
This tutorial describes stroke-based render-
ing (SBR), an automatic approach to cre-

ating nonphotorealistic imagery by placing discrete
elements such as paint strokes or stipples. Researchers
have proposed many SBR algorithms and styles such as
painting, pen-and-ink drawing, tile mosaics, stippling,
streamline visualization, and tensor field visualization.

This tutorial attempts to make sense
of the disparate work in this area by
creating a unified view of SBR algo-
rithms, which helps us identify the
common elements and the unique
ideas of each approach. Moreover,
presenting ideas in this fashion sug-
gests possibilities for future research.

Figure 1 shows an SBR algorithm
in action. Starting from a photo-
graph, a collection of brush strokes
are placed in a manner that match-
es the original photograph, and then
rendered to have the appearance of
an oil painting.1,2

Although the details vary, all SBR
algorithms create images by placing
strokes according to some goals. The

most common goal is making the painting look like some
other image—for example, in Figure 1, I wanted to place
colored brush strokes to look like the picture of the
mountain. Another important goal is to limit the num-
ber of strokes in some way so that the result will look
like a painting. Otherwise, the algorithm could use
many tiny brushstrokes, producing a good match to the
source image without much abstraction, but the result
won’t look like a painting.

Finally, once the algorithm places the strokes, it can
render them in some other form. In Figure 1, the algo-
rithm didn’t add texture until after placing the brush
strokes. It compared the source photo to some interme-
diate image with a simplified stroke model. This is both
for efficiency and aesthetic reasons. The main point is
that the final rendering may differ from the way we
expressed our goals about the image.

Figure 2 shows another example of an automatic vec-
tor field visualization.3 Here, streamlines effectively con-
vey the vector field’s motion. To clearly illustrate the
vector field, the placements should be placed evenly—
Figure 2b was created with the goal of making the blur-
ry version as close to a constant gray value as possible.
For comparison, Figure 2a shows stroke placements on
a regular grid without adjustment. Again, we see that
this streamline visualization algorithm is an SBR algo-
rithm: it places strokes (streamlines) according to spec-
ified goals (to follow the vector field and to match a
target tone in the blurred image).

Usually it’s not possible to exactly meet all the goals.
Hence, it’s useful to have a way of trading off the goals and
quantifying their importance. We can do this by formal-
izing an SBR problem as an objective function minimiza-
tion problem. An objective function is a mathematical
formula that measures how good a rendering is; SBR algo-
rithms attempt to minimize objective functions. For exam-
ple, it isn’t possible to place the streamlines in Figure 2 to
achieve a purely constant tone in the gray image. Instead,
we can use as an objective function the deviation of the
blurred image from a constant image.

So far, I’ve described two different SBR problem state-
ments—one for painterly rendering and one for visual-
ization—but said nothing of how to design algorithms

Tutorial

This tutorial describes several

stroke-based rendering (SBR)

algorithms. SBR is an

automatic approach to

creating nonphotorealistic

imagery by placing discrete

elements such as paint

strokes or stipples.

Aaron Hertzmann
University of Toronto

A Survey of Stroke-
Based Rendering

70 July/August 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

(a) (b) (c)

1 Results of a
stroke-based
algorithm:
(a) source
photo,
(b) painted
version, and
(c) final
rendering.

for these problems. Two main
approaches to designing SBR algo-
rithms exist. Greedy algorithms
greedily place the strokes to match
the target goals. Optimization algo-
rithms iteratively place and then
adjust stroke positions to minimize
the objective function. A greedy
algorithm produced Figure 1, and an
optimization algorithm produced
Figure 2. This is a somewhat unusual view of these algo-
rithms. I have sacrificed chronological ordering in this
tutorial in order to present algorithms in this way.

Haeberli introduced both a semiautomatic greedy algo-
rithm and an automatic optimization algorithm in a sem-
inal paper.4 The subsequent pen-and-ink algorithms
developed together by Michael Salisbury, David Salesin,
Georges Winkenbach, and others demonstrated the
potential of highly automated SBR to create beautiful and
expressive imagery.5-8 Digital paint systems had previ-
ously automated some aspects of the stroke renderings,
but didn’t automate any stroke placement choices.

Although this tutorial focuses on the technical details
of SBR algorithms, it’s important to remember that
they’re useless without human control. Every aspect of
the system (including the choice of stroke models, the
setting of weight parameters, and the selection of input
imagery) requires aesthetic decisions that only an artist,
working toward some goal, can make. Ideally, a human
artist using the system should have total control over
the decisions made. For example, a user should be able
to specify spatially varying styles to use, so that different
rendering styles are used in different parts of the image,
or to specify positions of individual strokes. However,
one of the great advances in art in the age of digital
machines is the ability to create complex systems of pro-
cedural art, where the artist doesn’t directly create the
final work, but rather creates rules according to which
final decisions are made (although simpler procedural
works—such as those of John Cage—exist without com-
puters). Hence, an artist might design the energy func-
tion, but not necessarily edit every individual image
produced by the algorithm. In one possible scenario, the
artwork’s creation might occur at a time after the artist’s
involvement. The main goal of SBR algorithms is to pro-
vide procedural tools that automate parts of the image
creation process, not to replace the artist.

