operator (bottom).
The former becomes highly degenerate near the “extrinsic” end of
the spectrum since all that remains is a 0th-order potential, whereas
the latter is 1st-order and hence continues to encourage regularity
in all but perfectly flat regions.

Figure 5: On a cube, which is intrinsically flat away from corners,
the Laplace operator ∆ and relative Dirac operator DN yield very
different eigenfunctions. At one extreme (τ = 1) every function on a
flat region is an eigenfunction (far right).

dependence on d f and dN, which are expressed in an arbitrary coor-
dinate system. Importantly, however, the spectrum of L(τ) remains
rigid-motion invariant (App. C); the eigenfunctions are likewise
canonical up to a unit constant |q|= 1, just as eigenfunctions of any
real operator are determined only up to ±1. In practice, this choice
of unit constant causes no more (or less) trouble than in case of the
Laplacian, where one must sometimes choose a canonical sign. See
Sec. 4.3 for further discussion.

Figure 5 shows how this family varies for a simple cube; Figure 6
compares the behavior of Laplace, Dirac, and relative Dirac eigen-
functions on a more interesting shape. Here and throughout we plot
only the pointwise magnitude of the eigenfunctions, though in real-
ity each eigenfunction is a four-component quaternionic function
φi : M→H. The influence of this richer information on applications
is explored in Sec. 6.

4.1. Analysis

What can we say about the behavior of the relative Dirac opera-
tor, and how does it compare with other operators in the context
of spectral geometry processing? First and foremost, the relative
Dirac operator will be self-adjoint and elliptic so long as both f1
and f2 are immersions (see Appendices A and B), making it suit-
able for spectral geometry processing. Notably, the operator DN
will fail to be elliptic whenever the surface f has flat regions, since
here the Gauss map N fails to be an immersion. In this case, it
behaves like a matrix that is only positive-semidefinite rather than
strictly positive-definite: it has a large kernel, but is otherwise fairly
well-behaved. Importantly, adding even a tiny amount of the Lapla-
cian (τ < 1) provides suitable regularization, making the operator
strongly elliptic (compare two rightmost eigenfunctions in Figure 1,
(top)). More generally, eigenfunctions of DN will tend to have large
gradients in regions of small normal curvature, since the energy
〈〈DNψ,ψ〉〉=

∫
M ψ̄dN∧dψ will be small whenever the shape oper-

ator dN itself is small (see for instance Figure 1, far right, where
the eigenfunction concentrates on the flat back of the crab). In prac-
tice, the sensitivity of the spectrum to flat regions means that the
operator easily distinguishes between, say, man-made shapes (which
often have many flat pieces) and organic shapes that tend to have
nontrivial curvature everywhere (see Figure 9).

The behavior of other operators’ eigenfunctions can also be un-
derstood in terms of curvature. For instance, the Laplace-Beltrami
operator on a surface with Gauss curvature K can be expressed in
local conformal coordinates as ∆ = e−2u

∆R2 , where u is the log
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Figure 6: Eigenfunctions of several operators. Both the Dirac and relative Dirac operators put more emphasis on extrinsic curvature, with the
relative Dirac operator placing special emphasis on flat regions.

conformal scale factor taking us from the surface to the plane. Since
the log factor satisfies the Yamabe equation ∆u = K, we see that
∆ϕ will be small in regions of large positive Gaussian curvature,
hence eigenfunctions (which are trying to minimize 〈〈∆ϕ,ϕ〉〉) will
tend to have large gradients in such regions—see for example the
crab claw in Figure 1, far left). The modified Dirichlet energy of
Hildebrandt et al. [HSvTP12] can also be written as

EMDE(ϕ) = 〈〈∆ϕ,ϕ〉〉+
∫

M
ϕ

2(κ2
1 +κ

2
2) dA,

which means its Hessian is ∆+U , i.e., the (real) Laplace-Beltrami
operator plus a Willmore potential U := κ

2
1 +κ

2
2 which encourages

eigenfunctions to have small variation in regions where curvature
is large. Here one could also develop an intrinsc-to-extrinsic family
of operators, though at the “extrinsic end” it would tend toward
a 0th-order operator whose eigenbasis has no clear meaning. For
instance, on the unit sphere, every function is an eigenfunction of
U (which is just a constant multiple of the identity), whereas DN
becomes the usual Dirac operator on the 2-sphere, whose eigenbasis
is the standard Dirac spinors, akin to spherical harmonics (Figure 4).
Likewise, the anisotropic Laplacian ∆A provides a family of oper-
ators by varying the amount of anisotropy, but always retains an
intrinsic component and becomes numerically unstable for large
amounts of anisotropy.

