
Published as a conference paper at ICLR 2019

BEYOND PIXEL NORM-BALLS:
PARAMETRIC ADVERSARIES USING AN
ANALYTICALLY DIFFERENTIABLE RENDERER

Hsueh-Ti Derek Liu
University of Toronto
hsuehtil@cs.toronto.edu

Michael Tao
University of Toronto
mtao@dgp.toronto.edu

Chun-Liang Li
Carnegie Mellon University
chunlial@cs.cmu.edu

Derek Nowrouzezahrai
McGill University
derek@cim.mcgill.ca

Alec Jacobson
University of Toronto
jacobson@cs.toronto.edu

ABSTRACT

Many machine learning image classifiers are vulnerable to adversarial attacks,
inputs with perturbations designed to intentionally trigger misclassification. Current
adversarial methods directly alter pixel colors and evaluate against pixel norm-balls:
pixel perturbations smaller than a specified magnitude, according to a measurement
norm. This evaluation, however, has limited practical utility since perturbations in
the pixel space do not correspond to underlying real-world phenomena of image
formation that lead to them and has no security motivation attached. Pixels in
natural images are measurements of light that has interacted with the geometry of a
physical scene. As such, we propose a novel evaluation measure, parametric norm-
balls, by directly perturbing physical parameters that underly image formation.
One enabling contribution we present is a physically-based differentiable renderer
that allows us to propagate pixel gradients to the parametric space of lighting and
geometry. Our approach enables physically-based adversarial attacks, and our
differentiable renderer leverages models from the interactive rendering literature to
balance the performance and accuracy trade-offs necessary for a memory-efficient
and scalable adversarial data augmentation workflow.

1 INTRODUCTION

Research in adversarial examples continues to contribute to the development of robust (semi-)super-
vised learning (Miyato et al., 2018), data augmentation (Goodfellow et al., 2015; Sun et al., 2018),
and machine learning understanding (Kanbak et al., 2018). One important caveat of the approach
pursued by much of the literature in adversarial machine learning, as discussed recently (Goodfellow,

original
image

parametric
(lighting)

texture color
[Athalye 17]

multi-step pixel
[Moosavi Dezfooli 16]

parametric
(geometry)

one-step pixel
[Goodfellow 14]

Figure 1: Traditional pixel-based adversarial attacks yield unrealistic images under a larger perturba-
tion (L∞-norm ≈ 0.82), however our parametric lighting and geometry perturbations output more
realistic images under the same norm (more results in Appendix A).

1

Published as a conference paper at ICLR 2019

original pixel perturbationparametric perturbation

Figure 2: Parametrically-perturbed images remain natural, whereas pixel-perturbed ones do not.

2018; Gilmer et al., 2018), is the reliance on overly simplified attack metrics: namely, the use of pixel
value differences between an adversary and an input image, also referred to as the pixel norm-balls.

The pixel norm-balls game considers pixel perturbations of norm-constrained magnitude (Goodfellow
et al., 2015), and is used to develop adversarial attackers, defenders and training strategies. The pixel
norm-ball game is attractive from a research perspective due to its simplicity and well-posedness: no
knowledge of image formation is required and any arbitrary pixel perturbation remains eligible (so
long as it is “small”, in the perceptual sense). Although the pixel norm-ball is useful for research
purposes, it only captures limited real-world security scenarios.

Despite the ability to devise effective adversarial methods through the direct employment of opti-
mizations using the pixel norm-balls measure, the pixel manipulations they promote are divorced
from the types of variations present in the real world, limiting their usefulness “in the wild”. More-
over, this methodology leads to defenders that are only effective when defending against unrealistic
images/attacks, not generalizing outside of the space constrained by pixel norm-balls. In order to con-
sider conditions that enable adversarial attacks in the real world, we advocate for a new measurement
norm that is rooted in the physical processes that underly realistic image synthesis, moving away
from overly simplified metrics, e.g., pixel norm-balls.

Our proposed solution – parametric norm-balls – rely on perturbations of physical parameters of
a synthetic image formation model, instead of pixel color perturbations (Figure 2). To achieve
this, we use a physically-based differentiable renderer which allows us to perturb the underlying
parameters of the image formation process. Since these parameters indirectly control pixel colors,
perturbations in this parametric space implicitly span the space of natural images. We will demonstrate
two advantages that fall from considering perturbations in this parametric space: (1) they enable
adversarial approaches that more readily apply to real-world applications, and (2) they permit the use
of much more significant perturbations (compared to pixel norms), without invalidating the realism
of the resulting image (Figure 1). We validate that parametric norm-balls game playing is critical for
a variety of important adversarial tasks, such as building defenders robust to perturbations that can
occur naturally in the real world.

We perform perturbations in the underlying image formation parameter space using a novel physically-
based differentiable renderer. Our renderer analytically computes the derivatives of pixel color with
respect to these physical parameters, allowing us to extend traditional pixel norm-balls to physically-
valid parametric norm-balls. Notably, we demonstrate perturbations on an environment’s lighting
and on the shape of the 3D geometry it shades. Our differentiable renderer achieves state-of-the-art
performance in speed and scalability (Section 3) and is fast enough for rendered adversarial data
augmentation (Section 5): training augmented with adversarial images generated with a renderer.

Existing differentiable renders are slow and do not scalable to the volume of high-quality, high-
resolutions images needed to make adversarial data augmentation tractable (Section 2). Given our
analytically-differentiable renderer (Section 3), we are able to demonstrate the efficacy of parametric
space perturbations for generating adversarial examples. These adversaries are based on a substantially
different phenomenology than their pixel norm-balls counterparts (Section 4). Ours is among the first
steps towards the deployment of rendered adversarial data augmentation in real-world applications:
we train a classifier with computer-generated adversarial images, evaluating the performance of
the training against real photographs (i.e., captured using cameras; Section 5). We test on real
photos to show the parametric adversarial data augmentation increases the classifier’s robustness
to “deformations” happened in the real world. Our evaluation differs from the majority of existing
literature which evaluates against computer-generated adversarial images, since our parametric space
perturbation is no-longer a wholly idealized representation of the image formation model but, instead,
modeled against of theory of realistic image generation.

2

Published as a conference paper at ICLR 2019

2 RELATED WORK

Our work is built upon the fact that simulated or rendered images can participate in computer vision
and machine learning on real-world tasks. Many previous works use rendered (simulated) data
to train deep networks, and those networks can be deployed to real-world or even outperform the
state-of-the-art networks trained on real photos (Movshovitz-Attias et al., 2016; Chen et al., 2016;
Varol et al., 2017; Su et al., 2015; Johnson-Roberson et al., 2017; Veeravasarapu et al., 2017b; Sadeghi
& Levine, 2016; James & Johns, 2016). For instance, Veeravasarapu et al. (2017a) show that training
with 10% real-world data and 90% simulation data can reach the level of training with full real data.
Tremblay et al. (2018) even demonstrate that the network trained on synthetic data yields a better
performance than using real data alone. As rendering can cheaply provide a theoretically infinite
supply of annotated input data, it can generate data which is orders of magnitude larger than existing
datasets. This emerging trend of training on synthetic data provides an exciting direction for future
machine learning development. Our work complements these works. We demonstrate the utility of
rendering can be used to study the potential danger lurking in misclassification due to subtle changes
to geometry and lighting. This provides a future direction of combining with synthetic data generation
pipelines to perform physically based adversarial training on synthetic data.