Stroke-based rendering
Let’s begin with a few definitions. First, we need to

define what our strokes can look like. A stroke is a data

structure that can be rendered in the image plane. A
stroke model is a parametric description of strokes, so
that different parameter settings produce different
stroke positions and appearances.

For example, one form of stippling uses a simple
stroke model (see Figure 3). A stipple is a stroke that can
be described with two parameters: the (x, y) position of
the stipple in an image and the radius r of the stipple.
(As we shall see in the “Voronoi algorithms” section,
other definitions of a stipple are possible.)

We create images by combining strokes into an image
structure. An image structure is a data structure
containing

� a canvas, defined by a background color or texture,
and

� an ordered list of strokes, defined by their parameter
settings.

To create an image, the list of strokes is rendered by
alpha-compositing over the background. The back-
ground is usually just a solid color or a predefined tex-
ture image. For example, a PostScript file containing
only line art is an image structure because it contains a
list of stroke definitions; the data in the file can be ren-
dered on the screen or on a printer.

Finally, we use an SBR energy function to quantita-
tively evaluate how good a rendering is. An SBR energy
function is a function E : I → R, where I is the set of pos-
sible image structures and R is the set of real numbers.
An energy function E(I) takes an image structure as
input and outputs a number indicating the quality of the
image—generally, the goal of an SBR algorithm is to
produce an image with the smallest possible energy. The
energy function is sometimes also called an objective,
cost, or error function. The term energy comes from anal-
ogous uses in physics, such as searching for the mini-
mum energy configuration of a set of particles.

SBR algorithms are normally defined in terms of some
input data, usually an input image. In most algorithms
described here, the energy function measures how

IEEE Computer Graphics and Applications 71

(a) (b) (c)

2 Example of
an automatic
vector-field
visualization:
(a) vector field,
(b) final render-
ing, and
(c) blurred
rendering.

C
ou

rt
es

y
of

 G
re

g
Tu

rk
 a

nd
 D

av
id

 B
an

ks

(x,y)

r
(a) (b)

3 (a) Detail of a
stippling stroke
model.
(b) Individual
strokes
(stipples).

closely the rendering matches some input image. Addi-
tionally, the energy function encodes trade-offs. For
example, a painterly rendering algorithm takes an input
image and produces an image structure containing color
paint strokes that matches the source image. However,
you could get a perfect match to the source image by
placing thousands of tiny brush strokes, which would
look nearly identical to the source image. You can create
a more interesting painting by adding an abstraction
term to the energy function—that is, by assigning high-
er energies to paintings that use less strokes. For exam-
ple, the energy function could be

where wabs is a scalar weight parameter, and Ematch(I) is
the sum-of-squared differences between the source
image and the rendering. This energy function has one
parameter, wabs. You can control the level of abstrac-
tion in the painting style by adjusting parameter val-
ues: setting wabs to be small specifies that we want a
realistic style (reproducing the original image as close
as possible); setting wabs to be large specifies an abstract
style (capturing the image with few strokes). We can
then define an SBR style as a stroke model and energy
function (including parameter settings) for image
structures.

In other words, an algorithm creates an image in a
specific style by minimizing the corresponding energy
function. Note that this is a broadly inclusive notion of
style—in this view, changing the parameters to a gallery
effect in an imaging tool constitutes changing the style
(although not by very much). This framework’s goal is
to provide a common structure within which you can
create and apply many styles.

Optimization algorithms
Two kinds of optimization algorithms have been

applied to SBR. The first kind, which I’ll call Voronoi
algorithms, exploits special properties of the SBR prob-
lem to perform efficient global update steps. The sec-
ond kind, which I’ll call trial-and-error algorithms,
assumes no special structure and performs heuristical-
ly chosen tests to try to reduce the energy. Generally the
Voronoi algorithms are effective and fast, but we can’t
apply them to all problems. The trial-and-error algo-
rithms are general-purpose, but at the cost of substan-
tial computation times. (Both of these approaches have
also been called relaxation algorithms.)

Voronoi algorithms
Voronoi algorithms are useful for SBR problems

where the final image will contain many identical
nonoverlapping strokes and where only stroke density
is constrained. The central idea is to use efficient tech-
niques from computational geometry to place evenly
spaced strokes into an image. Moreover, we can make
these techniques fast using graphics hardware. Howev-
er, these algorithms don’t directly optimize with respect

to an image-based metric (that is, where the rendering
should match target tones) since the energy function is
defined in terms of stroke densities.

Lloyd’s method. How can you create a set of
evenly spaced points within an image? By using an
iterative optimization procedure, which requires
defining an appropriate energy function. Let p = (x, y)
be pixel locations in an image, and let Ci be special
point locations called centroids; the strokes will even-
tually be placed at these locations. Let Li

p∈{0,1} be a
binary labeling of pixels: if Li

p=1, then the pixel p has
been assigned to centroid i. Every pixel is assigned to
exactly one centroid:

The goal is to choose both a set of centroids and a label-
ing that minimizes the energy function:

where the centroids and labeling are implicitly mem-
bers of I. (Nonphotorealistic rendering researchers have
typically presented the continuous version of this ener-
gy. I prefer the discrete version because it more closely
reflects the problem actually being solved. One benefit
is that we can prove convergence of the discrete version
of the algorithm, whereas convergence hasn’t been
proven for the continuous version.) In short, we want
every pixel to be close to its assigned centroid. If we
knew the set of centroids Ci in advance, then comput-
ing the optimal labeling would be easy—we just assign
every pixel to the nearest centroid. The resulting label-
ing is known as a Voronoi diagram (see Figure 4a)—it
partitions the plane according to which centroids Ci are
nearest to each point.