4.2. Discretization

For an oriented 2-manifold triangle
mesh K = (V,E,F) we use a discretiza-
tion of the relative Dirac operator that
is identical to the one developed for
the extrinsic Dirac operator [CPS11],
except that we replace vertex positions
f with vertex normals N when eval-
uating edge vectors. In particular, if
ψ : V → H is any piecewise linear
quaternionic function, then for each tri-
angle ijk ∈ F the relative Dirac opera-
tor evaluates to

(DNψ)ijk :=− 1
2Aijk

∑
pqr∈C(ijk)

(Nr−Nq)ψp,

where Aijk is the usual triangle area and C(ijk) denotes the three
cyclic shifts of ijk. This operator can be encoded as a matrix D ∈

H|F|×|V | with nonzero entries

Dijk,p =−(Nr−Nq)/2Aijk

for pqr ∈ C(ijk). Although this matrix is rectangular, we can ac-
curately and efficiently compute the eigenvectors and eigenvalues
using the procedure described by Crane et al. [CPS11, Section 5.5],
using our matrix D in place of the standard Dirac operator (and
letting R= 0).

4.3. Real Representation

Since most numerical linear algebra packages do not support ma-
trices with quaternion-valued entries, we represent our matrices
via 4× 4 real blocks as described in [CPS11, Section 5.1]; note
that the transpose of this real matrix yields the conjugate transpose
of the corresponding quaternionic matrix. In this case each eigen-
function of the quaternionic operator will be represented by four
eigenvectors of the real matrix, which differ only by an arbitrary
multiplicative constant q ∈ H. For spectral geometry processing
applications (where we often need to compare different surfaces),
it is important to choose a canonical representative. To do so, we
seek the unit quaternion |q| = 1 that brings the entries of a given
eigenvector φ ∈ H|V | as close as possible to 1; area weighting is
used to avoid discrepancies in sampling. In particular, we compute

q :=
|V |

∑
i=1
Aiφ
−1
i ,

where Ai is the (barycentric) dual area associated with vertex i;
we then normalize q to have unit norm before applying it to each
element of φ. This procedure yields a canonical representative, al-
lowing eigenfunctions on two different surfaces to be compared
directly (even under a change of coordinates).

5. Boundary Conditions

For domains with boundary Bohle & Pinkall [BP13] showed
that prescribing binormal boundary conditions preserves the self-
adjointness and ellipticity of the extrinsic Dirac operator (see
[CPS13, Section 6.3] for a discretization); a similar argument may
be possible for the relative Dirac operator. However, the shape of the
boundary can cause trouble in spectral geometry processing particu-
larly in the case of partial matching of surface patches [RCB∗17].
Rather than trying to “cut” the meshes so that they all have identical
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zero-Dirichlet zero-Neumann infinite potential well

Figure 7: Standard boundary conditions (e.g., Dirichlet or Neumann) yield spectra that are sensitive to boundary shape or discretization.
By replacing such conditions with an infinite potential well, we avoid the need to consistently cut or discretize local surface patches used in
partial shape matching. Here, for instance, we get consistent harmonic eigenfunctions and eigenvalues across a collection of patches with the
same interior geometry, but irregular or noisy boundary.

boundary shape, or resorting to potentially fragile re-discretization
(e.g., [BSK05]), we substitute standard boundary conditions for
an infinite potential well that provides consistent behavior across
patches with different boundary shapes or discretizations.

5.1. Infinite Potential Well

To develop our boundary treatment, we revisit the quantum mechan-
ical interpretation: eigenfunctions of a complex differential operator
L can be viewed as wave functions for a particle at different energy
levels; the pointwise magnitude of this function gives the probability
that a particle occupies a given region of space. This story is re-
flected in the fact that eigenfunctions are critical points of the energy
〈〈Lψ,ψ〉〉, subject to a unit norm constraint ||ψ||2 =

∫
M |ψ|

2 dA = 1
(total probability is 1). To prevent the particle from wandering near
the boundary, we add a potential U to the operator that rapidly tends
toward infinity away from the center of the domain—similar to the
didactic particle in a box problem from quantum mechanics. Ana-
lytically, it is akin to specifying zero-Dirichlet boundary conditions
on a smooth ring around the center point: minimizers of the energy
〈〈(∆+U)ψ,ψ〉〉 must go to zero in regions where U is infinite.