Adversarial Examples Szegedy et al. (2014) expose the vulnerability of modern deep neural
nets using purposefully-manipulated images with human-imperceptible misclassification-inducing
noise. Goodfellow et al. (2015) introduce a fast method to harness adversarial examples, leading
to the idea of pixel norm-balls for evaluating adversarial attackers/defenders. Since then, many
significant developments in adversarial techniques have been proposed (Akhtar & Mian, 2018;
Szegedy et al., 2014; Rozsa et al., 2016; Kurakin et al., 2017; Moosavi Dezfooli et al., 2016; Dong
et al., 2018; Papernot et al., 2017; Moosavi-Dezfooli et al., 2017; Chen et al., 2017; Su et al., 2017).
Our work extends this progression in constructing adversarial examples, a problem that lies at the
foundation of adversarial machine learning. Kurakin et al. (2016) study the transferability of attacks
to the physical world by printing then photographing adversarial images. Athalye et al. (2017)
and Eykholt et al. (2018) propose extensions to non-planar (yet, still fixed) geometry and multiple
viewing angles. These works still rely fundamentally on the direct pixel or texture manipulation on
physical objects. Since these methods assume independence between pixels in the image or texture
space they remain variants of pixel norm-balls. This leads to unrealistic attack images that cannot
model real-world scenarios (Goodfellow, 2018; Hendrycks & Dietterich, 2018; Gilmer et al., 2018).
Zeng et al. (2017) generate adversarial examples by altering physical parameters using a rendering
network (Liu et al., 2017) trained to approximate the physics of realistic image formation. This
data-driven approach leads to an image formation model biased towards the rendering style present
in the training data. This method also relies on differentiation through the rendering network in
order to compute adversaries, which requires high-quality training on a large amount of data. Even
with perfect training, in their reported performance, it still requires 12 minutes on average to find
new adversaries, we only take a few seconds Section 4.1. Our approach is based on a differentiable
physically-based renderer that directly (and, so, more convincingly) models the image formation
process, allowing us to alter physical parameters – like geometry and lighting – and compute

Table 1: Previous non-pixel attacks fall short in either the parameter
range they can take derivatives or the performance.

Methods Perf. Color Normal Material Light Geo.
Athalye 17 X X
Zeng 17 X X X
Ours X X X X X

derivatives (and adversar-
ial examples) much more
rapidly compared to the
(Zeng et al., 2017). We sum-
marize the difference be-
tween our approach and the
previous non-image adver-
sarial attacks in Table 1.

Table 2: Previous differentiable renderers fall short
in one way or another among Performance, Bias,
or Accuracy.

Methods Perf. Unbias Accu.

NN proxy (Liu 17) X
Approx. (Kato 18) X X
Autodiff (Loper 14) X X
Analytical (Ours) X X X

Differentiable Renderer Applying paramet-
ric norm-balls requires that we differentiate the
image formation model with respect to the phys-
ical parameters of the image formation model.
Modern realistic computer graphics models do
not expose facilities to directly accommodate
the computation of derivatives or automatic dif-
ferentiation of pixel colors with respect to geom-
etry and lighting variables. A physically-based

3

Published as a conference paper at ICLR 2019

differentiable renderer is fundamental to computing derivative of pixel colors with respect to scene
parameters and can benefit machine learning in several ways, including promoting the development
of novel network architectures (Liu et al., 2017), in computing adversarial examples (Athalye et al.,
2017; Zeng et al., 2017), and in generalizing neural style transfer to a 3D context (Kato et al., 2018;
Liu et al., 2018). Recently, various techniques have been proposed to obtain these derivatives: Wu
et al. (2017); Liu et al. (2017); Eslami et al. (2016) use neural networks to learn the image formation
process provided a large amount of input/output pairs. This introduces unnecessary bias in favor
of the training data distribution, leading to inaccurate derivatives due to imperfect learning. Kato
et al. (2018) propose a differentiable renderer based on a simplified image formation model and
an underlying linear approximation. Their approach requires no training and is unbiased, but their
approximation of the image formation and the derivatives introduce more errors. Loper & Black
(2014); Genova et al. (2018) use automatic differentiation to build fully differentiable renderers.
These renderers, however, are expensive to evaluate, requiring orders of magnitude more computation
and much larger memory footprints compared to our method.

Our novel differentiable renderer overcomes these limitations by efficiently computing analytical
derivatives of a physically-based image formation model. The key idea is that the non-differentiable
visibility change can be ignored when considering infinitesimal perturbations. We model image
variations by changing geometry and realistic lighting conditions in an analytically differentiable
manner, relying on an accurate model of diffuse image formation that extend spherical harmonics-
based shading methods (Appendix C). Our analytic derivatives are efficient to evaluate, have scalable
memory consumption, are unbiased, and are accurate by construction (Table 2). Our renderer
explicitly models the physics of the image formation processes, and so the images it generates are
realistic enough to illicit correct classifications from networks trained on real-world photographs.

3 ADVERSARIAL ATTACKS IN PARAMETRIC SPACES

Adversarial attacks based on pixel norm-balls typically generate adversarial examples by defining
a cost function over the space of images C : I → R that enforces some intuition of what failure
should look like, typically using variants of gradient descent where the gradient ∂C/∂I is accessible by
differentiating through networks (Szegedy et al., 2014; Goodfellow et al., 2015; Rozsa et al., 2016;
Kurakin et al., 2017; Moosavi Dezfooli et al., 2016; Dong et al., 2018).

The choices for C include increasing the cross-entropy loss of the correct class (Goodfellow et al.,
2015), decreasing the cross-entropy loss of the least-likely class (Kurakin et al., 2017), using a
combination of cross-entropies (Moosavi Dezfooli et al., 2016), and more (Szegedy et al., 2014;
Rozsa et al., 2016; Dong et al., 2018; Tramèr et al., 2017). We combine of cross-entropies to provide
flexibility for choosing untargeted and targeted attacks by specifying a different set of labels:

C
(
I(U, V)

)
= −CrossEntropy

(
f(I(U, V)), Ld

)
+ CrossEntropy

(
f(I(U, V)), Li

)
, (1)

where I is the image, f(I) is the output of the classifier, Ld, Li are labels which a user wants to
decrease and increase the predicted confidences respectively. In our experiments, Ld is the correct
class and Li is either ignored or chosen according to user preference. Our adversarial attacks in
the parametric space consider an image I(U, V) is the function of physical parameters of the image
formation model, including the lighting U and the geometry V . Adversarial examples constructed by
perturbing physical parameters can then be computed via the chain rule

∂C
∂U

=
∂C
∂I

∂I

∂U

∂C
∂V

=
∂C
∂I

∂U

∂V
, (2)

where ∂I/∂U, ∂I/∂V are derivatives with respect to the physical parameters and we evaluate using
our physically based differentiable renderer. In our experiments, we use gradient descent for finding
parametric adversarial examples where the gradient is the direction of ∂I/∂U, ∂I/∂V .

3.1 PHYSICALLY BASED DIFFERENTIABLE RENDERER

Rendering is the process of generating a 2D image from a 3D scene by simulating the physics of
light. Light sources in the scene emit photons that then interact with objects in the scene. At each
interaction, photons are either reflected, transmitted or absorbed, changing trajectory and repeating
until arriving at a sensor such as a camera. A physically based renderer models the interactions
mathematically (Pharr et al., 2016), and our task is to analytically differentiate the physical process.

4

Published as a conference paper at ICLR 2019

Top 5:
miniskirt 28%
t-shirt 21%
boot 6%
crutch 5%
sweatshirt 5%

t-shirt 86%

Top 5:
water tower 48%
street sign 18%
mailbox 9%
gas pump 3%
barn 3%

street sign 57%
Figure 4: By changing the lighting, we fool the classifier into seeing miniskirt and water tower,
demonstrating the existence of adversarial lighting.

boot 100%boot 98% boot 98% sleeping bag 98%watter bottle 15% cannon 20%

Figure 5: We construct a single lighting condition that can simultaneously fool the classifier viewing
from different angles.