From looking at Figure 4a, it should be clear that pick-
ing some randomly chosen point set and then computing
the Voronoi diagram doesn’t give a good arrangement
of centroids. In fact, we can improve upon this set of cen-
troids by adjusting the point centers to best fit this parti-
tion—in other words, by holding fixed the labeling and
optimizing the energy function with respect to the cen-
troids. The new optimal centroids are given by

This is just the mean of the pixel locations that are
assigned to Ci; this formula is easily obtained by setting
∂E(I)/∂Ci = 0 and solving for Ci. We can iterate these two
steps, which is known as Lloyd’s method:

function LLOYDSMETHOD(n, I):
initialize the centroids Ci by randomly sampling n

points uniformly in the image I
while the algorithm has not converged

reestimate the labeling by

C p /pp ppi

i iL L=∑ ∑

E I L

L

i
i

I

i
x x y y

()

(() ())

= −

= − + −

∈
∑

∑

p

p

p

p C

p C p C

2

2 2

Li
p

p
=∑ 1

E I E I w E I

E I x y S x y

E I I
x y I

() () ()

(,) (,)

()
(,)

= +

= −

=
∈

∑
match abs abs

match

abs the number of strokes in

2

Tutorial

72 July/August 2003

reestimate the centroids by

return the centroids Ci

Figure 4b shows the same points after applying
Lloyd’s method. The algorithm converges when the
energy doesn’t change between steps. However, the
algorithm is guaranteed to reduce the energy at every
step before convergence because each step minimizes
the energy with respect to some parameters. As a result,
the algorithm is guaranteed to converge because the
energy decreases at every step before convergence and
because there’s a finite number of possible labelings L.
Lloyd’s method was discovered separately by the signal-
processing community (where it is known as vector
quantization) and the machine learning community
(where it is known as k-means clustering).

Running this optimization in software over an entire
image can be quite slow. However, some researchers9,10

have used graphics hardware to make the process fast.

Variations on Lloyd’s method. Now that we
have a procedure for regular placement of points, we
can easily design SBR algorithms on top of it. Perhaps
the simplest SBR problem to describe is stippling.
Deussen et al.11 presented the first such method, using
stipples to approximate gray tones in a target image (see
Figure 5). In their method, they manually segment the
image into distinct regions. They place stipples evenly
within each region, by applying Lloyd’s method to each
region separately. The centroids are initialized using a
half-toning algorithm. Once the centroid locations are
chosen by Lloyd’s method, they’re replaced with stip-
ples. The size of each stipple is set proportional to the
gray level of the image underneath it.

Secord12 presents an alternate stippling style and algo-
rithm, by varying the dot spacing instead of the dot size
(see Figure 5d). The idea is to define a spatially varying
density function κ(p) that determines how dense the
stippling should be in different parts of the image. This
density function is directly derived from the tones of the
target image T(p), that is, κ(p) = 1 − T(p)/m, where m is
the max gray level in T. The new energy function is

Following the same steps presented previously directly
leads to a slightly different version of Lloyd’s method.
The labeling step is the same, but the centroids are now
reestimated as

This summation can be accelerated by precomputing
sums of κ(p). This method gives somewhat sharper image
boundaries, since the stipple placement is directly affect-
ed by the source image’s intensity. Secord also uses a sim-
pler initialization procedure based on rejection sampling.C p p / pp

p
p

p
i

i iL L←∑ ∑κ κ() ()

E I L

L

i

I

i

i

I

x ix x iy

() ()

()(() ()

= −

= − + −

∈

∈

∑

∑

p

p

p

p

p p C

p p C p C

κ

κ

2

2 2

C p /pp ppi

i iL L←∑ ∑

L

ii i i
p

p C
otherwise

← = −

1
0

2
argmin

IEEE Computer Graphics and Applications 73

(a) (b)

4 (a) Voronoi diagram of a set of points Ci. The image
is partitioned into a set of regions, one region for each
point. Each region contains all pixels that are closest to
the corresponding point Ci. (b) By applying Lloyd’s
method, the points are adjusted so that they lie at the
centroid of their region of the Voronoi diagram. The
resulting point set is evenly spaced and can be used to
specify regular stroke placements.

C
ou

rt
es

y
of

 A
dr

ia
n

Se
co

rd

(a) (b)

(c) (d)

5 Stippling algorithms. Source images are shown in (a) and (c), results
from Deussen et al.11 are shown in (b), and from Secord13 in (d). To match
the target gray tones, Deussen et al.’s algorithm varies stipple size (keeping
stipple density constant), whereas Secord’s algorithm varies stipple density.
Stipple size is also adjusted as a postprocess. The eye in the grasshopper
image was manually segmented from the rest of the image.

C
ou

rt
es

y
of

 A
dr

ia
n

Se
co

rd
C

ou
rt

es
y

of
 O

liv
er

 D
eu

ss
en

 e
t

al
.