Our potential is given by the modified sigmoid function

U(p) :=
c

1+(e−(d(p,q)−β))γ

where c is a large constant, q ∈ M is the patch center (e.g., cen-
ter of mass), and positive parameters , β,γ, control the diameter
of the region of interest and transition width (resp.). For the ex-
periments in Figure 7 we set c = 1010, γ = 100, and use the heat
method [CWW13] to evaluate the geodesic distance d; β is normal-
ized such that across an entire collection of patches no boundary
points are contained in the region of interest.

To incorporate this potential into real operators (e.g., Laplace or
anisotropic Laplace) we simply add a diagonal matrix U ∈R|V |×|V |
with entries Uii =AiU(pi), where Ai and pi are the dual area and
position of vertex i, resp. For quaternionic operators (e.g., Dirac
or relative Dirac) which are rectangular, we build a matrix B ∈
R|F|×|V | that averages vertices to faces and add the term BU to the
matrix D—see Crane et al. [CPS11, Section 5.3] for more detail.

To verify the robustness of this scheme, we compare it to the stan-
dard Laplacian with “free” (i.e., zero-Neumann) boundary condi-

tions commonly used in spectral geometry processing [LRF10], as
well as simple zero-Dirichlet boundary conditions. Figure 7 plots
eigenfunctions and eigenvalues for a surface patch with varying
boundary shape, including noisy, nearly disconnected regions. As
expected, restricting to a canonical domain through the use of a
potential yields consistent spectral descriptors.

6. Applications

We take a preliminary look at using our family of operators for a
variety of geometry processing tasks. Here our interest is not in ex-
haustively comparing against the full gamut of alternative methods,
but rather in developing an understanding of how by just changing
the operator we can augment or improve the behavior of existing
spectral methods. In some cases (such as segmentation) this simple
modification already yields results comparable to highly effective
non-spectral methods [SSCO08], while providing very different al-
gorithmic trade-offs (e.g., computing eigenvectors vs. tracing rays)
and operating on different types of data (e.g., partial patches vs.
closed meshes)—it is especially successful at identifying small ex-
trinsic features like bumps or fingers/toes that other methods tend to
miss, or diambiguating between features with similar geometry but
opposite orientation.

6.1. Surface Classification

Spectral methods based on the purely intrinsic Laplace-Beltrami
operator (τ = 0) have proven effective for isometry-invariant surface
classification (e.g., ignoring bending of arms and legs in human
models), but have so far been less successful at identifying high-
frequency surface texture or detail. Operators at the extrinsic end
of our spectrum (τ→ 1) are better-suited for classifying surfaces
based on such details.

Whole Surfaces. In Figure 8, we add several kinds of geomet-
ric detail to the same base torus shape, and compute the first 60
eigenvalues for several operators. Laplace-Beltrami, the anisotropic
Laplacian, and the Dirac operator (which have significant intrinsic
components) do a relatively poor job of distinguishing between dif-
ferent textures. In contrast, the modified Dirichlet energy [HSvTP12]
and our relative Dirac operator clearly delineate the different sur-
faces, with slightly better separation in the latter case—especially if
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Laplace
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Laplace
modified
Dirichlet Dirac
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Dirac

Figure 8: The spectra of many differential operators do not clearly distinguish between surfaces with similar base shape but different fine
details. The extrinsic modified Dirichlet energy performs better, though our relative Dirac operator often provides a cleaner separation (e.g.,
between red and yellow shapes) especially if one considers that corresponding eigenvalues often have opposite sign, greatly increasing the
distance between spectra.

Figure 9: Because the relative Dirac operator is sensitive to flat re-
gions and sharp edges, it tends to provide clean separation between
natural geometry (pink–red) and man-made objects (light–dark
blue), which will have many small eigenvalues.

one considers the fact that corresponding eigenvalues from different
shapes often have opposite sign. This extra sign information is a
unique feature of complex operators, providing a cleaner separation
of dissimilar shapes. Figure 13 shows a similar experiment where
texture covers only part of the surface.

