
Stroke-Based Rendering

Stroke-Based Rendering

Aaron Hertzmann
University of Washington

1 Introduction

This chapter describes stroke-based rendering (SBR), an automatic approach to creating non-photorealistic
imagery by placing discrete elements called strokes, such as paint strokes or stipples. Many stroke-
based rendering algorithms and styles have been proposed, including styles of painting, pen-and-ink
drawing, tile mosaics, stippling, streamline visualization, tensor field visualization and jigsaw image
mosaics. This tutorial attemps to make sense of the disparate work in this area by creating a unified
view of SBR algorithms, which helps us to identify the common elements, as well as the unique ideas
of each. Moreover, presenting ideas in this fashion suggests possibilities for future research.

We can introduce SBR algorithms with a painterly rendering [Her98, Her02]:

Source photo Painted version Final rendering

This figure shows an SBR algorithm in action: starting from a photograph, a collection of brush
strokes are placed to match the photograph, and then rendered to appear as if created with oil paint.

Although the details vary, all SBR algorithms create images by placing strokes according to some
goals. The most common goal is that we want the painting to “look like” some other image — in
this case, we want to place colored brush strokes to look like the picture of the mountain. Another
important goal is to limit the number of strokes in some way. Otherwise, the algorithm can just use
many tiny brushstrokes, producing a very good match to the source image without much abstraction.

Finally, once the strokes have been placed, they can be rendered in some other form. Note that
we did not add texture until after the brush strokes are placed; we compared the source photo to

Recent Advances in NPR for Art and Visualization 3-1

Aaron Hertzmann

some intermediate image with a simplified stroke model. This is both for efficiency and for aesthetic
reasons, to be discussed later. The main point is that the final rendering may be different from the way
we expressed our goals about the image.

Here is another example of a automatic vector-field visualization [TB96]: Here, streamlines are

Vector field Final rendering Blurred rendering

used to effectively convey the motion of a vector field. In order to clearly illustrate the vector field,
the placements should be placed evenly — the middle rendering was created with the goal that the
blurry version should be as close to a constant grey value as possible. For comparison, the image on
the left shows stroke placements on a regular grid without adjustment. Again, we can see that this
streamline visualization algorithm is an SBR algorithm: it places strokes (streamlines) according to
specified goals (to follow the vector field and to match a target tone in the blurred image).

It is usually not possible to exactly meet all of the goals; hence, it is useful to have a way of trading-
off the goals, and quantifying their importance. We can do this by formalizing an SBR problem as
an objective function minimization problem. An objective function is a mathematical formula that
explains “how good” our rendering is; SBR algorithms can be seen as attempting to minimize objective
functions. For example, it isn’t possible to place the streamlines in the above visualization to achieve
a purely constant tone in the gray image. Hence, instead, we can use as an objective function the
deviation of the blurred image from a constant image.

So far, we have described two different SBR problem statements, one for painterly rendering and
one for visualization, but said nothing of how to design algorithms for these problems. There are
two main approaches to designing SBR algorithms: greedy algorithms, in which strokes are greedily
placed to match the target goals, and optimization algorithms, where the algorithm iteratively places
and then adjusts stroke positions to minimize the objective function. A greedy algorithm produced the
above painterly rendering, and an optimization algorithm produced the streamline visualization.

Haeberli introduced both a semi-automatic greedy algorithm and an automatical optimization al-
gorithm in a seminal paper [Hae90]. Digital paint systems had previously automated some of the
stroke renderings [Smi01], but did not automate any stroke placement choices. Wireframe renderings
had previously been common in computer graphics (preceding photorealistic rendering), and Yessios
[Yes79] described a system for drafting with strokes based on architectural drafting styles.

Although this tutorial focuses on the technical details of SBR algorithms, it is important to remem-
ber that they are useless without human control. Every aspect of the system (including the choice of
stroke models, the setting of weight parameters, and the selection of input imagery) requires aesthetic

3-2 SIGGRAPH 2002

Stroke-Based Rendering

decisions which can only be made by an artist working towards some goal. Ideally, a human artist
using the system should have total control over the decisions being made. For example, a user should
be able to specify spatially-varying styles, so that different rendering styles are used in different parts
of the image, or to specify positions of individual strokes. However, one of the great advances in art in
the age of digital machines is the ability to create complex systems of procedural art, where the artist
does not directly create the final work, but rather creates rules according to which the final decisions
are made1. Hence, an artist may design the energy function, but not necessary edit every individual
image produced by the algorithm. In one possible scenario, the artwork may “occur” at a time after
the artist’s involvement. The main goal of SBR algorithms is to provide procedural tools that auto-
mate parts of the image creation process, not to replace the artist (which would be both a futile and an
undesirable goal).

In this tutorial, I survey some of the various SBR styles and algorithms that have been created, and
discuss the advantages and disadvantages of each. I will first describe the framework in somewhat more
rigorous detail, including the use of objective functions to define specific problems. I will then describe
specific SBR applications, grouped by algorithm in order to emphasize how, from a computational
point of view, styles that look superficially different are often just variations on a theme. Pointers to
related research (including extensions to animation) are given in Section 7.

2 Stroke-Based Rendering: Stating the Problem

In this section, I outline a general view of stroke-based rendering algorithms in terms of energy min-
imization. I begin with some preliminary definitions and examples, followed by the basic problem
statement as well as a statistical view of the problem, and conclude with a discussion of the advan-
tages and disadvantages of this approach. SBR algorithms will be surveyed in the remaining sections
of this chapter.

We begin with a few definitions. First, we need to define what our strokes can look like.

Definition: A stroke is a data structure that can be rendered in the image plane.
A stroke model is a parametric description of strokes, so that different parameter
settings produce different stroke positions and appearances.

For example, one form of stippling uses a very simple stroke model:

(x,y)

R

Stippling stroke model Individual strokes (stipples)

As illustrated above, a stipple is a stroke that can be described with two parameters: the (x,y)
position of the stipple in an image, and the radius R of the stipple. (As we shall see in Section 3.1,

1Technically speaking, procedural art does not require modern technology (e.g. see [Aar97, Mur98]).

Recent Advances in NPR for Art and Visualization 3-3

Aaron Hertzmann

other definitions of a stipple are possible.)
We create images by combining strokes:

Definition: An image structure is a data structure containing

• A canvas, defined by a background color or texture,

• An ordered list of strokes, definined by their parameter settings.

An image structure contains the necessary data to create a rendering. To create an image, the list of
strokes is rendered by alpha-compositing over the background. The background is usually just a solid
color or a predefined texture image. Examples of images composed of paint strokes and streamlines
were shown in Section 1. For example, a PostScript file containing line art can be thought of as an
image structure, since it contains a list of stroke definitions; the data in the file can be rendered on the
screen or on a printer.

Finally, we need a quantitative way of evaluating how good a rendering is:

Definition: An SBR energy function is a function E : I → R, where I is the set
of possible image structures, and R is the set of real numbers.

Intuitively, we can think of the energy function as scoring “how good” the painting or drawing
is. An energy function E(I) takes an image structure as input and outputs a number indicating the
“quality” of the image — generally, the goal of an SBR algorithm is to produce an image with the
smallest possible energy. The energy function is sometimes also called an “objective function,” “cost
function,” or “error function.” The term “energy” comes from analogous uses in physics, such as
searching for the minimum energy configuration of a set of particles.