Specifically, the algorithm samples point locations from
a uniform distribution and includes the sampled points in
the initialization with probability proportional to ρ(p).

Lloyd’s method can also create tile mosaics from color
source images. A simple approach is to create a Voronoi
diagram of an image and then color each region of the
image by the color from the underlying source image.10

However, this produces a mosaic with irregular tile
shapes.

Hausner14 describes two enhancements to this
method (see Figure 6). First, to generate square tile
shapes, replace the L2 norm with the L1 norm
(‖v‖1=|vx|+|vy|). Second, to create tilings with consis-
tent orientations (see Figure 6a), specify an orientation
field φ(p) for the image. The orientation of each tile is
constrained to match the vector field: φi = φ(Ci). The new
energy function is now

where Rφ(Ci) is a rotation matrix with orientation φ(Ci).
We can create a new optimization procedure as follows:

function TILEMOSAIC(n, I):
initialize the centroids Ci by randomly sampling n

points uniformly in the image I
while the algorithm has not converged

reestimate the labeling by

reestimate the centroids by

return the centroids Ci

Note that Hausner’s algorithm is no longer optimal since
the centroid update step isn’t guaranteed to improve the
energy function. The algorithm first selects tile positions
and orientations, and then colors the tiles. The tile posi-
tions and orientations don’t take color information into
account. Nonetheless, the algorithm tends to achieve
good results in practice.

With Hausner’s algorithm, we can apply tiling to man-
ually segmented regions, as before. We can also enhance
edges by removing them from the energy function.
Specifically, points p that lie on image edges aren’t
included in the labeling or centroid computation steps;
this discourages Voronoi regions from straddling edges.
Adjusting the energy function in various ways can mod-
ify tile sizes and shapes; the resulting problem is
amenable to hardware acceleration.14

Trial-and-error algorithms
It’s difficult to extend Voronoi methods to take color

information into account and handle problems where
strokes might overlap. So far, the only optimization
methods applicable to these problems are trial-and-
error approaches, which you can apply to any SBR
problem. The idea is simple. The algorithm proposes
a change to the image structure. If the proposed change
reduces the energy, then the change is incorporated;

C p /p
p

p
p

i
i iL L←∑ ∑

L i R Ci i i i
p

C p

otherwise
← = −

1

0
1

2
argmin ()()φ

E I L Ri
i i() ()()= −

∈
∑ p

p I

C p Cφ 1

2

Tutorial

74 July/August 2003

(a) (b) (c)

(d) (e)

6 Tile mosaic results from
Hausner.14 (a) Perspective view of
the vector field used for the yin-
yang example. The vector field was
generated from the height field
shown. (b) Initial Voronoi diagram
of randomly placed points. (c) Final
tiling. Edges shown in white are
excluded from the optimization.
(d) Rendered tiling, using colors
from a source image. (e) Tiling of a
Lybian Sibyl image.

C
ou

rt
es

y
of

 A
le

jo
 H

au
ns

er

otherwise, it’s discarded. The algorithm then repeats.
If the proposal mechanism is well designed, then the

algorithm should eventually converge to a low-energy
result. However, there are no guarantees that this will
happen, and, even if it does, the computation time could
be substantial. Here’s the pseudocode for a trial-and-
error algorithm:

function TRIALANDERROR(I):
I ← empty image structure

while not done
C ← SUGGEST() //Suggest change.
if (E(C(I)) < E(I)) //Does the change help?

I ← C(I) //If so, adopt it.
return I

Termination conditions are up to the user. For exam-
ple, the optimization can run for a fixed amount of time,
until the user is satisfied with the results, or when only
a small portion of the proposals are accepted.

Of critical importance is the design of a good pro-
posal mechanism. Purely random proposal mechanisms
can waste substantial time making little progress,
whereas hand-tuned mechanisms quickly provide bet-
ter results. Trial-and-error algorithms are closely relat-
ed to greedy algorithms, since they both use
hand-designed proposals. The main differences are that
the trial-and-error algorithms include checks to ensure
that the proposal actually improves the image and that
the procedure can iteratively improve previous strokes.
Hence, using trial-and-error algorithms frees you from
the difficult task of designing a mechanism that always
makes good strokes.

Haeberli4 introduced the first trial-and-error algo-
rithm for nonphotorealistic rendering; Figure 7 shows
the results. In each case, a fixed number of strokes are
randomly perturbed, and the perturbations are kept
only if the sum-of-squares difference to the source
image is reduced.

Streamline visualization by trial and error.

More recently, Turk and Banks3 demonstrated a trial-
and-error algorithm for vector field visualization of
streamlines (see Figure 2). (Jobard and Lefer later

described a greedy streamline placement algorithm
that’s much faster than the trial-and-error method.15

I describe Turk and Banks’ method here for complete-
ness.) As mentioned in the introduction, the problem
is to illustrate a vector field with streamlines for clear
visualization of the vector field. However, a straight-
forward approach to the problem—simply tracing
streamlines from some predetermined starting
points—creates irregular streamline spacing that dis-
tracts from the vector field’s flow. Hence, you need
some way of evaluating the streamline visualization’s
quality and then optimizing for that quality measure.
Turk and Banks proposed blurring the streamline ren-
dering, comparing the result to a predefined constant
value t. The corresponding energy function is

where (G ∗ I)(p) denotes the blurred version of the
streamline image. (Salisbury et al. used a similar ener-
gy function in an earlier study.5) You could also penal-
ize the deviations of the streamline from the vector
field, since the goal is to produce streamlines that
exactly follow the vector field. Fortunately, the trial-
and-error algorithm enforces this constraint at every
step, and thus it isn’t necessary to include it in the ener-
gy function.