Since our operator is particularly sensitive to flat regions, we thought
it might be interesting to see how well it discriminates between
man-made shapes (which tend to have flat regions) and organic
shapes (which tend to have nontrivial curvature everywhere)—see
Figure 9. To get a sense of performance relative to existing shape
analysis tools, we labeled a subset of meshes in the SHREC dataset
from [CGF09] as either “man-made” or “organic.” Using a support

relative Dirac (extrinsic)Laplace-Beltrami (intrinsic)

Figure 10: Extrinsic information helps cluster surface patches ac-
cording to fine texture detail. Here we visualize clusters via a low-
dimensional embedding; Laplace-Beltrami (left) produces clusters
that are far more “mixed” than our relative Dirac operator (right).

vector machine [CL11] based on a distribution of squared Euclidean
distances (D2 from [OFCD02]) gave a prediction accuracy of 88%,
whereas averaging the square of the first 25 eigenvalues of the
relative Dirac operator and thresholding at a value of 1 yielded 95%
accuracy.

Surface Patches. An obvious use case for a “texture-sensitive”
spectrum is to find local patches with similar texture, à la Patch
Match [BSFG09]. Since patches extracted from an existing surface
will generally have ragged, irregular boundaries, we use our infinite
potential well (Sec. 5.1) to provide an “apples-to-apples” compari-
son between different patch spectra. To evaluate classification perfor-
mance we extracted 100 surface patches from surfaces with 10 differ-
ent types of texture. For a given operator, the distance between two
patches is defined as the Euclidean distance between their respective
spectra; this metric is then visualized in 2D using the t-distributed
stochastic neighbor embedding (t-SNE) [MH08]. To quantify perfor-
mance, we compare the average purity (see, e.g., [MRS08], pp. 328)
of 500 randomly initialized instances of k-means clustering (using
the known reference value k = 10). Purity scores for relative Dirac,
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Dirac, Laplace, anisotropic Laplace, and modified Dirichlet energy
were 84.7, 76.6, 48.0, 52.7, and 61.7, respectively, with the relative
Dirac operator coming closest to the ideal performance of 100.

6.2. Segmentation

Whereas eigenvalues provide a concise global shape descriptor,
eigenvectors furnish useful local descriptors at each point. For a
given vertex i ∈ V , a common descriptor [BBG94, Rus07] is the
value of the first k eigenvectors at i, normalized by the square root
of the corresponding eigenvalue:

v 7→
(
|φ1(v)|√

λ1
,
|φ2(v)|√

λ2
,
|φ3(v)|√

λ3
, · · ·

)
.

Following Andreux et al. [ARAC14], we apply the consensus seg-
mentation method [LBR∗13] to this descriptor (for a variety of
operators) to robustly segment surfaces—in a nutshell, the consen-
sus method applies the idea of persistence to a collection of random
k-means trials. We use identical parameters across all operators;
the number of segments is automatically determined by the consen-
sus algorithm (depending on how tightly vertices cluster for each
operator). Figure 11 shows some examples that highlight common
features: methods with a strong intrinsic component tend to produce
spurious “triple points” in flattish regions where three segments meet
(see for example the fish); these points are strongly reminiscent of
vertices in a Voronoi diagram, and often carry no clear geometric
meaning. The Dirac approach tends to avoid these spurious triple
points, and also picks up on fine features like ears, toes, and the lip
of the beverage pitcher.

Since there is no canonical definition for the segmentation prob-
lem, it is difficult to perform an objective quantitative comparison.
To get a rough sense of performance, we ran a benchmark based
on human segmentations [CGF09]. In all cases we outperformed
the baseline k-means method, and achieved results moderately
worse than RandCut, which was the best-performing method (scores
for Human/Dirac/RandCut were 0.17/0.40/0.26, 0.07/0.19/0.13,
0.10/0.23/0.14 and 0.10/0.24/0.15 for cut discrepancy, global consis-
tency error, Hamming distance, and rand index, respectively). Note
however that we did nothing to specifically tailor our descriptor to
the task of shape segmentation; a more intelligent application of the
Dirac spectrum may produce better results.