SBR algorithms are normally defined in terms of some input data, usually an input image. In most
algorithms described in this survey, the energy function measures how closely the rendering matches
some input image. Additionally, the energy function encodes tradeoffs. For example, a painterly ren-
dering algorithm takes an input image and produces an image structure containing color paint strokes
that matches the source image. However, one could get a perfect match to the source image by placing
thousands of tiny brush strokes, which would not look too different from the source image. We can
create a more interesting painting by adding an “abstraction” term to the energy function, by assigning
higher energies to paintings that use less strokes. For example, the energy function could be

E(I) = Ematch(I)+wabsEabs(I)

Ematch(I) = ∑
(x,y)∈I

‖I(x,y)−S(x,y)‖2

Eabs(I) = the number of strokes in I

where wabs is a scalar weight parameter, and Ematch(I) is the sum-of-squared differences between the
source image and the rendering. This energy function has one parameter wabs. We can control the
level of abstraction in the painting style by adjusting the value of this parameter: setting wabs to be
small specifies that we want a very realistic style (reproducing the original image as close as possible);

3-4 SIGGRAPH 2002

Stroke-Based Rendering

setting wabs to be large specifies a very abstract style (capturing the image with very few strokes). (Of
course, this is only one possible notion of abstraction.) This suggests the following definition of style:

Definition: An SBR style is a stroke model and energy function (including pa-
rameter settings) over image structures.

In other words, an algorithm creates an image in a specific style by minimizing the corresponding
energy function. Note that this is a broadly-inclusive notion of style — in this view, changing the
parameters to a gallery effect in an imaging tool constitutes changing the style (although not by very
much). The goal of this framework is to provide a structure within which many styles can be created
and applied.

3 Optimization algorithms

In this section, I describe optimization algorithms for SBR problems. Two kinds of optimization
algorithms have been applied to SBR. The first kind, which I will call Voronoi algorithms, exploits
special properties of the SBR problem to perform efficient global update steps. The second kind, which
I will call trial-and-error algorithms, assumes no special structure and perform heuristically-chosen
tests to try to reduce the energy. In general, the Voronoi algorithms are very effective and fast, but
cannot be applied to all problems. The trial-and-error algorithms are very general-purpose, but at the
cost of substantial computation times. (It so happens that both of the approaches have also been called
“relaxation algorithms.”)

3.1 Voronoi algorithms

Voronoi algorithms are useful for SBR problems where the final image will be composed of many
identical non-overlapping strokes, and where only the density of the strokes is constrained. The central
idea is to use efficient techniques from computational geometry to place evenly-spaced strokes into
an image. Moreoever, these techniques can be made very fast using graphics hardware. However,
these algorithms do not directly optimize with respect to an image-based metric (e.g. thatthe rendering
should match target tones) since the energy function is defined in terms of stroke densities.

3.1.1 LLOYD’S METHOD

How can we create a set of evenly-spaced points within an image? We will use an iterative optimization
procedure, which requires defining an appropriate energy function. Let p = (x,y) be a pixel locations
in an image, and let Ci be special point locations called “centroids;” the strokes will eventually be
placed at these locations. Let Li

p ∈ {0,1} be a binary labeling of pixels: if Li
p = 1, then the pixel p has

been “assigned” to centroid i. Every pixel is assigned to exactly one centroid: ∑p Li
p = 1. The goal is

Recent Advances in NPR for Art and Visualization 3-5

Aaron Hertzmann

(a) (b)

Figure 1: (a) Voronoi diagram of a set of points Ci. The image is partitioned into a set of regions,
one region for each point. Each region is designed so that it contains all pixels that are closest to the
corresponding point Ci. (b) By applying Lloyd’s method, the points are adjusted so that they lie at the
centroid of their region of the Voronoi diagram. The resulting point set is evenly spaced and can be
used to specify regular stroke placements. Images from [Sec02], used by permission.

to choose both a set of centroids and a labeling that minimizes the energy function2.

E(I) = ∑
p∈I

Li
p‖p−Ci‖

2 (1)

= ∑
p∈I

Li
p((px−Cx)

2 +(px−Cy)
2) (2)

where the centroids and labeling are implicitly members of I. In short, we want every pixel to be close
to its assigned centroid. If we knew the set of centroids Ci in advance, then computing the optimal
labeling would be easy — we just assign every pixel to the nearest centroid. The resulting labeling is
known as a Voronoi diagram (Figure 1(a)) — it partitions the plane according to which centroids Ci

are nearest to each point.
From looking at Figure 1(a), it should be clear that picking some randomly-chosen point set and

then computing the Voronoi diagram does not give a very good arrangement of centroids. In fact, we
can improve upon this set of centroids simply by adjusting the point centers to best fit this partition
— in other words, by holding fixed the labeling and optimizing the energy function with respect to

the centroids. The new optimal centroids are given by Ci =
∑p Li

pp

∑p Li
p

. This is just the mean of the pixel

locations that are assigned to Ci; this formula is easily obtained by setting ∂E(I)
∂Ci

= 0 and solving for
Ci. We can iterate these two steps. This, in fact, is known as Lloyd’s method:

2NPR researchers have typically presented the continuous version of this energy, e.g.
∫

‖p−Ci‖
2dp where Ci is the

nearest centroid to p, where p ∈ R2 is a real-valued point in the plane rather than a discrete pixel location. I prefer the
discrete version, because it more closely reflects the problem actually being solved. One benefit is that we can prove
convergence of the discrete version of the algorithm, whereas convergence has not been proven for the continuous version.

3-6 SIGGRAPH 2002

Stroke-Based Rendering

function LLOYDSMETHOD(n, I):
initialize the centroids Ci by randomly sampling n points uniformly in the image I
while the algorithm has not converged

reestimate the labeling by Li
p←

{

1 i = argmini ‖p−Ci‖
2

0 otherwise

reestimate the centroids by Ci←
∑p Li

pp

∑p Li
p

return the centroids Ci

Figure 1(b) shows the same point after applying Lloyd’s method. The algorithm is said to converge
when the energy does not change between steps. The algorithm is guaranteed to reduce the energy at
every step before convergence, because each step minimizes the energy with respect to some param-
eters. It is guaranteed to converge, because the energy decreases at every step before convergence,
and because there is a finite number of possible labelings L. Lloyd’s method was discovered sepa-
rately by the signal-processing community (where it is known as “vector quantization” [GG92]) and
the machine learning community (where it is known as “k-means clustering” [Bis95]).

Running this optimization in software over an entire image can be quite slow. However, it has
recently been shown that graphics hardware can be used to make the process very fast [WND97,
HCK+99]. The basic idea is to accelerate the labeling step by using Z-buffer hardware — by rendering
a cone at each centroid location, one can show that computing the nearest centroid is equivalent to
determining which cone is visible in each pixel. The centroids are updated by a single pass over the
image. See [HCK+99] for details.

3.1.2 VARIATIONS ON LLOYD’S METHOD FOR SBR

Now that we have a procedure for regular placement of points, it is straightforward to design SBR
algorithms on top of it. Perhaps the simplest SBR problem to describe is stippling: placement of many
small dots to match some target grayscale image. Deussen et al. [DHvOS00] presented the first such
method, using stipples to approximate gray tones in a target image (Figure 2). In their method, the
image is manually segmented into distinct regions, and stipples are placed evenly within each region,
by applying Lloyd’s method to each region separately. The centroids are initialized using a half-toning
algorithm. Once the centroid locations are chosen, they are replaced with stipples. The sizes of a
stipple is proportional to the gray level of the image underneath it.

Secord [Sec02] presents an alternate stippling style and algorihtm, by varying the dot spacing
instead of the dot size (Figure 2). The idea is to define a spatially-varying density function ρ(p) that
determines how dense the stippling should be in different parts of the image. This density function is
directly derived from the tones of the target image T (p), i.e. ρ(p) = 1−T (p)/m where m is the max
gray level in T . The new energy function is

E(I) = ∑
p∈I

Li
pρ(p)‖p−Ci‖

2 (3)

= ∑
p∈I

Li
pρ(p)((px−Cix)

2 +(px−Ciy)
2) (4)

Recent Advances in NPR for Art and Visualization 3-7

Aaron Hertzmann

(a) (b) (c) (d)

Figure 2: Stippling algorithms. In stippling, many small points are placed to match a gray tone image.
Results from [DHvOS00] are shown in (b), and from [Sec02] in (d). In order to match the target
gray tones, Deussen et al.’s algorithm varies stipple size (keeping stipple density constant), whereas
Secord’s algorithm varies stipple density (keeping stipple size constant). The eye in the grasshopper
image was manually segmented from the rest of the image. Images used by permission.