We develop our differentiable renderer with common assumptions in real-time rendering (Akenine-
Moller et al., 2008) – diffuse material, local illumination, and distant light sources. Our diffuse
material assumption considers materials which reflect lights uniformly for all directions, equivalent to
considering non-specular objects. We assume that variations in the material (texture) are piece-wise
constant with respect to our triangle mesh discretization. The local illumination assumption only
considers lights that bounce directly from the light source to the camera. Lastly, we assume light
sources are far away from the scene, allowing us to represent lighting with one spherical function.
For a more detailed rationale of our assumptions, we refer readers to Appendix B).

101

100

10-1

1 2 3 4 5

Time

Log-log Runtime (sec./iter.)

#variables (x103)

OpenDR

Our approach

Out of memory

Figure 3: Our differentiable ren-
derer based on analytical deriva-
tives is faster and more scalable
than the previous method.

These assumptions simplify the complicated integral required
for rendering (Kajiya, 1986) and allow us to represent lighting in
terms of spherical harmonics, an orthonormal basis for spherical
functions analogous to Fourier transformation. Thus, we can
analytically differentiate the rendering equation to acquire deriva-
tives with respect to lighting, geometry, and texture (derivations
found in Appendix C).

Using analytical derivatives avoids pitfalls of previous differ-
entiable renderers (see Section 2) and make our differentiable
renderer orders of magnitude faster than the previous fully differ-
entiable renderer OPENDR (Loper & Black, 2014) (see Figure 3).
Our approach is scalable to handle problems with more than
100,000 variables, while OPENDR runs out of memory for problems with more than 3,500 variables.

3.2 ADVERSARIAL LIGHTING AND GEOMETRY

Adversarial lighting denotes adversarial examples generated by changing the spherical harmonics
lighting coefficients U (Green, 2003). As our differentiable renderer allows us to compute ∂I/∂U
analytically (derivation is provided in Appendix C.4), we can simply apply the chain rule:

U ← U − γ ∂C
∂I

∂I

∂U
, (3)

where ∂C/∂I is the derivative of the cost function with respect to pixel colors and can be obtained
by differentiating through the network. Spherical harmonics act as an implicit constraint to prevent
unrealistic lighting because natural lighting environments everyday life are dominated by low-
frequency signals. For instance, rendering of diffuse materials can be approximated with only 1%
pixel intensity error by the first 2 orders of spherical harmonics (Ramamoorthi & Hanrahan, 2001). As
computers can only represent a finite number of coefficients, using spherical harmonics for lighting
implicitly filters out high-frequency, unrealistic lightings. Thus, perturbing the parametric space of
spherical harmonics lighting gives us more realistic compared to image-pixel perturbations Figure 1.

5

Published as a conference paper at ICLR 2019

jaguar 61% jaguar 80% Egyptian cat 90% hunting dog 93%

Figure 6: By specifying different target labels, we can create an optical illusion: a jaguar is classified
as cat and dog from two different views after geometry perturbations.

Adversarial geometry is an adversarial example computed by changes the position of the shape’s
surface. The shape is encoded as a triangle mesh with |V | vertices and |F | faces, surface points are
vertex positions V ∈ R|V |×3 which determine per-face normals N ∈ R|F |×3 which in turn determine
the shading of the surface. We can compute adversarial shapes by applying the chain rule:

V ← V − γ ∂C
∂I

∂I

∂N

∂N

∂V
, (4)

ni hij

vj

where ∂I/∂N is computed via a derivation in Appendix E. Each triangle only has
one normal on its face, making ∂N/∂V computable analytically. In particular,
the 3× 3 Jacobian of a unit face normal vector ni ∈ R3 of the jth face of the
triangle mesh V with respect to one of its corner vertices vj ∈ R3 is

∂ni
∂vj

=
hijn

T
i

‖hij‖2
,

where hij ∈ R3 is the height vector: the shortest vector to the corner vj from the opposite edge.

4 RESULTS AND EVALUATION

We have described how to compute adversarial examples by parametric perturbations, including
lighting and geometry. In this section, we show that adversarial examples exist in the parametric
spaces, then we analyze the characteristics of those adversaries and parametric norm-balls.

We use 49× 3 spherical harmonics coefficients to represent environment lighting, with an initial real-
world lighting condition (Ramamoorthi & Hanrahan, 2001). Camera parameters and the background
images are empirically chosen to have correct initial classifications and avoid synonym sets. In
Figure 4 we show that single-view adversarial lighting attack can fool the classifier (pre-trained
ResNet-101 on ImageNet (He et al., 2016)). Figure 5 shows multi-view adversarial lighting, which
optimizes the summation of the cost functions for each view, thus the gradient is computed as the
summation over all camera views:

U ← U −
∑

i∈cameras

γ
∂C
∂Ii

∂Ii
∂U

. (5)

missile 49% wing 33%

Figure 7: Even if we further con-
strain to a lighting subspace, sky-
light, we can still find adversaries.

If one is interested in a more specific subspace, such as out-
door lighting conditions governed by sunlight and weather, our
adversarial lighting can adapt to it. In Figure 7, we compute
adversarial lights over the space of skylights by applying one
more chain rule to the Preetham skylight parameters (Preetham
et al., 1999; Habel et al., 2008). Details about taking these deriva-
tives are provided in Appendix D. Although adversarial skylight
exists, its low degrees of freedom (only three parameters) makes
it more difficult to find adversaries.

In Figure 8 and Figure 9 we show the existence of adversarial
geometry in both single-view and multi-view cases. Note that we upsample meshes to have >10K
vertices as a preprocessing step to increase the degrees of freedom available for perturbations. Multi-
view adversarial geometry enables us to perturb the same 3D shape from different viewing directions,
which enables us to construct a deep optical illusion: The same 3D shape are classified differently
from different angles. To create the optical illusion in Figure 6, we only need to specify the Li in
Equation (1) to be a dog and a cat for two different views.

6

Published as a conference paper at ICLR 2019

Top 3: assault rifle 87%, military
uniform 6%, six-gun 1%

loggerhead
turtle 67%

perturbation

Top 3: slug 91%,
roundworm 3%, banana 1%

banana 99%

perturbation

Figure 8: Perturbing points on 3D shapes fools the classifier into seeing rifle/slug.

street sign 86%street sign 99%street sign 91% mailbox 71%mailbox 61%mailbox 51%

Figure 9: We construct a single adversarial geometry that fools the classifier seeing a mailbox from
different angles.

4.1 PROPERTIES OF PARAMETRIC NORM-BALLS AND ADVERSARIES

To further understand parametric adversaries, we analyze how do parametric adversarial examples
generalize to black-box models. In Table 3, we test 5,000 ResNet parametric adversaries on unseen
networks including AlexNet (Krizhevsky et al., 2012), DenseNet (Huang et al., 2017), SqueezeNet
(Iandola et al., 2016), and VGG (Simonyan & Zisserman, 2014). Our result shows that parametric
adversarial examples also share across models.

In addition to different models, we evaluate parametric adversaries on black-box viewing directions.
This evaluation mimics the real-world scenario that a self-driving car would “see” a stop sign from
different angles while driving. In Table 4, we randomly sample 500 correctly classified views for a
given shape and perform adversarial lighting and geometry algorithms only on a subset of views, then
evaluate the resulting adversarial lights/shapes on all the views. The results show that adversarial
lights are more generalizable to fool unseen views; adversarial shapes, yet, are less generalizable.

init. light adv. light init. geo. adv. geo.

Adv.
lighting

Random
lighting

61.0% 9.1%

Adv.
geometry

Random
geometry

95.3% 17.5%

Figure 10: A quantitative comparison using paramet-
ric norm-balls shows the fact that adversarial light-
ing/geometry perturbations have a higher success
rate (%) in fooling classifiers comparing to random
perturbations in the parametric spaces.