6.3. Correspondence

A basic problem in shape analysis is finding a good point-to-point
correspondence between a pair of shapes. One approach is to match
points with a similar heat kernel signature (HKS), which (roughly
speaking) measures the rate of heat decay at a given point [SOG09].
For surfaces without intrinsic symmetries, the identity of a point
is uniquely determined by its HKS. This descriptor can easily be
generalized to any linear elliptic differential operator L by taking
the diagonal part of the associated kernel, which can be approx-
imated via the truncated series kt(x,y) := ∑

n
i=1 etλi φi(x)2 (where

Lφi = λiφi); in the case of a (hyper)complex operator one can sum
over real components. By replacing the Laplace-Beltrami operator
with our extrinsic Dirac operator, we obtain a new Dirac kernel sig-
nature (DKS) which better disambiguates between features that are

extrinsically different but intrinsically similar—see Figure 12, top
for example. (The wave kernel signature (WKS) [ASC11] performs
similarly for this example, since it is also purely intrinsic.) Note
that the improved extrinsic performance does not come at the cost
of degraded overall performance—in other examples, for instance,
DKS and HKS tend to have very similar performance (Figure 12,
bottom).

7. Discussion and Limitations

Our discrete operators share many properties with the Laplacian
that make it attractive for spectral geometry processing: they are
sparse, easy to build, have spectra that are rigid-motion invariant,
and eigenbases that can easily be put into a canonical form. Most
importantly, they capture geometric features that Laplace-Beltrami
cannot. However, a number of questions remain. Perhaps the most
interesting question: are descriptors derived from the (relative) Dirac
operator completely “informative” in the same sense as the heat
kernel signature? In other words, does the Dirac kernel signature
completely determine the extrinsic geometry (up to rigid motion)?

There are also practical issues to consider—for instance, how to
best take advantage of the additional information provided by the
sign of eigenvalues. For most applications we currently omit the
sign, since the order of eigenvalues can be unstable with respect to
perturbations of the geometry. Flat regions cause the spectrum of
the relative Dirac operator to degenerate (as discussed in Sec. 4.1),
an effect that is easily avoided by simply adding a small Laplacian
term (τ < 1). Since our operators are quaternionic (and hence must
be encoded via 4× 4 real blocks) their spectra are also a fair bit
more expensive to compute than the conventional Laplacian, though
this effect could be ameliorated via a linear algebra package that
supports quaternionic data types.

Finally, there is the question of how and where extrinsic spectral
analysis can benefit applications—to date spectral geometry process-
ing has focused mainly on applications where isometry invariance
is desirable (likely due to the availability of the intrinsic Laplace-
Beltrami operator). Operators with strong sensitivity to extrinsic
geometry clearly have the potential to complement such applica-
tions, as hinted at by the experiments in Sec. 6. A broader question
is: how can application-specific geometric criteria be translated into
a task-appropriate differential operator? Beyond the family of op-
erators studied in this paper, a variety of other choices may also
prove fruitful for spectral processing—for instance, the conformally
invariant Cauchy-Riemann operator, or the magnetic Schrödinger
operator associated with extrinsic principal curvature directions (as
recently explored by Knöppel et al. [KCPS15]).
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Figure 11: Segmentation results using identical parameters for a variety of operators. In addition to finding strong feature curves, our extrinsic
operator tends to resolve small features like ears and toes, and avoids spurious “triple points” or arbitrary patch boundaries that convey no
clear geometric information (beyond an equipartition of area).

heat kernel signature Dirac kernel signature

Figure 12: Simple stress test: we seek point-to-point correspon-
dence between two tessellations of the same surface. Since HKS
is purely intrinsic it fails to disambiguate between “in” and “out”
bump, whereas DKS yields a better match (both at bumps and in flat
regions). For surfaces with strong extrinsic symmetry, both descrip-
tors are equally confused.
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Appendix: Properties of the Relative Dirac Operator

In the discrete case, any Hermitian matrix has orthogonal eigen-
vectors and real eigenvalues. This fact is of course not sufficient to
guarantee that the original continuous operator discretized by such
a matrix has a well-defined spectral decomposition. To ensure that
spectral analysis carried out via our new operator is actually mean-
ingful (i.e., it is not highly mesh-dependent and has a meaningful
limit under refinement), we show here that the relative Dirac oper-
ator D f1, f2 is self-adjoint and (weakly) elliptic, which is sufficient
to ensure that it has a real, discrete spectrum of eigenvalues, and
corresponding orthonormal basis of eigenfunctions. This kind of
consistency is especially important for ensuring that one does not
get unpredictable behavior for different tessellations of the same
surface. These arguments are mild modifications of those found
in [Cra13, Section 3.1]. We also show that the spectrum is rigid
motion invariant, and that the eigenfunctions are covariant with re-
spect to rotation. These properties ensure that spectral data can be
compared across surfaces expressed in different coordinate frames.