Following the same steps as before directly leads to a slightly different version of Lloyd’s method: the

labeling step is the same, but the centroids are now reestimated as Ci←
∑p Li

pρ(p)p

∑p Li
pρ(p)

. This summation can

be accelerated by precomputing sums of ρ(p). This method gives somewhat sharper image boundaries,
since the stipple placement is directly affected by the intensity of the source image. Secord also uses
a simpler initialization procedure based on rejection sampling [Mac98]. Specifically, the algorithm
samples point locations from a uniform distribution, includes the sampled points in the initialization
with probability proportional to ρ(p).

Lloyd’s method can also be used to create tile mosaics from color source images. A simple ap-
proach is to create a Voronoi diagram of an image, and then color each region of the image by the color
from the underlying source image [HCK+99]. However, this produces a mosaic with very irregular
tile shapes.

Hausner [Hau01] describes two enhancements to this method (Figure 3). First, square tile shapes
can be generated by replacing the L2 norm with the L1 norm (‖v‖1 = |vx|+ |vy|). Second, an orientation
field φ(p) can be specified for the image to create tilings with consistent orientations (Figure 3(a)). The
orientation of each tile is constrained to match the vector field: φi = φ(Ci) The new energy function is
now

E(I) = ∑
p∈I

Li
p‖Rφ(Ci)(p−Ci)‖

2
1 (5)

where Rφ(Ci) is a rotation matrix with orientation φ(Ci). We can create a new optimization procedure
as follows:

3-8 SIGGRAPH 2002

Stroke-Based Rendering

(a) (b) (c) (d) (e)

Figure 3: Tile mosaic results from [Hau01]. (a) Perspective view of the vector field used for the yin-
yang example. The vector field was generated from the height field shown. (b) Initial Voronoi diagram
of randomly-placed points. (c) Final tiling. Edges shown in white are excluded from the optimization.
(d) Rendered tiling, using colors from a source image. (e) Tiling of a Lybian Sibyl image. Images used
by permission.

function TILEMOSAIC(n, I):
initialize the centroids Ci by randomly sampling n points uniformly in the image I
while the algorithm has not converged

reestimate the labeling by Li
p←

{

1 i = argmini ‖Rφ(Ci)(p−Ci)‖
2
1

0 otherwise

reestimate the centroids by Ci←
∑p Li

pp

∑p Li
p

return the centroids Ci

Note that this algorithm is no longer optimal, since the centroid update step is not guaranteed to
improve the energy function. Furthermore, the algorithm does not take color information into account,
until after the tile positions have been chosen. Nonetheless, the algorithm tends to achieve good results
in practice.

Tiling can be applied to manually-segmented regions, as before. Edges can be enhanced by re-
moving them from the energy function. Specifically, points p that lie on image edges are not included
in the labeling or centroid computation steps; this discourages Voronoi regions from straddling edges.
Tile sizes and shapes can be modified by adjusting the energy function in various ways; the resulting
problem is amenable to hardware acceleration [Hau01]. Examples are shown in Figure 3.

3.2 Trial-and-Error algorithms

It is difficult to extend Voronoi methods to take color information into account, and to handle prob-
lems where strokes may overlap. So far, the only optimization method applicable to these problems
are trial-and-error methods. Trial-and-error methods can be applied to any SBR problem. The idea
is simple: we propose a change to the image structure. If the proposed change reduces the energy,
then the change is incorporated; otherwise, it is discarded. The algorithm then repeats. If the proposal
mechanism is well-designed, then the algorithm should eventually converge to a low-energy result.
However, there are no guarantees that this will happen, and, even if it does, the computation time

Recent Advances in NPR for Art and Visualization 3-9

Aaron Hertzmann

could be substantial.3 Here is pseudocode for a trial-and-error algorithm:

function TRIALANDERROR(I):
I← empty image structure
while not done

C← SUGGEST() // Suggest change
if (E(C(I)) < E(I)) // Does the change help?

I←C(I) // If so, adopt it
return I

Termination conditions are up to the user. For example, the optimization can run for a fixed amount
of time, until the user is satisfied with the results, or when only a small portion of the proposals are
accepted.

Of critical importance is the design of a good proposal mechanism. Purely random proposal mech-
anisms can waste substantial time making little progress, whereas hand-tuned mechanisms can quickly
get much better results. Trial-and-error algorithms are actually quite closely-related to greedy algo-
rithms, since they both use hand-designed proposals. The main differences are that the trial-and-error
includes checks to make sure that the proposal actually improves the image, and that the procedure
can iteratively improve previous strokes. Hence, using trial-and-error frees you from the difficult task
of designing a mechanism that always makes good strokes.

Haeberli [Hae90] introduced the first trial-and-error algorithm for non-photorealistic rendering;
results are shown in Figure 4. In each case, a fixed number of strokes are randomly perturbed, and the
perturbations are kept only if the sum-of-squares difference to the source image is reduced.

3.2.1 STREAMLINE VISUALIZATION BY TRIAL-AND-ERROR

More recently, Turk and Banks [TB96] demonstrated a trial-and-error algorithm for vector field visu-
alization of streamlines.4 As described in the introduction, the problem is to illustrate a vector field
with streamlines for clear visualization of the vector field. However, a straightforward approach to the
problem — simply tracing streamlines from some predetermined starting points — creates irregular
streamline spacing that distract from the flow of the vector field. Hence, we need some way of evaulat-
ing the quality of the streamline visualization, and then optimizing for that quality measure. Turk and
Banks proposed blurring the streamline rendering, and comparing the result to a predefined constant
value t. The corresponding energy function is simply

E(I) = ∑
p∈I

((G∗ I)(p)− t)2 (6)

3A closely related technique, called Markov Chain Monte Carlo (MCMC) [Mac98] can give asymptotic quality guar-
antees. Thus far, MCMC has not been applied to problems in SBR.

4Building on the work of Turk and Banks, Jobard and Lefer later described a greedy streamline placement algorithm
that is much faster than the trial-and-error method [JL97]. I describe the former method here for completeness, and because
it may become useful in future problems.

3-10 SIGGRAPH 2002

Stroke-Based Rendering

(a) (b)

Figure 4: Images computed using trial-and-error algorithms [Hae90]. (a) Overlapping rectangular
strokes. (b) Voronoi diagram of a set of point centers. For this version of the problem, faster methods
were later developed (Section 3.1). Images used by permission.

where (G∗ I)(p) denotes the blurred version of the streamline image. (A similar energy function was
used earlier by Salisbury et al. [SABS94].) Note that we could also penalize the deviations of the
streamline from the vector field, since our goal is to produce streamlines that exactly follow the vector
field. Fortunately, the trial-and-error algorithm is able to enforce this constraint at every step, and thus
it is not necessary to include it in the energy function.

In order to apply a trial-and-error algorithm to this problem, we must define the proposal mecha-
nism. While a purely random proposal mechanism may decrease the energy in the long run, it will be
far too long to be practical. Hence, Turk and Banks defined many proposal heuristics designed to de-
crease the energy as much as possible with each step. The first proposals are all streamline placements,
in order to quickly fill the image with streamlines. Placing a streamline entails picking a starting point,
and then tracing along the vector field some predefined distance. Then, each proposal is one of several
possibilities, including adding, deleting, lengthing, and shortening strokes. Each proposal is guaran-
teed to force the resulting strokes to follow the vector field, and proposals are more likely in image
locations that have high energy (i.e. irregular tones). See [TB96] for details.