To apply a trial-and-error algorithm to this problem,
we must define the proposal mechanism. While a pure-
ly random proposal mechanism may decrease the ener-
gy in the long run, it will be far too slow to be practical.
Hence, Turk and Banks defined many proposal heuris-
tics designed to decrease the energy as much as possible
with each step.

Painterly rendering by trial and error. I’ve
built a trial-and-error painterly rendering algorithm,
which I’ll briefly describe here.16 At a high level, the
goal is to seek concise paintings that match a source
image closely and cover the image with paint, but use
as few strokes as possible. A brush radius and a list of
control points define each brush stroke. The energy
function is

E I G I
I

())())= ∗ −
∈

∑((p t
p

2

IEEE Computer Graphics and Applications 75

(a) (b)

7 Images computed using trial-
and-error algorithms.4 (a) Overlap-
ping rectangular strokes.
(b) Voronoi diagram of a set of
point centers.

C
ou

rt
es

y
of

 P
au

l H
ae

be
rli

This energy is a linear combination of three terms. The
first term, Eapp, measures the pixelwise differences
between the painting and a source image S. The number
of strokes term, Enstr, penalizes the number of strokes.
The coverage term, Ecov, forces the canvas to be filled
with paint, if desired, by setting wcov to be large. The
weights w are user-defined values. The color distance |⋅|
represents Euclidean distance in RGB space. The
weights wapp(p) are defined by a weight image that lets
the user specify spatially varying weights.

The first two terms of the energy function quantify
the trade-off between two competing desires: to close-
ly match the appearance of the source image and to use
as little paint as possible. By adjusting the relative pro-

portion of wapp and wnstr, a user can specify the relative
importance of these two desires and thus produce dif-
ferent painting styles.

By default, the value of wapp(p) is initialized by a bina-
ry edge image. If you let the weight vary over the canvas,
then you get an effect similar to having different ener-
gy functions in different parts of the image (see Figure
8). The weight image wapp(p) lets you specify how much
detail is required in each region of the image. You can
generate the weight image automatically or hand paint
it. This gives users a high level of control without requir-
ing them to make every low-level choice.

This problem is difficult to optimize. The search—
even with carefully designed proposal heuristics—can
take many hours to run and currently isn’t practical.
However, the algorithm does give economical results
and substantial high-level control to users.

Greedy algorithms
The most common stroke-based rendering algorithms

are greedy: strokes are added to the image structure in
a single pass, and strokes are never modified once cre-
ated. Greedy algorithms use heuristics and carefully
designed placement steps. This means that they can
quickly produce high-quality results, but at the cost of
flexibility. Greedy algorithms are rarely defined in terms
of an energy function, although one is sometimes implic-
it. In some situations, devising an appropriate energy
function might be difficult, but a useful algorithm can
be developed without one.

Each greedy algorithm operates by repeatedly plac-
ing strokes and never modifying them. Consequently,
we define a greedy algorithm by how it makes the fol-
lowing two choices in the inner loop:

� Where do we place the next stroke?
� What shape will the next stroke have?

Single-point strokes
Haeberli4 describes a simple, semiautomatic painting

algorithm (see Figure 9). First, the user provides a
source image. Then the user sees a rendering of the
painting, which is initially blank. Using a mouse or
tablet, the user clicks and drags within the painting area
and places a single brush stroke at the location of each
mouse click. The system automatically chooses the color
by extracting it from the color of the source image at
that point and orients the stroke in the direction of the
image’s gradient. Hence, the user decides where the
strokes go and the algorithm decides what they look
like. The user may set other parameters (such as stroke
sizes) by adjusting settings or via pressure on a tablet
interface. This system provides a fun and easy way to
make abstract and attractive versions without requiring
the user to possess any drawing skills.

Single-layer painterly rendering. Numerous
commercial software packages have incorporated fully
automatic versions of Haeberli’s algorithm. Litwinow-
icz17 provides a complete description of such an algo-
rithm, along with several enhancements.

Litwinowicz’s basic algorithm takes a source image

E I E I E I E I

E I w p I S

E I w I
E I w I

I

() () () ()

() () () ()

() (
() (

cov

()

cov cov

= + +

= −

= ⋅
= ⋅

∈
∑

app nstr

app app

p

nstr nstr

p p

number of strokes in)
number of empty pixels in)

Tutorial

76 July/August 2003

(a) (b)

(c) (d)

8 Spatially varying style, from Hertzmann.16 (a) Source image (courtesy of
Philip Greenspun; http://philip.greenspun.com). (b) Interactively painted
weight image (wapp). (c) Resulting painting with the given weights. More
detail appears near faces and hands. (d) Another choice of weights; detail is
concentrated on the rightmost figures.