Switching from pixel norm-balls to parametric
norm-balls only requires to change the norm-
constraint from the pixel color space to the
parametric space. For instance, we can per-
form a quantitative comparison between para-
metric adversarial and random perturbations
in Figure 10. We use L∞-norm = 0.1 to
constraint the perturbed magnitude of each
lighting coefficient, and L∞-norm = 0.002
to constrain the maximum displacement of
surface points along each axis. The results
show how many parametric adversaries can
fool the classifier out of 10,000 adversarial
lights and shapes respectively. Not only do the
parametric norm-balls show the effectiveness of adversarial perturbation, evaluating robustness using
parametric norm-balls has real-world implications.

Table 3: We evaluate ResNet adversaries on unseen
models and show that parametric adversarial exam-
ples also share across models. The table shows the
success rate of attacks (%).

Alex VGG Squeeze Dense

Lighting 81.2% 65.0% 78.6% 43.5%
Geometry 70.3% 58.9% 71.1% 40.1%

Table 4: We compute parametric adver-
saries using a subset of views (#Views)
and evaluate the success rates (%) of at-
tacks on unseen views.

#Views 0 1 5

Lighting 0.0% 29.4% 64.2%
Geometry 0.0% 0.6% 3.6%

7

Published as a conference paper at ICLR 2019

Time
(sec.)

Adversarial Lighting

105 106

54K vertices
25K vertices
15K vertices

105 106

54K vertices
25K vertices
15K vertices

1

.1

.01

Adversarial Geometry

#pixel

Runtime The inset presents our runtime per
iteration for computing derivatives. An ad-
versary normally requires less than 10 itera-
tions, thus takes a few seconds. We evaluate
our CPU PYTHON implementation and the
OPENGL rendering, on an Intel Xeon 3.5GHz
CPU with 64GB of RAM and an NVIDIA
GeForce GTX 1080. Our runtime depends on the number of pixels requiring derivatives.

5 RENDERED ADVERSARIAL DATA AUGMENTATION AGAINST REAL PHOTOS

We inject adversarial examples, generated using our differentiable renderer, into the training process
of modern image classifiers. Our goal is to increase the robustness of these classifiers to real-world
perturbations. Traditionally, adversarial training is evaluated against computer-generated adversarial
images (Kurakin et al., 2017; Madry et al., 2018; Tramèr et al., 2017). In contrast, our evaluation
differs from the majority of the literature, as we evaluate performance against real photos (i.e., images
captured using a camera), and not computer-generated images. This evaluation method is motivated
by our goal of increasing a classifier’s robustness to “perturbations” that occur in the real world and
result from the physical processes underlying real-world image formation. We present preliminary
steps towards this objective, resolving the lack of realism of pixel norm-balls and evaluating our
augmented classifiers (i.e., those trained using our rendered adversaries) against real photographs.

Training We train the WideResNet (16 layers, 4 wide factor) (Zagoruyko & Komodakis, 2016)
on CIFAR-100 (Krizhevsky & Hinton, 2009) augmented with adversarial lighting examples. We
apply a common adversarial training method that adds a fixed number of adversarial examples each
epoch (Goodfellow et al., 2015; Kurakin et al., 2017). We refer readers to Appendix F for the training
detail. In our experiments, we compare three training scenarios: (1) CIFAR-100, (2) CIFAR-100
+ 100 images under random lighting, and (3) CIFAR-100 + 100 images under adversarial lighting.
Comparing to the accuracy reported in (Zagoruyko & Komodakis, 2016), WideResNets trained on
these three cases all have comparable performance (≈ 77%) on the CIFAR-100 test set.

Figure 11: Unlike much of the lit-
erature on adversarial training, we
evaluate against real photos (cap-
tured by a camera), not computer-
generated images. This figure il-
lustrates a subset of our test data.

Testing We create a test set of real photos, captured in a lab-
oratory setting with controlled lighting and camera parameters:
we photographed oranges using a calibrated Prosilica GT 1920
camera under different lighting conditions, each generated by
projecting different lighting patterns using an LG PH550 projec-
tor. This hardware lighting setup projects lighting patterns from
a fixed solid angle of directions onto the scene objects. Figure 11
illustrates samples from the 500 real photographs of our dataset.
We evaluate the robustness of our classifier models according
to test accuracy. Of note, average prediction accuracies over
five trained WideResNets on our test data under the three train-
ing cases are (1) 4.6%, (2) 40.4%, and (3) 65.8%. This result
supports the fact that training on rendered images can improve the networks’ performance on real
photographs. Our preliminary experiments motivate the potential of relying on rendered adversarial
training to increase the robustness to visual phenomena present in the real-world inputs.

6 LIMITATIONS & FUTURE WORK

Using parametric norm-balls to remove the lack of realism of pixel norm-balls is only the first step to
bring adversarial machine learning to real-world. More evaluations beyond the lab experimental data
could uncover the potential of the rendered adversarial data augmentation. Coupling the differentiable
renderer with methods for reconstructing 3D scenes, such as (Veeravasarapu et al., 2017b; Tremblay
et al., 2018), has the potential to develop a complete pipeline for rendered adversarial training. We
can take a small set of real images, constructing 3D virtual scenes which have real image statistics,
using our approach to manipulate the predicted parameters to construct the parametric adversarial

8

Published as a conference paper at ICLR 2019

examples, then perform rendered adversarial training. This direction has the potential to produce
limitless simulated adversarial data augmentation for real-world tasks.

Our differentiable renderer models the change of realistic environment lighting and geometry. In-
corporating real-time rendering techniques from the graphics community could further improve the
quality of rendering. Removing the locally constant texture assumption could improve our results.
Extending the derivative computation to materials could enable “adversarial materials”. Incorporating
derivatives of the visibility change and propagating gradient information to shape skeleton could also
create “adversarial poses”. These extensions offer a set of tools for modeling real security scenarios.
For instance, we can train a self-driving car classifier that can robustly recognize pedestrians under
different poses, lightings, and cloth deformations.

ACKNOWLEDGMENTS

This work is funded in part by NSERC Discovery Grants (RGPIN–2017–05235 & RG-
PAS–2017–507938), Connaught Funds (NR2016–17), the Canada Research Chairs Program, the
Fields Institute, and gifts by Adobe Systems Inc., Autodesk Inc., MESH Inc. We thank members
of Dynamic Graphics Project for feedback and draft reviews; Wenzheng Chen for photography
equipments; Colin Raffel and David Duvenaud for discussions and feedback.

REFERENCES

Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering. AK Peters/CRC Press,
2008.

Naveed Akhtar and Ajmal S. Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. IEEE Access, 6:14410–14430, 2018.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples, 2017.

Ronen Basri and David W Jacobs. Lambertian reflectance and linear subspaces. IEEE transactions
on pattern analysis and machine intelligence, 25(2):218–233, 2003.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM,
2017.

Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su, Zhenhua Wang, Changhe Tu, Dani Lischinski,
Daniel Cohen-Or, and Baoquan Chen. Synthesizing training images for boosting human 3d pose
estimation. In 3D Vision (3DV), 2016 Fourth International Conference on, pp. 479–488. IEEE,
2016.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

TM Dunster. Legendre and related functions. NIST handbook of mathematical functions, pp. 351–381,
2010.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
et al. Attend, infer, repeat: Fast scene understanding with generative models. In Advances in
Neural Information Processing Systems, pp. 3225–3233, 2016.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust Physical-World Attacks on Deep Learning
Visual Classification. In Computer Vision and Pattern Recognition (CVPR), 2018.

9

Published as a conference paper at ICLR 2019

Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and William T. Freeman.
Unsupervised training for 3d morphable model regression. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating the
rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732, 2018.

Ian Goodfellow. Defense against the dark arts: An overview of adversarial example security research
and future research directions. arXiv preprint arXiv:1806.04169, 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http://
arxiv.org/abs/1412.6572.