3.2.2 PAINTERLY RENDERING BY TRIAL-AND-ERROR

I have built a trial-and-error painterly rendering algorithm [Her01]. At a high level, the goal is to seek
concise paintings that match a source image closely and cover the image with paint, but use as few
strokes as possible. Each brush stroke is defined by a brush radius and a list of control points (Section
5.1). The energy function is

E(I) = Eapp(I)+Enstr(I)+Ecov(I)

Eapp(I) = ∑
(p)∈I

wapp(p)‖I(p)−S(p)‖

Enstr(I) = wnstr · (number of strokes in I)

Recent Advances in NPR for Art and Visualization 3-11

Aaron Hertzmann

(a) (b)

(c) (d)

Figure 5: Spatially-varying style, from [Her01]. (a) Source image. (b) Interactively-painted weight
image (wapp). The weight image allows the user to specify where emphasis will be assigned. (c)
Resulting painting with the given weights. More detail appears near faces and hands. (d) Another
choice of weights; detail is concentrated on the rightmost figures.

Ecov(I) = wcov · (number of empty pixels in I)

This energy is a linear combination of three terms. The first term, Eapp, measures the pixelwise
differences between the painting and a source image S. The number of strokes term Enstr is used to
penalize the number of strokes. The coverage term Ecov is used to force the canvas to be filled with
paint, if desired, by setting wcov to be very large. The weights w are user-defined values. The color
distance ‖ · ‖ represents Euclidean distance in RGB space. The weights wapp(p) are defined by a
weight image that allows the user to specify spatially-varying weights.

The first two terms of the energy function quantify the trade-off between two competing desires:
the desire to closely match the appearance of the source image, and the desire to use as little paint
as possible, i.e. to be economical. By adjusting the relative proportion of wapp and wnstr, a user can
specify the relative importance of these two desires, and thus produce different painting styles.

By default, the value of wapp(p) is initialized by a binary edge image, computed with a Sobel
filter. This gives extra emphasis to the edges, although a constant weight often gives decent results as
well. If we allow the weight to vary over the canvas, then we get an effect that is like having different
energy functions in different parts of the image (Figure 5). The weight image wapp(p) allows us to
specify how much detail is required in each region of the image, and can be generated automatically,
or hand-painted by a user. This gives the user high-level control without requiring the user to make
every low-level choice.

The trial-and-error algorithm is similar in spirit to Turk and Banks’. However, the problem is much

3-12 SIGGRAPH 2002

Stroke-Based Rendering

harder to optimize, because the strokes have many more attributes, there is no predefined vector field,
and strokes can overlap. Consequently, the trial-and-error algorithm can take many hours to run, and is
not currently very practical. However, the algorithm does give very economical results, an substantial
high-level control to a user. See [Her01] for further details of the algorithm.

4 Greedy algorithms

The most common stroke-based rendering algorithms are greedy: strokes are added to the image struc-
ture in a single pass, and strokes are never modified once they have been created. Greedy algorithms
make use of heuristics and carefully-designed placement steps. This means that they can quickly pro-
duce high-quality results, but at the cost of flexbility. Greedy algorithms are rarely defined in terms of
an energy function, although one is sometimes implicit. In some situations, devising an appropriate
energy function may be difficult, but a useful algorithm can be developed without one.

Since strokes are placed once and never modified after, there are really two central questions that
define a greedy algorithm:

• Where do we place strokes?

• What shapes will each stroke have?

Each greedy algorithm operates simply by repeatedly placing strokes, making these choices each time.

4.1 Single-point strokes

Haeberli [Hae90] describes a simple, semi-automatic painting algorithm (Figure 6. The user provides
a source image. The user sees a rendering of the painting, which is initially blank. Using a mouse or
tablet, the user clicks and drags within the painting area. A single brush stroke is placed at the location
of each mouse click. The system automatically chooses the color by extracting it from the color of the
source image at that point, and orients the stroke in the direction of the gradient of the image. Hence,
the user decides where the strokes go, and the algorithm decides what they look like. The user may set
other parameters (such as stroke sizes) by adjusting settings or via pressure on a tablet interface. This
system provides a fun and easy way to make abstract and attractive versions without requiring the user
to possess any drawing skills.5

4.1.1 SINGLE-LAYER PAINTERLY RENDERING

Subsequently, a number of commercial software packages (such as Adobe Photoshop, Xaos Paint-
Tools, and Microsoft Impressionist) incorporated fully-automatic versions of Haeberli’s algorithm; a
complete description of such an algorithm by Litwinowicz, along with several enhancements [Lit97].

Litwinowicz’s basic algorithm takes a source image and orientation field as input, and generates
a painting with a set of oriented, short brush strokes. The brush strokes are placed on a grid in the

5Haeberli’s system is online at ftp://ftp.sgi.com/sgi/graphics/grafica/impression/index.html.

Recent Advances in NPR for Art and Visualization 3-13

Aaron Hertzmann

Figure 6: Interactive painterly rendering system, from [Hae90]. The user clicks on different image
locations, and strokes are generated at these locations; the color and gradients of the strokes are taken
from a source image. Images used by permission.

image plane, with randomly perturbed positions. Each stroke takes its color from the source image at
its location, and its orientation from the orientation field. The strokes are drawn in random order, in
order to remove the regularities that would appear otherwise. The orientation field specifies the desired
orientation of the strokes and is generated from the source image in a preprocessing step. A simple
way to generate this orientation field is to set the orientation φ(p) at pixel p to the the normal to the
gradient of the image — this gives the direction in which the image is “most constant.” However, in
constant regions of the image, the gradient will not be well-defined. The orientations in these regions
can be filled in using a smoothing algorithm, such as thin-plate spline interpolation. Additionally,
strokes may be clipped to image edges to improve the edges of the result. See [Lit97] for details.

Similar short-stroke algorithms have been applied to a number of problems in scientific visualiza-
tion of tensor-field data [Hea01, Lai01].

4.1.2 MULTIPLE-LAYER PAINTERLY RENDERING

I have developed an extension to these algorithms that can create brush strokes with multiple sizes.
We can motivate the algorithm by observing that an artist often will begin a painting as a rough sketch,
and go back later over the painting with a smaller brush to add detail. While much of the motivation
for this technique does not apply to computer algorithms6, it also yields desirable visual effects. In this
image processing algorithm, fine brush strokes are used only where necessary to refine the painting,
and rest of the painting is left coarse. User-controlled emphasis can also be used to define where fine
strokes are used. The algorithm is similar to a pyramid algorithm [BA83], in that we start with a coarse
approximation to the source image, and add progressive refinements with smaller brushes. In a sense,
this algorithm can be viewed as greedily optimizing an energy function that penalizes the difference

6For example, one motivation is to establish the composition before committing to fine details, so that the artist may
experiment and adjust the composition.

3-14 SIGGRAPH 2002

Stroke-Based Rendering

between the painting and the source image, and penalizes the number of strokes.
The algorithm takes as input a source image and a list of brush sizes. The brush sizes are expressed

as radii R1...Rn. The algorithm then proceeds by painting a series of layers, one for each radius,
from largest to smallest. Generally, it is most useful to use powers of two: Ri = R12i−1, with some
user-determined value for R1. The initial canvas is a constant color image.

A reference image is first created for each layer by blurring the source image. The reference image
represents the image we want to approximate by painting with the current brush size. The idea is to
use each brush to capture only details which are at least as large as the brush size. We use a layer
subroutine to paint a layer with brush Ri, based on the reference image. This procedure locates areas
of the image that differ from the reference image and covers them with new brush strokes. Areas that
match the source image color to within a threshold (T) are left unchanged. The threshold parameter
can be increased to produce rougher paintings, or decreased to produce paintings that closely match
the source image.