©
20

01
 IE

EE

9 Interactive painterly rendering process from Haeberli.4

C
ou

rt
es

y
of

 P
au

l H
ae

be
rli

and orientation field as input and generates a painting
with a set of oriented, short, brush strokes. The algo-
rithm places the brush strokes on a grid in the image
plane, with randomly perturbed positions. Each stroke’s
color comes from the source image and each stroke’s
orientation comes from the orientation field. The sys-
tem draws the strokes in random order, removing reg-
ularities that would appear otherwise. The orientation
field specifies the strokes’ desired orientation and is gen-
erated from the source image in a preprocessing step. A
simple way to generate this orientation field is to set the
orientation φ(p) at pixel p to the normal of the image’s
gradient—this gives the direction in which the image is
most constant. However, in constant regions of the
image, the gradient won’t be well defined. The orienta-
tions in these regions can be filled in using a smoothing
algorithm, such as thin-plate spline interpolation. Addi-
tionally, strokes can be clipped to edges extracted from
the original images. This helps the painting preserve the
edges of the original image more faithfully.

Multiple-layer painterly rendering. I have
developed an extension to these algorithms that can cre-
ate brush strokes with multiple sizes. We can motivate
the algorithm by observing that an artist often will begin
a painting as a rough sketch and go back later over the
painting with a smaller brush to add detail. While much
of the motivation for this technique doesn’t apply to
computer algorithms, it does yield desirable visual
effects. This image-processing algorithm uses fine brush
strokes only where necessary to refine the painting and
leaves the rest of the painting coarse. Users can also
define where fine strokes are used. The algorithm is sim-
ilar to a pyramid algorithm, in that you start with a
coarse approximation to the source image and add pro-
gressive refinements with smaller brushes. In a sense,
this algorithm greedily optimizes an energy function
that penalizes the difference between the painting and
the source image and penalizes the number of strokes.

The algorithm takes as input a source image and a list
of brush sizes, which are expressed as radii r1 … rn. The
algorithm then proceeds by painting a series of layers,
one for each radius, from largest to smallest. Generally,
it’s most useful to use powers of two: ri = r12i−1, with
some user-determined value for r1. The initial canvas is
a constant color image.

I first create a reference image for each layer by blur-
ring the source image. The reference image represents
the image I want to approximate by painting with the
current brush size. The idea is to use each brush to cap-
ture only details that are at least as large as the brush
size. I use a layer subroutine to paint a layer with brush
ri, based on the reference image. This procedure locates
areas of the image that differ from the reference image
and covers them with new brush strokes. Areas that
match the source image color to within a threshold (T)
are left unchanged. The threshold parameter can be
increased to produce rougher paintings, or decreased
to produce paintings that closely match the source
image.

Blurring may be performed by one of several meth-
ods. I normally blur by convolution with a Gaussian ker-

nel of standard deviation fσri, where fσ is some constant
factor. Nonlinear diffusion18 can be used instead of a
Gaussian blur to produce slightly better results near
edges, although the improvement is rarely worth the
extra computation time. When speed is essential, I use
a summed-area table.

This entire procedure repeats for each brush stroke
size. Here’s a pseudocode summary of the painting
algorithm:

function PAINT(Is, //source image
Ip, //canvas
r1 … rn) //brush sizes

Create a summed-area table A from Is if necessary
refresh ← true
foreach brush size ri, from largest to smallest, do

Compute a blurred reference image Iri with blur
size fσri

grid ← ri

Clear depth buffer
foreach position p on a grid with spacing grid

M ← the region [px − grid/2 … px + grid/2;
py − grid/2 … py + grid/2]
areaError ← ∑p∈M ‖Ip (p)−Iri (p)‖
if refresh or areaError > T then

p ← arg max p∈M ‖Ip (p)−Iri (p)‖
PAINTSTROKE(p, Ip,ri, Iri)

refresh ← false

Each layer is painted using a simple loop over the
image canvas. The idea is similar to Litwinowicz’s algo-
rithm. However, we can no longer place samples simply
on a jittered grid, since this approach might miss sharp
details such as lines and points that pass between grid
points. Instead, the algorithm searches each grid point’s
neighborhood to find the nearby point with the greatest
error and paint at this location. All strokes for the layer
are planned at once and before rendering. Then the
strokes are rendered in random order to prevent an unde-
sirable appearance of regularity in the brush strokes. In
practice, we can avoid the overhead of storing and ran-
domizing a large list of brush strokes by using a z-buffer.
Each stroke is rendered with a random z value as soon
as it’s created. The z-buffer is cleared before each layer.
Note that this might produce different results with sig-
nificant transparency, when transparent objects aren’t
rendered in back-to-front order. Figure 10 (next page)
shows the layers of a painting using this algorithm.

When applied to a color vector, |⋅| denotes Euclidean
distance in RGB space. I also experimented with the
Commission Internationale de l’Eclairage (CIE, or Inter-
national Commission on Illumination) LUV, a percep-
tually based color space. Surprisingly, it gave slightly
worse results, but I’m not sure why.

PAINTSTROKE in the previous code listing is a gener-
ic procedure that places a stroke on the canvas beginning
at p1, given a reference image and a brush radius. This
technique focuses attention on areas of the image con-
taining the most detail (high-frequency information) by
placing many small brush strokes in these regions. Areas
with little detail are painted only with large brush strokes.
Thus, strokes are appropriate to the level of detail in the

IEEE Computer Graphics and Applications 77

source image. This choice of emphasis assumes that detail
areas contain the most important visual information,
although other choices of emphasis are also possible, such
as those specified by a user or an eye tracker.