Robin Green. Spherical harmonic lighting: The gritty details. In Archives of the Game Developers
Conference, volume 56, pp. 4, 2003.

Ralf Habel, Bogdan Mustata, and Michael Wimmer. Efficient spherical harmonics lighting with the
preetham skylight model. In Eurographics (Short Papers), pp. 119–122, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261–2269, 2017. doi: 10.1109/CVPR.
2017.243. URL https://doi.org/10.1109/CVPR.2017.243.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Stephen James and Edward Johns. 3d simulation for robot arm control with deep q-learning. arXiv
preprint arXiv:1609.03759, 2016.

Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Sridhar, Karl Rosaen, and
Ram Vasudevan. Driving in the matrix: Can virtual worlds replace human-generated annotations
for real world tasks? In Robotics and Automation (ICRA), 2017 IEEE International Conference on,
pp. 746–753. IEEE, 2017.

James T Kajiya. The rendering equation. In ACM Siggraph Computer Graphics, volume 20, pp.
143–150. ACM, 1986.

Can Kanbak, Seyed Mohsen Moosavi Dezfooli, and Pascal Frossard. Geometric robustness of deep
networks: analysis and improvement. Proceedings of IEEE CVPR, 2018.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916, 2018.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In
Proc. ICLR, 2016.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. 2017.

10

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/CVPR.2017.243

Published as a conference paper at ICLR 2019

Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. Material editing using a
physically based rendering network. In 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2280–2288. IEEE, 2017.

Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Paparazzi: Surface editing by way of
multi-view image processing. 2018.

Matthew M Loper and Michael J Black. OpenDR: An approximate differentiable renderer. In
European Conference on Computer Vision, pp. 154–169. Springer, 2014.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. International Conference on
Learning Representations, 2018.

Gavin Miller. Efficient algorithms for local and global accessibility shading. In Proceedings of the
21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pp.
319–326, New York, NY, USA, 1994. ACM. ISBN 0-89791-667-0. doi: 10.1145/192161.192244.
URL http://doi.acm.org/10.1145/192161.192244.

Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori Koyama. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 2018.

Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), number EPFL-CONF-218057, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 86–94, 2017.

Yair Movshovitz-Attias, Takeo Kanade, and Yaser Sheikh. How useful is photo-realistic rendering
for visual learning? In European Conference on Computer Vision, pp. 202–217. Springer, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506–519. ACM, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From theory to
implementation. Morgan Kaufmann, 2016.

Arcot J Preetham, Peter Shirley, and Brian Smits. A practical analytic model for daylight. In
Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp.
91–100. ACM Press/Addison-Wesley Publishing Co., 1999.

Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance environment maps.
In Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pp. 497–500. ACM, 2001.

Andras Rozsa, Ethan M Rudd, and Terrance E Boult. Adversarial diversity and hard positive
generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 25–32, 2016.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016.

Dave Shreiner and The Khronos OpenGL ARB Working Group. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Versions 3.0 and 3.1. Addison-Wesley Professional, 7th
edition, 2009. ISBN 0321552628, 9780321552624.

11

http://doi.acm.org/10.1145/192161.192244

Published as a conference paper at ICLR 2019

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed radiance transfer. In
ACM Transactions on Graphics (TOG), volume 24, pp. 1216–1224. ACM, 2005.

Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for CNN: Viewpoint estimation in
images using CNNs trained with rendered 3d model views. In Proc. ICCV, pp. 2686–2694, 2015.

Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. One pixel attack for fooling deep neural
networks. arXiv preprint arXiv:1710.08864, 2017.

Sining Sun, Ching-Feng Yeh, Mari Ostendorf, Mei-Yuh Hwang, and Lei Xie. Training augmentation
with adversarial examples for robust speech recognition. arXiv preprint arXiv:1806.02782, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. 2014.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem Anil, Thang
To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep networks with synthetic
data: Bridging the reality gap by domain randomization. 2018.

Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J Black, Ivan Laptev, and
Cordelia Schmid. Learning from synthetic humans. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017), 2017.

VSR Veeravasarapu, Constantin Rothkopf, and Ramesh Visvanathan. Model-driven simulations for
computer vision. In Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on,
pp. 1063–1071. IEEE, 2017a.

VSR Veeravasarapu, Constantin A Rothkopf, and Visvanathan Ramesh. Adversarially tuned scene
generation. In CVPR, pp. 6441–6449, 2017b.

Lance Williams. Casting curved shadows on curved surfaces. In ACM Siggraph Computer Graphics,
volume 12, pp. 270–274. ACM, 1978.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In Proc. CVPR,
volume 2, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22, 2016, 2016.

Xiaohui Zeng, Chenxi Liu, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi Keung Tang, and Alan L
Yuille. Adversarial attacks beyond the image space. arXiv preprint arXiv:1711.07183, 2017.

12

Published as a conference paper at ICLR 2019

Supplementary Material

A COMPARISON BETWEEN PERTURBATION SPACES

We extend our comparisons against pixel norm-balls methods (Figure 1) by visualizing the results
and the generated perturbations (Figure 12). We hope this figure elucidates that our parametric
perturbation are more realistic several scales of perturbations.

original
image

parametric
(lighting)

texture color
[Athalye 17]

one-step pixel
[Goodfellow 14]

multi-step pixel
[Moosavi Dezfooli 16]

parametric
(geometry)

sm
al

l n
or

m
im

g.
 d

iff
. x

5
m

ed
. n

or
m

im
g.

 d
iff

. x
1

la
rg

e
no

rm
im

g.
 d

iff
. x

0.
5

Figure 12: We compare our parametric perturbations (the first two columns) with pixel/color perturba-
tions under the same L∞ pixel norm (small: 0.12, medium: 0.53, large: 0.82). As changing physical
parameters corresponds to real-world phenomena, our parametric perturbation are more realistic.

B PHYSICALLY BASED RENDERING

scene

Camera

light
source

Figure 13: PBR models the
physics of light that emitted from
the light source, interact with the
scene, then arrive a camera.

Physically based rendering (PBR) seeks to model the flow of
light, typically the assumption that there exists a collection of
light sources that generate light; a camera that receives this
light; and a scene that modulates the flow light between the light
sources and camera (Pharr et al., 2016). What follows is a brief
discussion of the general task of rendering an image from a scene
description and the approximations we take in order to make our
renderer efficient yet differentiable.

Computer graphics has dedicated decades of effort into devel-
oping methods and technologies to enable PBR to synthesize
of photorealistic images under a large gamut of performance

13

Published as a conference paper at ICLR 2019

requirements. Much of this work is focused around taking approximations of the cherished Rendering
equation (Kajiya, 1986), which describes the propagation of light through a point in space. If we
let uo be the output radiance, p be the point in space, ωo be the output direction, ue be the emitted
radiance, ui be incoming radiance, ωi be the incoming angle, fr be the way light be reflected off the
material at that given point in space we have:

uo(p, ωo) = ue(p, ωo) +

∫
S2

fr(p, ωi, ωo)ui(p, ωi)(ωi · n)dωi.

From now on we will ignore the emission term ue as it is not pertinent to our discussion. Furthermore,
because the speed of light is substantially faster than the exposure time of our eyes, what we perceive
is not the propagation of light at an instant, but the steady state solution to the rendering equation
evaluated at every point in space. Explicitly computing this steady state is intractable for our
applications and will mainly serve as a reference for which to place a plethora of assumptions and
simplifications we will make for the sake of tractability. Many of these methods focus on ignoring
light with nominal effects on the final rendered image vis a vis assumptions on the way light travels.
For instance, light is usually assumed to have nominal interacts with air, which is described as the
assumption that the space between objects is a vacuum, which constrains the interactions of light to
the objects in a scene. Another common assumption is that light does not penetrate objects, which
makes it difficult to render objects like milk and human skin1. This constrains the complexity of light
propagation to the behavior of light bouncing off of object surfaces.