Blurring may be performed by one of several methods. We normally blur by convolution with
a Gaussian kernel of standard deviation fσRi, where fσ is some constant factor. Non-linear diffu-
sion [PM90] may be used instead of a Gaussian blur to produce slightly better results near edges,
although the improvement is rarely worth the extra computation time. When speed is essential, we use
a summed-area table [Cro84].

This entire procedure is repeated for each brush stroke size. A pseudocode summary of the painting
algorithm follows.

function PAINT(Is, // source image
Ip, // canvas
R1...Rn) // brush sizes

Create a summed-area table A from Is if necessary
refresh← true
foreach brush size Ri, from largest to smallest, do

Compute a blurred reference image IRi with blur size fσRi

from A or by convolution
grid← Ri

Clear depth buffer
foreach position p on a grid with spacing grid

M← the region [px−grid/2...px +grid/2;py−grid/2...py +grid/2]
areaError← ∑p∈M ‖Ip(p)− IRi(p)‖
if refresh or areaError > T then

p← argmaxp∈M ‖Ip(p)− IRi(p)‖
PAINTSTROKE(p, Ip,Ri, IRi)

refresh← false

Each layer is painted using a simple loop over the image canvas. The idea is very similar to
Litwinowicz’s algorithm. However, we can no longer place samples simply on a jittered grid, since
this approach may miss sharp details such as lines and points that pass between grid points. Instead, the
algorithm searches each grid point’s neighborhood to find the nearby point with the greatest error, and

Recent Advances in NPR for Art and Visualization 3-15

Aaron Hertzmann

paint at this location. All strokes for the layer are planned at once before rendering. Then the strokes
are rendered in random order to prevent an undesirable appearance of regularity in the brush strokes.
In practice, we can avoid the overhead of storing and randomizing a large list of brush strokes by using
a Z-buffer. Each stroke is rendered with a random Z value as soon as it is created. The Z-buffer is
cleared before each layer. Note that this may produce different results with significant transparency,
when transparent objects are not rendered in back-to-front order. The layers of a painting are illustrated
in Figure 7.
‖ · ‖, when applied to a color vector, denotes Euclidean distance in RGB space. I also experimented

with CIE LUV, a perceptually-based metric [FvDFH90]. Surprisingly, we found it to give slightly
worse results — it is not clear why.

PAINTSTROKE in the above code listing is a generic procedure that places a stroke on the canvas
beginning at p1, given a reference image and a brush radius. Following [Hae90], Figure 8(a) shows an
image illustrated using a PAINTSTROKE procedure which simply places a circle of the given radius at
p, using the color of the source image at location p. Following [Lit97], Figure 8(b) shows an image
illustrated with short brush strokes, aligned to the normals of image gradients. Note the regular stroke
appearance. In the next section, we will present an algorithm for placing long, curved brush strokes,
closer to what one would find in a typical painting.

This technique focuses attention on areas of the image containing the most detail (high-frequency
information) by placing many small brush strokes in these regions. Areas with little detail are painted
only with very large brush strokes. Thus, strokes are appropriate to the level of detail in the source
image.

This choice of emphasis assumes that detail areas contain the most “important” visual information.
Other choices of emphasis are also possible — for example, emphasizing foreground elements or
human figures. The choice of emphasis can be provided by a human user, as output from a 3D renderer,
or from a computational image interpretation.

4.2 Long, curved strokes

4.2.1 PAINTERLY RENDERING WITH LONG, CURVED STROKES

This method can be extended to use long, continuous curves instead of short strokes. In my system, I
limit brush strokes to constant color (Section 5.1), and use image gradients to guide stroke placement.
The idea is that the strokes will represent isocontours of the image with roughly constant color. Our
method is to place control points for the curve by following the normal of the gradient direction.
When the color of the stroke is further from the target color in the reference image than the painting,
the stroke ends at that control point.

A more detailed explanation of the algorithm follows. The spline placement algorithm begins at a
given point in the image p0, with a given a brush radius R. The stroke is represented as a list of control
points, a color, and a brush radius. Points are represented as floating point values in image coordinates.
The control point p0 is added to the spline, and the color of the reference image at p0 is used as the
color of the spline.

We then need to compute the next point along the curve. The gradient direction θ0 at this point

3-16 SIGGRAPH 2002

Stroke-Based Rendering

Reference images Layers

Figure 7: Painting with three brushes. The left column shows the reference images; the source image
is shown in the lower left. The right column shows the painting after the first layer (brush radius 8),
the second layer (radius 4), and the final painting (radius 2). Note that brush strokes from earlier layers
are still visible in the final painting. (The curved stroke placement is described in the next section).

Recent Advances in NPR for Art and Visualization 3-17

Aaron Hertzmann

(a) (b)

Figure 8: Applying the multiscale algorithm to other types of brush strokes. Each of these paintings
was created with brush strokes of radius 8, 4, and 2. (a) Brush strokes are circles, following [Hae90].
(b) Brush strokes are short, anti-aliased lines placed normal to image gradients, following [Lit97]. The
line length is 4 times the brush radius.

(a) (b)

Figure 9: Using non-linear diffusion to create reference images. (a) Reference image for coarsest level
of the pyramid. (Compare to Figure 7(e)). (b) The output image is less noisy, but hard edges are
maintained.

3-18 SIGGRAPH 2002

Stroke-Based Rendering

(a) (b) (c)

Figure 10: Painting a brush stroke [Her98]. (a) A brush stroke begins at a control point p0 and
continues in direction D0, normal to the gradient direction G0. (b) From the second point p1, there
are two normal directions to choose from: θ1 + π/2 and θ1−π/2. We choose D1, in order to reduce
the stroke curvature. (c) This procedure is repeated to draw the rest of the stroke. The stroke will
be rendered as a cubic B-spline, with the pi as control points. The distance between control points is
equal to the brush radius.

is computed from the Sobel-filtered luminance7 of the reference image. The next point p1 is placed
in the direction θ0 + π/2 at a distance R from p0 (Figure 10). Note that we could have also used the
direction θ0−π/2; this choice is arbitrary. We use the brush radius R as the distance between control
points because R represents the level of detail we will capture with this brush size; in practice, we find
that this size works best. This means that very large brushes create broad sketches of the image, to be
later refined with smaller brushes.

The remaining control points are computed by repeating this process of moving along the image
and placing control points. For a point pi, we compute a gradient direction θi at that point. There are
actually two possible candidates directions for the next direction: θi +π/2 and θi−π/2. We choose the
next direction that leads to the lesser stroke curvature: we pick the direction vi so that the angle between
vi and vi−1 is less than or equal to π/2 (Figure 10), where vi can be (Rcos(θi±π/2),Rsin(θi±π/2)).
The stroke is terminated when (a) the predetermined maximum stroke length is reached, or (b) the
color of the stroke differs from the color under the last control point more than it differs from the
current painting at that point. We find that a step size of R works best for capturing the right level of
detail for the brush stroke.

We can also exaggerate or reduce the brush stroke curvature by filtering the stroke directions. The
filter is controlled by a single predetermined filter constant, fc. Given the previous stroke direction
v′i−1 = (∆xi−1

′,∆yi−1
′), and a current stroke direction vi = (∆xi,∆yi), the filtered stroke direction is

v′i = fcvi +(1− fc)v′i−1.

The entire stroke placement procedure is as follows:

7The luminance of a pixel is computed as Y (r,g,b) = 0.30∗ r +0.59∗g+0.11∗b [FvDFH90].