Long, curved strokes
Most real paintings and drawings use long, curved

strokes, instead of the short strokes that I’ve discussed
until now.

Painterly rendering with long, curved

strokes. This method can be extended to use long, con-
tinuous curves instead of short strokes. In my system, I
limit brush strokes to constant color and use image gra-
dients to guide stroke placement. The idea is that the
strokes will represent isocontours of the image with
roughly constant color. My method is to place control
points for the curve by following the normal of the gra-
dient direction. When the color of the stroke is farther
from the target color in the reference image than the
painting, the stroke ends at that control point.

My spline placement algorithm begins at a given point
in the image p0, with a given brush radius r. The stroke
is represented as a list of control points, a color, and a
brush radius. Points are represented as floating-point
values in image coordinates. I add the control point p0

to the spline, and use the color of the reference image
at p0 as the color of the spline.

I then compute the next point along the curve. The
gradient direction θ0 at this point is computed from the
Sobel-filtered luminance of the reference image. The
next point, p1, is placed in the direction θ0 + π/2 at a
distance r from p0 (see Figure 11). You can also use the
direction θ0 − π/2; this choice is arbitrary. I use the
brush radius r as the distance between control points
because r represents the level of detail I’ll capture with
this brush size; in practice, I find that this size works
best. This means that large brushes create broad sketch-
es of the image, which can be later refined with small-
er brushes.

The remaining control points are computed by repeat-

Tutorial

78 July/August 2003

10 Painting
with three
brushes.
(a) The input
image. The
remaining
images show
the painting
after (b) the
first layer
(brush radius
8), (c) the sec-
ond layer
(radius 4),
(d) the final
painting (radius
2), and
(e) the painting
with paint
texture added.
(Brush strokes
from earlier
layers are still
visible in the
final painting.)

(a)

(b)

(c)

(d)

(e)

v0

p0

g0

v1

p0

p1

p2

g1

(a) (b)

11 Painting a brush stroke.1 (a) A brush stroke begins
at a control point p0 and continues in direction v0, nor-
mal to the gradient direction g0. (b) From the second
point p1, there are two normal directions to choose
from: θ1 + π/2 and θ1 − π/2. I choose v1 to reduce the
stroke curvature. This procedure is repeated to draw the
rest of the stroke. The stroke will be rendered as a cubic
B-spline, with the pi as control points. The distance
between control points is equal to the brush radius.

ing this process of moving along the image and placing
control points. For a point pi, we compute a gradient
direction θi at that point. There are actually two possi-
ble candidate directions for the next direction: θi + π/2
and θi − π/2. I choose the next direction that leads to the
lesser stroke curvature: I pick the direction vi so that the
angle between vi and vi − 1 is less than or equal to π/2
(see Figure 11), where vi can be (r cos(θi ± π/2), r sin(θi

± π/2)). The stroke terminates when

� it reaches the predetermined maximum stroke length,
or

� the reference image color at the current control point
differs from the current stroke color more than it dif-
fers from the current painting at that point.

I find that a step size of r works best for capturing the
right level of detail for the brush stroke. We can also
exaggerate or reduce the brush stroke curvature by fil-
tering the stroke directions.

The entire stroke placement procedure is as follows
(note that Yr(p) is the luminance channel of Ir, scaled
from 0 to 1):

function PAINTSTROKE(p0, r, Ir, Ip)
//Arguments: start point p0, stroke radius (r),
//reference image (Ir), painting so far (Ip)
color ← Ir(p0)
K ← a new stroke with radius r and color color
add point p0 to K
for i = 1 to maxStrokeLength do

//compute image derivatives
g ← (255 ∗ ∂Yr/∂x (pi − 1),

255 ∗ ∂Yr/∂y (pi − 1))

//detect vanishing gradient
if ri ‖g‖ ≥ 1

//is gradient times length at least a pixel?
//rotate gradient by 90 degrees
vi ← (−gy, gx)

// if necessary, reverse direction
if i > 1 and vi ⋅ vi − 1 < 0 then

vi ← −vi

// filter the stroke direction
vi ← fcvi + (1 − fc)vi − 1

else
if i > 1

//continue in previous stroke direction
vi ← vi − 1

else
return K

pi ← pi − 1 + rivi/‖vi‖
if i > minStrokeLength and

then

return K
add pi to K

end for
return K

Pen-and-ink and other curve tracing algo-

rithms. Many types of pen-and-ink illustration
greedily optimize stroke placement. In the simplest
case, the goal is to place pen strokes to achieve a
desired stroke density (thus achieving a target tone)
with strokes that trace specified orientations. Jobard
and Lefer15 describe an efficient greedy approach to
this problem. They define a target density by a desired
distance d between strokes. In a nutshell, their algo-
rithm consists of

� identifying seed points in the image with a distance of
at least d from all existing curves, and

� tracing a curve from a seed point along the vector
field, until that curve comes within d of another curve.

The algorithm continues until the image is densely cov-
ered with strokes. This procedure is guaranteed to pro-
duce curves that trace the vector field and maintain a
distance of at least d from all other curves. This algo-
rithm depends on intelligent heuristics for guiding the
choice of seed points.