Appendix A: Self-Adjointness

A linear operator A is self-adjoint if 〈〈Aψ,φ〉〉 = 〈〈ψ,Aφ〉〉 for all
pairs of functions ψ,φ. Consider any two functions φ,ψ : M→ H.
Then

〈〈ψ,D f1, f2〉〉=−
∫

M ψ̄
d f2∧dφ

|df1|2 |d f1|2 =
∫

M ψ̄d f2∧dφ

=
∫

M dψ̄∧d f2φ−
∫

M d(ψ̄d f2φ).

On closed surfaces the latter term vanishes (by Stokes’ theorem)
and we are left with just∫

M
dψ̄∧d f2φ =−

∫
M

φ̄dN∧dψ = 〈〈φ,D f1, f2 ψ〉〉= 〈〈D f1, f2 ψ,φ〉〉,

as desired.

Appendix B: Ellipticity

For any immersion f we can pick local coordinates s1,s2 on M to
get

df ∧dψ =
(

∂ f
∂s1

ds1 + ∂ f
∂s2

ds2
)
∧
(

∂ψ

∂s1
ds1 + ∂ψ

∂s2
ds2
)

=
(

f
s1

ψ

s2
− f

s2

ψ

s1

)
ds1∧ds2.
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Letting f = f2, this means that

−D f1, f2 ψ=
d f2∧dψ

|d f1|2
=
|d f2|2

|d f1|2︸ ︷︷ ︸
=:K f1 , f2

d f2∧dψ

|d f2|2
=K f1, f2

(
∂ f2
∂s2

∂ψ

∂s1
− ∂ f2

∂s1

∂ψ

∂s2

)
.

We will refer to K f1, f2 as the relative Gaussian curvature, since it
corresponds to the standard Gaussian curvature whenever f1 = f
and f2 = N. The symbol of D f1, f2 is then the linear map

p(s1,s2) := K f1, f2

(
∂ f2
∂s2

s1−
∂ f2
∂s1

s2

)
,

which we can also write as

p(X) = K f1, f2 d f2(JX)

for any vector X := (s1,s2), and J is the complex structure induced
by f2. The relative Dirac operator is then (weakly) elliptic when-
ever the symbol p is nondegenerate, i.e., whenever both f1 and f2
are immersions. In particular, in order for D f ,N to be elliptic it is
insufficient for the surface to merely have no flat regions—it must
also not have any developable regions (K = 0), in which case dN
will vanish along (at least) the minimum principal direction. In fact,
the only surfaces for which D f ,N is everywhere weakly elliptic are
those which are strictly convex, since on surfaces with both positive
and negative curvature, K must vanish somewhere. As discussed in
Sec. 4.1, however, the operator still behaves reasonably in practice,
especially for any value τ < 1, i.e., adding even a tiny amount of
Laplace-Beltrami makes the operator strongly elliptic.

Appendix C: Rigid Motion Invariance of Spectral Data

We here examine the behavior under rigid motion of the eigenvalues
and eigenfunctions of the extrinsic Dirac operator D f ψ := d f∧dψ

|d f |2 .
The spectrum of the relative Dirac operator behaves the same way,
since the surface normal N obeys the same transformation law as
the differential d f , i.e., Ñ = q−1Nq.

Proposition 1 For any q ∈H,

D f (qψ) = qD f̃ ψ,

where d f̃ = q−1d f q, i.e., the two differentials are related by a
rotation (so that the immersions themselves are related by rotation
and translation).

Proof We have

D f (qψ) =
d f ∧d(qψ)

|d f |2
=

(d f )q∧dψ

|d f |2
,

and hence

q−1D f (qψ) =
(q−1d f q)∧dψ

|q−1d f q|2
=

d f̃ ∧dψ

|d f̃ |2
= D f̃ ψ,

as desired.

Proposition 2 Eigenvalues of D f are invariant with respect to rigid
motions; eigenfunctions are covariant with respect to rotation (and
invariant with respect to translation).
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Figure 13: The relative Dirac operator successfully discriminates
between texture that covers the entire surface (blue), and surfaces
partially covered by the same texture (red).

Proof For any eigenfunction φ of D f̃ with associated eigenvalue λ,
we can apply Proposition 1 to get

D f̃ φ = λφ

⇐⇒ q−1D f (qφ) = λφ

⇐⇒ D f (qφ) = λqφ,

i.e., D f has the same eigenvalues as D f̃ , and the same eigenvectors
up to the constant q.
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