Recent Advances in NPR for Art and Visualization 3-19

Aaron Hertzmann

function PAINTSTROKE(p0, R, IR, Ip)
// Arguments: start point p0, stroke radius (R),
// reference image (IR), painting so far (Ip)
color← IR(p0)
K← a new stroke with radius R and color color
add point p0 to K
for i = 1 to maxStrokeLength do

// compute image derivatives
g← (255∗ ∂YR

∂x (pi−1),255∗ ∂YR
∂y (pi−1))

// detect vanishing gradient
if Ri‖g‖ ≥ 1 // is gradient times length at least a pixel?

// rotate gradient by 90 degrees
vi← (−gy,gx)

// if necessary, reverse direction
if i > 1 and vi •vi−1 < 0 then

vi←−vi

// filter the stroke direction
vi← fcvi +(1− fc)vi−1

else
if i > 1

// continue in previous stroke direction
vi← vi−1

else
return K

pi← pi−1 +Rivi/‖vi‖
if i > minStrokeLength and ‖IR(pi)− Ip(pi)‖< ‖IR(pi)− color‖ then

return K
add pi to K

end for
return K

YR(p) is the luminance channel of IR, scaled from 0 to 1.

A slight speedup may be gained by performing all computations in luminance space, and then
restoring the color information, as described in [HJO+01]. The results are very nearly as good as full
color processing.

3-20 SIGGRAPH 2002

Stroke-Based Rendering

Figure 11: Gray tones generated with a prioritized stroke texture [SABS94]. The strokes in the texture
are rendered in a specific order which allows different tones to be generated from a single texture.
The right image was generated from a source photo using prioritized stroke textures. Images used by
permission.

4.2.2 PEN-AND-INK AND OTHER CURVE TRACING ALGORITHMS

Unfortunately, I ran out of time while writing and this section is brief. Hopefully it will be greatly
expanded in a later version of this tutorial. For now, here is a annotated summary of pen-and-ink and
other curve tracing algorithms:

• Interactive pen-and-ink illustration: [SABS94] introduce an interactive tool for placing pen-
and-ink strokes. The user specifies desired tone for a region, and strokes are automatically
placed to match these tones. Strokes are stored as prioritized stroke textures (Figure 11),
which allow the system to render complex hatching patterns. [SALS96] describe an extension
that incorporates edge information into the hatching, and [SWHS97] describe a system the allow
the user to specify varying orientations for the illustration as well.

• Streamline visualization: Jobard and Lefer [JL97] describe a greedy streamline placement
algorithm for vector field visualization. Just as with the Voronoi algorithms for stippling, the
idea is to penalize stroke density rather than a blurred version of the streamline image.

• Pen-and-ink illustration of 3D surfaces: Similar principles can be applied to illustrating sur-
faces. Typically, the target tones come from a rendering of the surface and the target stroke
orientations come from orientation fields defined on the surface. The resulting algorithm is a
variation on previous SBR techniques, but with many adjustments as dictated by the pen-and-
ink style and the 3D model. [WS94] describe a system for applying prioritized stroke textures to
rendering 3D surfaces with texture, and to allowing a user to specify emphasis for different parts
of the image; this method is generalized to surfaces with manually-defined orientation fields in
[WS96] (Figure 12). In these methods, the hatching attempts to match the orientation, rendered
tone, and texture of the image. In [HZ00], we first generate the tone and orientation field for a

Recent Advances in NPR for Art and Visualization 3-21

Aaron Hertzmann

Figure 12: Pen-and-ink illustrations of 3D models, from [WS94] and [WS96], respectively. The left
house shows the effect of a user-defined emphasis function; detail is only drawn where specified by
the user. The right image shows pen-and-ink illustration of a parametric surface. Images used by
permission.

3D model, and extend the method of [JL97] to hatch the surface (Figure 13). A related hatching
algorithm is described by [GIHL00].

• Graftals: [KMN+99] describe a greedy placement algorithm for stroke placement. The key idea
of their technique is to use small illustrations as strokes; for example, a tuft of grass is placed as
a unit. This method can render models with an appropriate sense of cartoonish texture.

• Loose-and-sketchy rendering: Curtis [Cur98] describes a loose technique for placing pen-
strokes to match a black-and-white silhouette rendering. The method can create stiff or loose-
and-sketchy rendering styles.

4.3 Globally-greedy

Gooch et al. [GCS02] describes a painterly rendering algorithm that combines elements of optimiza-
tion and greedy procedures. The algorithm is not defined with respect to a specific energy function, but
the overall stroke placement is computed by a global image processing procedure. Individual strokes
are then created for their specific regions.

3-22 SIGGRAPH 2002

Stroke-Based Rendering

Figure 13: Pen-and-ink illustration of a smooth surface, from [HZ00]. The target orientation field and
tones are generated automatically to illustrate the surface.

5 Stroke models

In this section, I describe the curved paint stroke model that I have used. Other stroke models (includ-
ing stipples, tiles, single-point strokes, and pen strokes) will hopefully appear in a later version of this
document. More sophisticated curved stroke models are also possible (e.g. [HLW93, Fra98, NM00]).

5.1 Long, curved strokes with triangle strips

In our system, a basic brush stroke is defined by a curve, a brush thickness R, a stroke color C. The
stroke is rendered by placing the stroke color at every image point that is within R pixels of the curve.
The curve is an endpoint-interpolating cubic B-spline defined by a set of control points. A dense set
of curve points can be computed by recursive subdivision.

Our basic technique for scan-converting a brush stroke is to tessellate the stroke into a triangle

Recent Advances in NPR for Art and Visualization 3-23

Aaron Hertzmann

strip:

Given a moderately dense list of control points pi and a brush thickness R we can tesselate the stroke
by the following steps:

1. Compute curve tangents at each control point. An adequate approximation to the tangent for an
interior stroke point pi is given by vi = vi+1−vi−1. The first and last tangents are v0 = p1−p0

and vn−1 = pn−1−pn−2.

2. Compute curve normal directions as n = (nxi,nyi) = (vyi,−vxi)/‖vi‖

3. Compute points on the boundary of the stroke as points offset by a distance R along the curve
normal direction. The offsets for a control point are ai = pi +Rni and bi = pi−Rni.

4. Tesselate the stroke as shown above.

5. If desired, add circular “caps” as triangle fans.

This algorithm can also be used with varying brush thicknesses, by specifying a profile curve
for the thickness. We do this by assigning a thickness for each control point, and subdividing the
thicknesses at the same time as subdiving the control point positions.

This method fails when the stroke has high curvature relative to brush thickness and control point
spacing. Such situations can be handled, for example, by repeated subdivision near high curvature
points. Generally, we have not found these errors to be of much concern, although they may be
problematic for high-quality renderings.

6 Limitations of the energy-minimization approach

At present, it seems unlikely that every desirable SBR style can be formulated in the energy function
formulation that I presented in Section 2. There are a number of ways this can be manifested:

• It is difficult to capture “loose and sketchiness” or randomness in an energy function. Moreover,
painting and drawing are not deterministic procedures; an artist may produce different images
each time. One way to express randomness would be to replace the energy function with the

3-24 SIGGRAPH 2002

Stroke-Based Rendering

probability density over renderings. A standard trick for converting an energy to a probability
density is to exponentiate and then normalize: p(I) = e−E(I)/Z for some unknown normalization
constant Z. Painting is then a process of sampling from this density; the density would usually
be conditioned on the input data.

• Several of the greedy approaches described above (such as prioritized stroke textures [SABS94])
and in the next section are difficult to express in terms of energy functions.

• It is sometimes easier to design a direct procedure for a rendering style than to design an en-
ergy function, especially since designing styles is a creative process. Often, we design a new
algorithm or styles without really understanding what “why they work.” Ideally, one would de-
velop additional insight after the fact that allows one to convert the direct procedure to an energy
function.

Finally, it bears repeating that direct procedures are much faster than optimization procedures.
However, knowing the energy function can often give insight into how the direct procedure works and
how to improve it.