B.1 LOCAL ILLUMINATION

Figure 14: Rasterization converts
a 3D scene into pixels.

It is common to see assumptions that limit number of bounces
light is allowed.In our case we chose to assume that the steady
state is sufficiently approximated by an extremely low number
of iterations: one. This means that it seems sufficient to model
the lighting of a point in space by the light sent to it directly by
light sources. Working with such a strong simplification does,
of course, lead to a few artifacts. For instance, light occluded
by other objects is ignored so shadows disappear and auxiliary
techniques are usually employed to evaluate shadows (Williams,
1978; Miller, 1994).

When this assumption is coupled with a camera we approach what is used in standard rasterization
systems such as OPENGL (Shreiner & Group, 2009), which is what we use. These systems compute
the illumination of a single pixel by determining the fragment of an object visible through that pixel
and only computing the light that traverses directly from the light sources, through that fragment, to
that pixel. The lighting of a fragment is therefore determined by a point and the surface normal at
that point, so we write the fragment’s radiance as R(p,n, ωo) = uo(p, ωo):

R(p,n, ωo) =

∫
S2

fr(p, ωi, ωo)ui(p, ωi)(ωi · n)dωi. (6)

B.2 LAMBERTIAN MATERIAL

Lambertian Non-Lambertian

Figure 15: We consider the Lam-
bertian material (left) where lights
get reflected uniformly in every
direction.

Each point on an object has a model approximating the transfer
of incoming light to a given output direction fr, which is usually
called the material. On a single object the material parameters
may vary quite a bit and the correspondence between points and
material parameters is usually called the texture map which forms
the texture of an object. There exists a wide gamut of material
models, from mirror materials that transport light from a single
input direction to a single output direction, to materials that
reflect light evenly in all directions, to materials liked brushed
metal that reflect differently along different angles. For the sake
of document we only consider diffuse materials, also called Lambertian materials, where we assume

1this is why simple renderers make these sorts of objects look like plastic

14

Published as a conference paper at ICLR 2019

that incoming light is reflected uniformly, i.e fr is a constant function with respect to angle, which
we denote fr(p, ωi, ωo) = ρ(p):

R(p,n) = ρ(p)

∫
Ω(n)

u(p, ω)(ω · n)dω. (7)

This function ρ is usually called the albedo, which can be perceived as color on the surface for diffuse
material, and we reduce our integration domain to the upper hemisphere Ω(n) in order to model light
not bouncing through objects. Furthermore, since only the only ω and u are the incoming ones we
can now suppress the “incoming” in our notation and just use ω and u respectively.

B.3 ENVIRONMENT MAPPING

The illumination of static, distant objects such as the ground, the sky, or mountains do not change
in any noticeable fashion when objects in a scene are moved around, so u can be written entirely in
terms of ω, u(p, ω) = u(ω). If their illumination forms a constant it seems prudent to pre-compute
or cache their contributions to the illumination of a scene. This is what is usually called environment
mapping and they fit in the rendering equation as a representation for the total lighting of a scene, i.e
the total incoming radiance ui. Because the environment is distant, it is common to also assume that
the position of the object receiving light from an environment map does not matter so this simplifies
ui to be independent of position:

R(p,n) = ρ(p)

∫
Ω(n)

u(ω) (ω · n) dω. (8)

B.4 SPHERICAL HARMONICS

Despite all of our simplifications, the inner integral is still a fairly generic function over S2. Many
techniques for numerically integrating the rendering equation have emerged in the graphics community
and we choose one which enables us to perform pre-computation and select a desired spectral
accuracy: spherical harmonics. Spherical harmonics are a basis on S2 so, given a spherical harmonics
expansion of the integrand, the evaluation of the above integral can be reduced to a weighted product
of coefficients. This particular basis is chosen because it acts as a sort of Fourier basis for functions
on the sphere and so the bases are each associated with a frequency, which leads to a convenient
multi-resolution structure. In fact, the rendering of diffuse objects under distant lighting can be 99%
approximated by just the first few spherical harmonics bases (Ramamoorthi & Hanrahan, 2001).

We will only need to note that the spherical harmonics bases Y ml are denoted with the subscript
with l as the frequency and that there are 2l + 1 functions per frequency, denoted by superscripts m
between −l to l inclusively. For further details on them please take a glance at Appendix C.

If we approximate a function f in terms of spherical harmonics coefficients f ≈
∑
lm fl,mY

m
l the

integral can be precomputed as∫
S2

f ≈
∫
S2

∑
lm

fl,mY
m
l =

∑
lm

fl,m

∫
S2

Y ml , (9)

Thus we have defined a reduced rendering equation that can be efficiently evaluated using OPENGL
while maintaining differentiability with respect to lighting and vertices. In the following appendix we
will derive the derivatives necessary to implement our system.

C DIFFERENTIABLE RENDERER

Rendering computes an image of a 3D shape given lighting conditions and the prescribed material
properties on the surface of the shape. Our differentiable renderer assumes Lambertian reflectance,
distant light sources, local illumination, and piece-wise constant textures. We will discuss how
to explicitly compute the derivatives used in the main body of this text. Here we give a detailed
discussion about spherical harmonics and their advantages.

15

Published as a conference paper at ICLR 2019

C.1 SPHERICAL HARMONICS

Spherical harmonics are usually defined in terms of the Legendre polynomials, which are a class of
orthogonal polynomials defined by the recurrence relation

P0 = 1 (10)
P1 = x (11)

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x). (12)

The associated Legendre polynomials are a generalization of the Legendre polynomials and can be
fully defined by the relations

P 0
l = Pl (13)

(l −m+ 1)Pml+1(x) = (2l + 1)xPml (x)− (l +m)Pml−1(x) (14)

2mxPml (x) = −
√

1− x2
[
Pm+1
l (x) + (l +m)(l −m+ 1)Pm−1

l (x)
]
. (15)

Using the associated Legendre polynomials Pml we can define the spherical harmonics basis as

Y ml (θ, φ) = Km
l

(−1)m

√
2P−ml (cos θ) sin(−mφ) m < 0

(−1)m
√

2Pml (cos θ) cos(mφ) m > 0

P 0
l (cos θ) m = 0

. (16)

where Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
. (17)

We will use the fact that the associated Legendre polynomials correspond to the spherical harmonics
bases that are rotationally symmetric along the z axis (m = 0).

In order to incorporate spherical harmonics into Equation 8, we change the integral domain from the
upper hemisphere Ω(n) back to S2 via a max operation

R(p,n) = ρ(p)

∫
Ω(n)

u(ω)(ω · n)dω (18)

= ρ(p)

∫
S2

u(ω) max(ω · n, 0)dω. (19)

We see that the integral is comprised of two components: a lighting component u(ω) and a component
that depends on the normal max(ω · n, 0). The strategy is to pre-compute the two components by
projecting onto spherical harmonics, and evaluating the integral via a dot product at runtime, as we
will now derive.

C.2 LIGHTING IN SPHERICAL HARMONICS

Approximating the lighting component u(ω) in Equation 19 using spherical harmonics Y ml up to
band n can be written as

u(ω) ≈
n∑
l=0

l∑
m=−l

Ul,mY
m
l (ω),

where Ul,m ∈ R are coefficients. By using the orthogonality of spherical harmonics we can use
evaluate these coefficients as an integral between u(ω) and Y ml (ω)

Ul,m = 〈u, Y ml 〉S2 =

∫
S2

u(ω)Y ml (ω)dω,

which can be evaluated via quadrature.