7 Related topics

In this section I survey some work related to SBR, but not directly within the scope of this tutorial:

• Animation. Several authors have described extensions to the methods for creating animations
from input video or 3D animation [Dan99, HP00, Her01, Lit97, MMK+00, Mei96].

• Image Mosiacs. Image mosaics, such as “PhotoMosaics” [SH97, FR98] and jigsaw image
mosaics [KP02] may also be viewed as SBR problems. A library of images is collected, and
the stroke model consists of a reference to one of the images, as well as the image rotation,
translation, and optional deformation.

• Example-based strokes. A few authors have developed preliminary research in synthesizing
SBR imagery by example. Freeman et at. [FTP99] describe a technique for creating new strokes
in the style of example strokes. Chen et al. [CXS+01] describe a portraiture system that uses
a style learned from examples. Jodoin et al. [JEGPO02] have developed a method for learning
hatching styles from examples.

• Thresholding methods. Several authors have developed methods for stroke-based rendering
where the stroke placements and the stroke tones are decoupled [DOM+01, Fre01, Ost99]. These
methods allow greater flexibility by allowing the user to choose stroke placements independent
of tones.

• Rendering from silhouettes. A number of authors have described SBR algorithms that gen-
erate strokes from silhouettes [Cur98, HZ00, MKT+97, NM00]. This process is conceptually
straightforward, once one has a procedure for extracting smooth silhouettes and for rendering
strokes.

Recent Advances in NPR for Art and Visualization 3-25

Aaron Hertzmann

• Dithering. The process of placing evenly-spaced stipples is closely related to the problem of
halftoning [FvDFH90], which remains an active research area [Ost01]. One can also exploit this
observation for painterly rendering [SY00].

• Hardware-Accelerated Rendering: Several authors have described SBR systems where strokes
are precomputed for texture-maps, and these texture maps are blended in real-time hardware
rendering [Fre01, FMS01, KLK+00, PHWF01]. Although these systems, lose the desirable
property of rendering strokes in image-space instead of on texture maps, they nonetheless give
high-quality, temporally coherent results at very high frame rates.

• Texture. A number of methods have been developed to simulate the appearance of realis-
tic media, by approximate simulation [CPE92, CAS+97, Sma90], and/or procedural synthesis
[Fra98, GCS02, Her02, Str86].

8 Summary

• Stroke-based rendering is a class of NPR problems where discrete strokes are placed in an im-
age to match some input imagery or other data. Stroke-based rendering encompasses many
non-photorealistic rendering problems, including painting, drawing, pen-and-ink, tensor field
visualization, and stippling.

• Optimization algorithms explicitly search for an stroke-based rendering I that minimizes some
energy function E(I). Voronoi algorithms efficiently optimize stroke densities. Trial-and-error
algorithms optimize general energy functions, but can be very inefficient.

• Greedy algorithms place strokes in a single pass. At each step, the algorithm picks a possible
stroke location, decides whether to place a stroke, decides the stroke’s shape and continues.
Many existing greedy algorithms do not have a known explicit energy function formulation.

References

[Aar97] Espen Aarseth. Cybertext: Perspectives on Ergodic Literature. Johns Hopkins Univ
Press, 1997.

[BA83] P. J. Burt and E. H. Adelson. Laplacian pyramid as a compact image code. IEEE Trans.
Commun., 31(4):532–540, 1983.

[Bis95] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[CAS+97] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and David H.
Salesin. Computer-Generated Watercolor. Proceedings of SIGGRAPH 97, pages 421–
430, August 1997.

3-26 SIGGRAPH 2002

Stroke-Based Rendering

[CPE92] Tunde Cockshott, John Patterson, and David England. Modelling the Texture of Paint.
In A. Kilgour and L. Kjelldahl, editors, Computer Graphics Forum, volume 11, pages
217–226, 1992.

[Cro84] Franklin C. Crow. Summed-area Tables for Texture Mapping. Computer Graphics (Pro-
ceedings of SIGGRAPH 84), 18(3):207–212, July 1984.

[Cur98] Cassidy Curtis. Loose and Sketchy Animation. In SIGGRAPH 98: Conference Abstracts
and Applications, page 317, 1998.

[CXS+01] Hong Chen, Ying-Qing Xu, Heung-Yeung Shum, Song-Chun Zhu, and Nan-Ning Zheng.
Example-based Facial Sketch Generation with Non-parametric Sampling. Proc. Interna-
tional Conference on Computer Vision, pages 433–438, 2001.

[Dan99] Eric Daniels. Deep Canvas in Disney’s Tarzan. In SIGGRAPH 99: Conference Abstracts
and Applications, page 200, 1999.

[DHvOS00] Oliver Deussen, Stefan Hiller, Cornelius van Overveld, and Thomas Strothotte. Floating
Points: A Method for Computing Stipple Drawings. Computer Graphics Forum, 19(3),
August 2000. ISSN 1067-7055.

[DOM+01] Frédo Durand, Victor Ostromoukhov, Mathieu Miller, Francois Duranleau, and Julie
Dorsey. Decoupling Strokes and High-Level Attributes for Interactive Traditional Draw-
ing. In Rendering Techniques 2001: 12th Eurographics Workshop on Rendering, pages
71–82. Eurographics, June 2001. ISBN 3-211-83709-4.

[FMS01] Bert Freudenberg, Maic Masuch, and Thomas Strothotte. Walk-through illustrations:
Frame-coherent pen-and-ink style in a game engine. Computer Graphics Forum,
20(3):184–191, 2001. ISSN 1067-7055.

[FR98] Adam Finkelstein and Marisa Range. Image Mosaics. In Electronic Publishing, Artistic
Imaging and Digital Typography, Proceedings of the EP’98 and RIDT’98 Conferences,
1998.

[Fra98] Fractal Design. Painter 4.0, 1998. Software package.

[Fre01] Bert Freudenberg. Real-Time Stroke Textures. page 252, 2001.

[FTP99] William T. Freeman, Joshua B. Tenenbaum, and Egon Pasztor. An example-based ap-
proach to style translation for line drawings. Technical Report TR99-11, MERL, February
1999.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics, Principles and Practice, Second Edition. Addison-Wesley, 1990.

Recent Advances in NPR for Art and Visualization 3-27

Aaron Hertzmann

[GCS02] Bruce Gooch, Greg Coombe, and Peter Shirley. Artistic Vision: Painterly Rendering
Using Computer Vision Techniques. NPAR 2002 : Second International Symposium on
Non Photorealistic Animation and Rendering, June 2002. To appear.

[GG92] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1992.

[GIHL00] Ahna Girshick, Victoria Interrante, Steven Haker, and Todd Lemoine. Line direction
matters: An argument for the use of principal directions in 3d line drawings. In NPAR
2000 : First International Symposium on Non Photorealistic Animation and Rendering,
pages 43–52. ACM SIGGRAPH / Eurographics, June 2000.

[Hae90] Paul E. Haeberli. Paint By Numbers: Abstract Image Representations. In Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 207–214, August 1990.

[Hau01] Alejo Hausner. Simulating Decorative Mosaics. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Series, pages 573–578. ACM
Press / ACM SIGGRAPH, August 2001. ISBN 1-58113-292-1.

[HCK+99] Kenneth Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha. Fast compu-
tation of generalized voronoi diagrams using graphics hardware. In Proceedings of SIG-
GRAPH 99, Computer Graphics Proceedings, Annual Conference Series, pages 277–286,
Los Angeles, California, August 1999. ACM SIGGRAPH / Addison Wesley Longman.
ISBN 0-20148-560-5.

[Hea01] C. G. Healey. Formalizing Artistic Techniques and Scientific Visualization for Painted
Renditions of Complex Information Spaces. In Proceedings International Joint Confer-
ence on Artifical Intelligence 2001, pages 371–376, 2001.