C.3 CLAMPED COSINE IN SPHERICAL HARMONICS

So far, we have projected the lighting term u(ω) onto the spherical harmonics basis. To complete
evaluating Equation 19 we also need to approximate the second component max(ω ·n, 0) in spherical

16

Published as a conference paper at ICLR 2019

harmonics. This is the so-called the clamped cosine function.

g(ω,n) = max(ω · n, 0) =
n∑
l=0

l∑
m=−l

Gl,m(n)Y ml (ω),

where Gl,m(n) ∈ R can be computed by projecting g(ω,n) onto Y ml (ω)

Gl,m(n) =

∫
S2

max(ω · n, 0)Y ml (ω)dω.

Unfortunately, this formulation turns out to be tricky to compute. Instead, the common practice is to
analytically compute the coefficients for unit z direction G̃l,m = Gl,m(nz) = Gl,m([0, 0, 1]ᵀ) and
evaluate the coefficients for different normals Gl,m(n) by rotating G̃l,m. This rotation, G̃l,m, can be
computed analytically:

G̃l,m =

∫
S2

max(ω · nz, 0)Y ml (ω)dω

=

∫ 2π

0

∫ π

0

max([sin θ cosφ, sin θ sinφ, cos θ][0, 0, 1]ᵀ, 0)Y ml (θ, φ) sin θdθdφ

=

∫ 2π

0

∫ π

0

max(cos θ, 0)Y ml (θ, φ) sin θdθdφ

=

∫ 2π

0

∫ π/2

0

cos θ Y ml (θ, φ) sin θdθdφ. (20)

In fact, because max(ω ·nz, 0) is rotationally symmetric around the z-axis, its projection onto Y ml (ω)
will have many zeros except the rotationally symmetric spherical harmonics Y 0

l . In other words,
G̃l,m is non-zero only when m = 0. So we can simplify Equation 20 to

G̃l = G̃l,0 = 2π

∫ π/2

0

cos θ Y 0
l (θ) sin θdθ.

The evaluation of this integral can be found in Appendix A in (Basri & Jacobs, 2003). We provide
this here as well:

G̃l =

√
π

2 l = 0√
π
3 l = 1

(−1)
l
2 +1 (l−2)!

√
(2l+1)π

2l(l
2−1)!(l

2 +1)!
l ≥ 2, even

0 l ≥ 2, odd

.

The spherical harmonics coefficients Gl,m(n) of the clamped cosine function g(ω,n) can be com-
puted by rotating G̃l (Sloan et al., 2005) using this formula

Gl,m(n) =

√
4π

2l + 1
G̃l Y

m
l (n). (21)

So far we have projected the two terms in Equation 19 into the spherical harmonics basis. Orthogo-
nality of spherical harmonics makes the evaluation of this integral straightforward:∫

S2

u(ω) max(ω · n, 0)dω =

∫
S2

[∑
l,m

Ul,mY
m
l (ω)

][∑
j,k

Gj,k(n)Y kj (ω)

]
dω

=
∑
j,k,l,m

Ul,mGj,k(n)δljδ
m
k (22)

=
∑
l,m

Ul,mGl,m(n). (23)

17

Published as a conference paper at ICLR 2019

This, in conjunction with Equation 21allows us to derive the rendering equation using spherical
harmonics lighting for Lambertian objects:

R(p,n) = ρ(p)
n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Y

m
l (n). (24)

So far we have only considered the shading of a specific point p with surface normal n. If we consider
the rendered image I given a shape V , lighting U , and camera parameters η, the image I is the
evaluation of the rendering equation R of each point in V visible through each pixel in the image.
This pixel to point mapping is determined by η. Therefore, we can write I as

I(V,U, η) = ρ(V, η)
n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Y

m
l (N(V))︸ ︷︷ ︸

F (V,U)

, (25)

where N(V) is the surface normal. We exploit the notation and use ρ(V, η) to represent the texture
of V mapped to the image space through η.

C.4 LIGHTING AND TEXTURE DERIVATIVES

For our applications we must differentiate Equation 25 with respect to lighting and material parameters.
The derivative with respect to the lighting coefficients U can be obtained by

∂I

∂U
=

∂ρ

∂U
F + ρ

∂F

∂U
(26)

= 0 + ρ
n∑
l=0

l∑
m=−l

∂F

∂Ul,m
. (27)

This is the Jacobian matrix that maps from spherical harmonics coefficients to pixels. The term
∂F/∂Ul,m can then be computed as

∂F

∂Ul,m
=

√
4π

2l + 1
G̃l Y

m
l (N(V)). (28)

The derivative with respect to texture is defined by

∂I

∂ρ
=

n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l Y

m
l (N(V)). (29)

Note that we assume texture variations are piece-wise constant with respect to our triangle mesh
discretization.

D DIFFERENTIATING SKYLIGHT PARAMETERS

To model possible outdoor daylight conditions, we use the analytical Preetham skylight model
(Preetham et al., 1999). This model is calibrated by atmospheric data and parameterized by two
intuitive parameters: turbidity τ , which describes the cloudiness of the atmosphere, and two polar
angles θs ∈ [0, π/2], φs ∈ [0, 2π], which are encode the direction of the sun. Note that θs, φs are not
the polar angles θ, φ for representing incoming light direction ω in u(ω). The spherical harmonics
representation of the Preetham skylight is presented in (Habel et al., 2008) as

u(ω) =
6∑
l=0

l∑
m=−l

Ul,m(θs, φs, τ)Y ml (ω).

This is derived by first performing a non-linear least squares fit to write Ul,m as a polynomial of θs
and τ which lets them solve for Ũl,m(θs, τ) = Ul,m(θs, 0, τ)

Ũl,m(θs, τ) =
13∑
i=0

7∑
j=0

(pl,m)i,jθ
i
sτ
j ,

18

Published as a conference paper at ICLR 2019

where (pl,m)i,j are scalar coefficients, then Ul,m(θs, φs, τ) can be computed by applying a spherical
harmonics rotation with φs using

Ul,m(θs, φs, τ) = Ũl,m(θs, τ) cos(mφs) + Ũl,−m(θs, τ) sin(mφs).

We refer the reader to (Preetham et al., 1999) for more detail. For the purposes of this article we just
need the above form to compute the derivatives.

D.1 DERIVATIVES

The derivatives of the lighting with respect to the skylight parameters (θs, φs, τ) are

∂Ul,m(θs, φs, τ)

∂φs
= −mŨl,m(θs, τ) sin(mφs) +mŨl,−m(θs, τ) cos(mφs) (30)

∂Ul,m(θs, φs, τ)

∂θs
=
∂Ũl,m(θs, τ) cos(mφs) + Ũl,−m(θs, τ) sin(mφs)

∂θs
(31)

=
∑
ij

iθi−1
s τ j(pl,m)i,j cos(mφs) +

∑
ij

iθi−1
s (pl,−m)i,j sin(mφs) (32)

∂Ul,m(θs, φs, τ)

∂τ
=
∑
ij

jθisτ
j−1(pl,m)i,j cos(mφs) +

∑
ij

jθisτ
j−1(pl,−m)i,j sin(mφs) (33)

E DERIVATIVES OF SURFACE NORMALS

Taking the derivative of the rendered image I with respect to surface normals N is an essential task
for computing the derivative of I with respect to the geometry V . Specifically, the derivative of the
rendering equation Equation 25 with respect to V is

∂I

∂V
=

∂ρ

∂V
F + ρ

∂F

∂V
(34)

=
∂ρ

∂V
F + ρ

∂F

∂N

∂N

∂V
(35)

We assume the texture variations are piece-wise constant with respect to our triangle mesh discretiza-
tion and omit the first term ∂ρ/∂V as the magnitude is zero. Computing ∂N/∂V is provided in
Section 3.2. Computing ∂F/∂Ni on face i is

∂F

∂Ni
=

n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l
∂Y ml
∂Ni

, (36)

where the ∂Ym
l /∂Ni is the derivative of the spherical harmonics with respect to the face normal Ni.