[Her98] Aaron Hertzmann. Painterly Rendering with Curved Brush Strokes of Multiple Sizes. In
SIGGRAPH 98 Conference Proceedings, pages 453–460, July 1998.

[Her01] Aaron Hertzmann. Paint by relaxation. In Computer Graphics International 2001, pages
47–54, July 2001. ISBN 0-7695-1007-8.

[Her02] Aaron Hertzmann. Fast Paint Texture. In NPAR 2002: Proceedings of the Second Annual
Symposium on Non-Photorealistic Animation and Rendering, June 2002.

[HJO+01] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin.
Image Analogies. Proceedings of SIGGRAPH 2001, pages 327–340, August 2001.

[HLW93] S. C. Hsu, I. H. H. Lee, and N. E. Wiseman. Skeletal strokes. In Proceedings of the ACM
Symposium on User Interface Software and Technology, Video, Graphics, and Speech,
pages 197–206, 1993.

3-28 SIGGRAPH 2002

Stroke-Based Rendering

[HP00] Aaron Hertzmann and Ken Perlin. Painterly Rendering for Video and Interaction. In
Proceedings of the First Annual Symposium on Non-Photorealistic Animation and Ren-
dering, June 2000.

[HZ00] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. Proceedings of SIG-
GRAPH 2000, pages 517–526, July 2000.

[JEGPO02] Pierre-Marc Jodoin, Emric Epstein, Martin Granger-Pichi, and Victor Ostromoukhov.
Hatching by Example: a Statistical Approach. NPAR 2002 : Second International Sym-
posium on Non Photorealistic Animation and Rendering, June 2002. To appear.

[JL97] Bruno Jobard and Wilfrid Lefer. Creating evenly-spaced streamlines of arbitrary density.
In Proc. of 8th Eurographics Workshop on Visualization in Scientific Computing, pages
45–55, 1997.

[KLK+00] Allison W. Klein, Wilmot W. Li, Michael M. Kazhdan, Wagner T. Corrêa, Adam Finkel-
stein, and Thomas A. Funkhouser. Non-photorealistic virtual environments. Proceedings
of SIGGRAPH 2000, pages 527–534, July 2000.

[KMN+99] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bourdev, Ronen Barzel,
Loring S. Holden, and John Hughes. Art-Based Rendering of Fur, Grass, and Trees.
Proceedings of SIGGRAPH 99, pages 433–438, August 1999.

[KP02] Junhwan Kim and Fabio Pellacini. Jigsaw Image Mosaics. SIGGRAPH 2002 Conference
Proceedings, 2002.

[Lai01] David H. Laidlaw. Loose, artistic ”textures” for visualization. IEEE Computer Graphics
& Applications, 21(2):6–9, March / April 2001. ISSN 0272-1716.

[Lit97] Peter Litwinowicz. Processing Images and Video for an Impressionist Effect. In SIG-
GRAPH 97 Conference Proceedings, pages 407–414, August 1997.

[Mac98] David J. C. Mackay. Introduction to Monte Carlo Methods. In Michael I. Jordan, editor,
Learning in Graphical Models, pages 175–204. MIT Press, 1998.

[Mei96] Barbara J. Meier. Painterly Rendering for Animation. In SIGGRAPH 96 Conference
Proceedings, pages 477–484, August 1996.

[MKT+97] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev, Daniel
Goldstein, and John F. Hughes. Real-Time Nonphotorealistic Rendering. In SIGGRAPH
97 Conference Proceedings, pages 415–420, August 1997.

[MMK+00] Lee Markosian, Barbara J. Meier, Michael A. Kowalski, Loring S. Holden, J. D.
Northrup, and John F. Hughes. Art-based Rendering with Continuous Levels of De-
tail. In NPAR 2000 : First International Symposium on Non Photorealistic Animation
and Rendering, pages 59–66, June 2000.

Recent Advances in NPR for Art and Visualization 3-29

Aaron Hertzmann

[Mur98] Janet Murray. Hamlet on the Holodeck: The Future of Narrative in Cyberspace. MIT
Press, 1998.

[NM00] J.D. Northrup and Lee Markosian. Artistic Strokes. In Proceedings of the First Annual
Symposium on Non-Photorealistic Animation and Rendering, June 2000. To appear.

[Ost99] Victor Ostromoukhov. Digital facial engraving. In Proceedings of SIGGRAPH 99, Com-
puter Graphics Proceedings, Annual Conference Series, pages 417–424, Los Angeles,
California, August 1999. ACM SIGGRAPH / Addison Wesley Longman. ISBN 0-20148-
560-5.

[Ost01] Victor Ostromoukhov. A simple and efficient error-diffusion algorithm. In Proceedings
of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
pages 567–572. ACM Press / ACM SIGGRAPH, August 2001. ISBN 1-58113-292-1.

[PHWF01] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-Time Hatch-
ing. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual
Conference Series, pages 579–584. ACM Press / ACM SIGGRAPH, August 2001. ISBN
1-58113-292-1.

[PM90] Pietro Perona and Jitendra Malik. Scale-Space and Edge Detection using Anisotropic
Diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12:629–639, De-
cember 1990.

[SABS94] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David H. Salesin. Interactive
Pen–And–Ink Illustration. In Proceedings of SIGGRAPH ’94 (Orlando, Florida, July
24–29, 1994), pages 101–108, July 1994.

[SALS96] Mike Salisbury, Corin Anderson, Dani Lischinski, and David H. Salesin. Scale-
Dependent Reproduction of Pen-and-Ink Illustrations. In Holly Rushmeier, editor, SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series, pages 461–468. ACM
SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09
August 1996.

[Sec02] Adrian Secord. Weighted Voronoi Stippling. In NPAR 2002: Proceedings of the Second
Annual Symposium on Non-Photorealistic Animation and Rendering, June 2002.

[SH97] Robert Silvers and Michael Hawley. Photomosaics. Henry Holt, 1997.

[Sma90] David Small. Modeling Watercolor by Simulating Diffusion, Pigment, and Paper fibers.
In SPIE Proceedings, volume 1460, 1990.

[Smi01] Alvy Ray Smith. Digital Paint Systems: An Anecdotal and Historical Overview. IEEE
Annals of the History of Computing, 23(2):4–30, Apr-Jun 2001.

3-30 SIGGRAPH 2002

Stroke-Based Rendering

[Str86] Steve Strassmann. Hairy Brushes. In David C. Evans and Russell J. Athay, editors,
Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 225–232, August
1986.

[SWHS97] Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin. Orientable
Textures for Image-Based Pen-and-Ink Illustration. In SIGGRAPH 97 Conference Pro-
ceedings, pages 401–406, August 1997.

[SY00] Michio Shiraishi and Yasushi Yamaguchi. An algorithm for automatic painterly rendering
based on local source image approximation. NPAR 2000 : First International Symposium
on Non Photorealistic Animation and Rendering, pages 53–58, June 2000.

[TB96] Greg Turk and David Banks. Image-Guided Streamline Placement. In SIGGRAPH 96
Conference Proceedings, pages 453–460, August 1996.

[WND97] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide: The Official
Guide to Learning OpenGL. Addison-Wesley Developers Press, second edition, 1997.

[WS94] Georges Winkenbach and David H. Salesin. Computer–Generated Pen–And–Ink Illus-
tration. In Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), pages
91–100, July 1994.

[WS96] Georges Winkenbach and David H. Salesin. Rendering Parametric Surfaces in Pen and
Ink. In SIGGRAPH 96 Conference Proceedings, pages 469–476, August 1996.

[Yes79] C. I. Yessios. Computer drafting of stones, wood, plant and ground materials. In Com-
puter Graphics (Proceedings of SIGGRAPH 79), volume 13, pages 190–198, Chicago,
Illinois, August 1979.

Recent Advances in NPR for Art and Visualization 3-31