To begin this derivation recall the relationship between a unit normal vector n = (nx, ny, nz) and its
corresponding polar angles θ, φ

θ = cos−1

(
nz√

n2
x + n2

y + n2
z

)
φ = tan−1

(
ny
nx

)
,

19

Published as a conference paper at ICLR 2019

we can compute the derivative of spherical harmonics with respect to the normal vector through

∂Y ml (θ, φ)

∂n

= Km
l

(−1)m
√

2

[
∂P−ml (cos θ)

∂θ

∂θ

∂n
sin(−mφ) + P−ml (cos θ)

∂ sin(−mφ)

∂φ

∂φ

∂n

]
m < 0

(−1)m
√

2

[
∂Pml (cos θ)

∂θ

∂θ

∂n
cos(mφ) + Pml (cos θ)

∂ cos(mφ)

∂φ

∂φ

∂n

]
m > 0

∂P 0
l (cos θ)

∂θ

∂θ

∂n
m = 0

= Km
l

(−1)m
√

2

[
∂P−ml (cos θ)

∂θ

∂θ

∂n
sin(−mφ)−mP−ml (cos θ) cos(−mφ)

∂φ

∂n

]
m < 0

(−1)m
√

2

[
∂Pml (cos θ)

∂θ

∂θ

∂n
cos(mφ)−mPml (cos θ) sin(mφ)

∂φ

∂n

]
m > 0

∂P 0
l (cos θ)

∂θ

∂θ

∂n
m = 0

(37)

Note that the derivative of the associated Legendre polynomials Pml (cos θ) can be computed by
applying the recurrence formula Dunster (2010)

∂Pml (cos θ)

∂θ
=
− cos θ(l + 1)Pml (cos θ) + (l −m+ 1)Pml+1(cos θ)

cos2 θ − 1
× (− sin θ)

=
− cos θ(l + 1)Pml (cos θ) + (l −m+ 1)Pml+1(cos θ)

sin θ
. (38)

Thus the derivatives of polar angles (θ, φ) with respect to surface normals n = [nx, ny, nz] are

∂θ

∂n
=
[∂θ
∂nx

,
∂θ

∂ny
,
∂θ

∂nz

]
=

[
nxnz, nynz, −(n2

x + n2
y)
]

(n2
x + n2

y + n2
z)
√
n2
x + n2

y

, (39)

∂φ

∂n
=
[∂φ
∂nx

,
∂φ

∂ny
,
∂φ

∂nz

]
=
[−ny
n2
x + n2

y

,
nx

n2
x + n2

y

, 0
]
. (40)

In summary, the results of Equation 37, Equation 38, Equation 39, and Equation 40 tell us how to
compute ∂Ym

l /∂Ni. Then the derivative of the pixel j with respect to vertex p which belongs to face i
can be computed as

∂Ij
∂Vp

≈ ρj
∂F

∂Ni

∂Ni
∂Vp

= ρj

n∑
l=0

l∑
m=−l

Ul,m

√
4π

2l + 1
G̃l
∂Y ml (θ, φ)

∂Ni

∂Ni
∂Vp

. (41)

F ADVERSARIAL TRAINING IMPLEMENTATION DETAIL

Our adversarial training is based on the basic idea of injecting adversarial examples into the training
set at each step and continuously updating the adversaries according to the current model parameters
(Goodfellow et al., 2015; Kurakin et al., 2017). Our experiments inject 100 adversarial lighting
examples to the CIFAR-100 data (≈ 0.17% of the training set) and keep updating these adversaries
at each epoch.

We compute the adversarial lighting examples using the orange models collected from
cgtrader.com and turbosquid.com. We uses five gray-scale background colors with inten-
sities 0.0, 0.25, 0.5, 0.75, 1.0 to mimic images in the CIFAR-100 which contains many pure color
backgrounds. Our orthographic cameras are placed at polar angle θ = π/3 with 10 uniformly sampled
azimuthal angles ranging from φ = 0 to 2π. Our initial spherical harmonics lighting is the same as

20

Published as a conference paper at ICLR 2019

CIFAR-100 random light adv. light (early epochs) adv. light (late epochs)

Figure 16: This figure visualizes the images of oranges from CIFAR-100, random lighting, and
adversarial lighting. In early training stage, small changes in lighting are sufficient to construct
adversarial examples. In late training stage, we require more dramatic changes as the model is
becoming robust to differ lightings.

other experiments, using the real-world lighting data provided in (Ramamoorthi & Hanrahan, 2001).
Our stepsize for computing adversaries is 0.05 along the direction of lighting gradients. We run our
adversarial lighting iterations until fooling the network or reaching the maximum 30 iterations to
avoid too extreme lighting conditions, such as turning the lights off.

Our random lighting examples are constructed at each epoch by randomly perturb the lighting
coefficients ranging from -0.5 to 0.5.

When training the 16-layers WideResNet (Zagoruyko & Komodakis, 2016) with wide-factor 4, we
use batch size 128, learning rate 0.125, dropout rate 0.3, and the standard cross entropy loss. We
implement the training using PYTORCH (Paszke et al., 2017), with the SGD optimizer and set the
Nesterov momentum 0.9, weight decay 5e-4. We train the model for 150 epochs and use the one with
best accuracy on the validation set. Figure 16 shows examples of our adversarial lights at different
training stages. In the early stages, the model is not robust to different lighting conditions, thus small
lighting perturbations are sufficient to fool the model. In the late stages, the network becomes more
robust to different lightings. Thus it requires dramatic changes to fool a model or even fail to fool the
model within 30 iterations.

G EVALUATE RENDERING QUALITY

.20 .4 .6 .8 1

Histogram of Model Confidence

Confidence (max: 1)

nu
m

be
r o

f i
m

ag
es

Figure 17: Prediction confidence
on rendered images, showing
our rendering quality is faithful
enough to be confidently recog-
nized by ImageNet models.

We evaluated our rendering quality by whether our rendered
images are recognizable by models trained on real photographs.
Although large 3D shape datasets, such as ShapeNet (Chang
et al., 2015), are available, they do not have have geometries
or textures at the resolutions necessary to create realistic ren-
derings. We collected 75 high-quality textured 3D shapes from
cgtrader.com and turbosquid.com to evaluate our render-
ing quality. We augmented the shapes by changing the field of
view, backgrounds, and viewing directions, then keep the configu-
rations that were correctly classified by a pre-trained ResNet-101
on ImageNet. Specifically, we place the centroid, calculated as
the weighted average of the mesh vertices where the weights are
the vertex areas, at the origin and normalize shapes to range -1 to
1; the field of view is chosen to be 2 and 3 in the same unit with
the normalized shape; background images include plain colors
and real photos, which have small influence on model predictions; viewing directions are chosen to
be 60 degree zenith and uniformly sampled 16 views from 0 to 2π azimuthal angle. In Figure 17, we
show that the histogram of model confidence on the correct labels over 10,000 correctly classified
rendered images from our differentiable renderer. The confidence is computed using softmax function
and the results show that our rendering quality is faithful enough to be recognized by models trained
on natural images.

21

	Introduction
	Related Work
	Adversarial Attacks in Parametric Spaces
	Physically Based Differentiable Renderer
	Adversarial Lighting and Geometry

	Results and Evaluation
	Properties of Parametric Norm-Balls and Adversaries

	Rendered Adversarial Data Augmentation Against Real Photos
	Limitations & Future Work
	Comparison Between Perturbation Spaces
	Physically Based Rendering
	Local Illumination
	Lambertian Material
	Environment Mapping
	Spherical Harmonics

	Differentiable Renderer
	Spherical Harmonics
	Lighting in Spherical Harmonics
	Clamped Cosine in Spherical Harmonics
	Lighting and Texture Derivatives

	Differentiating Skylight Parameters
	Derivatives

	Derivatives of Surface Normals
	Adversarial Training Implementation Detail
	Evaluate Rendering Quality