A more sophisticated problem is to use pen strokes
to illustrate tone, orientation, and texture. Salisbury et
al.5 introduced an interactive tool for placing pen-and-
ink strokes that convey tone and orientation. The user
specifies the desired tone for a region and the system
automatically places strokes to match these tones.
Strokes are stored as prioritized stroke textures (see Fig-
ure 12), which let the system render complex hatching
patterns while matching a desired tone. Salisbury et
al.6 describe another system that lets the user specify
varying orientations for the illustration as well, thus

 I I I colorr i p i r i() () ()p p p− < −

IEEE Computer Graphics and Applications 79

(f)(e)(d)

(c)(b)(a)

12 Gray tones generated with a prioritized stroke
texture.5 (a-e) The strokes in the texture are rendered
in a specific order that lets different tones be generated
from a single texture. (f) Image generated from a
source photo using prioritized stroke textures. (Images
courtesy of Michael Salisbury et al.)

matching three separate quantities (tone, texture, and
orientation) with pen-and-ink strokes.

You can apply similar principles to illustrating surfaces.
Typically, the target tones come from a rendering of the
surface and the target stroke orientations come from ori-
entation fields defined on the surface. The resulting algo-
rithm is a variation on previous SBR techniques, but with
many adjustments as dictated by the pen-and-ink style
and 3D model.19 Denis Zorin and I first generated a tone
and orientation field from a 3D model and extended
Jobard and Lefer’s15 method to hatch an image of the
model (see Figure 13). Winkenbach and Salesin7,8

describe a system that applies prioritized stroke textures
to renderings of 3D surfaces with texture, optionally user-
supplied emphasis for different parts of the image, and
user-defined orientation fields (see Figure 14). In these
methods, the hatching attempts to match the image’s ori-
entation, rendered tone, and texture.

Limitations of energy minimization
Currently, it seems unlikely that every desirable SBR

style can be formulated in the energy function formu-

lation that I presented in the “Stroke-based rendering”
section. There are several reasons for this. It’s difficult to
capture looseness and sketchiness or randomness in an
energy function. Moreover, painting and drawing aren’t
deterministic procedures; an artist might produce dif-
ferent images each time. One way to express random-
ness would be to replace the energy function with the
probability density over renderings. Painting is then a
process of sampling from this density; the density would
usually be conditioned on the input data.

Several of the greedy approaches previously
described (such as prioritized stroke textures5) and
mentioned in the “Related Topics” sidebar are difficult
to express in terms of energy functions.

It’s sometimes easier to design a direct procedure for
a rendering style than to design an energy function,
especially since designing styles is a creative process.
Often, we design a new algorithm or styles without real-
ly understanding why they work. Ideally, we should
develop additional insight after the fact that lets us con-
vert the direct procedure to an energy function. Know-
ing the energy function can often give insight into how
the direct procedure works and how to improve it. How-
ever, it bears repeating that direct procedures are much
faster than optimization procedures.

Conclusion
Many challenges remain in SBR algorithms. First,

most of these algorithms are too slow to be useful in an
interactive application, although faster computers will
lessen the problem. Second, for most applications,
artists and end users need better tools for controlling
styles, in between setting parameters of a painting algo-
rithm (which may give too little control) and painting
all strokes manually (which is very labor intensive). The
work of Kalnins et al.20 gives an excellent example of
artistic control over a specific type of SBR.

More importantly, we need to dramatically expand
the range of styles that SBR algorithms can create. Tech-
niques up to now have shown the power of SBR algo-
rithms on relatively simple styles—such as a simple
version of impressionism. Now, the task is to discover
deeper patterns in artistic styles amenable to imple-
mentation—beyond simple paint-scattering effects.

A final and significant challenge is to create com-
pelling SBR animation. Because so few examples exist in
traditional animation to look to for guidance, this

Tutorial

80 July/August 2003

C
ou

rt
es

y
of

 A
ar

on
 H

er
tz

m
an

n
an

d
D

en
is

 Z
or

in

14 Pen-and-ink illustrations of 3D models, from Winkenbach and Salesin.7 The left house shows the effect of a user-defined emphasis
function; detail is only drawn where specified by the user. The right house shows a rendering with uniform emphasis.

C
ou

rt
es

y
of

 G
eo

rg
es

 W
in

ke
nb

ac
h

an
d

D
av

id
 S

al
es

in

13 Pen-and-ink illustration of a smooth surface, from
Hertzmann and Zorin.19 The target orientation field
and tones are generated automatically to illustrate the
surface.

requires not just developing new algorithms, but also
developing new artistic styles. If we as a field are suc-
cessful, we’ll have created a new art form that couldn’t
have existed without computers. �

References
1. A. Hertzmann, “Painterly Rendering with Curved Brush

Strokes of Multiple Sizes,” Proc. Siggraph 98, ACM Press,
1998, pp. 453-460.

2. A. Hertzmann, “Fast Paint Texture,” Proc. 2nd Ann. Symp.
Non-Photorealistic Animation and Rendering (NPAR 2002),
ACM Press, 2002, pp. 91-96, 161.

3. G. Turk and D. Banks, “Image-Guided Streamline Place-
ment,” Proc. Siggraph 96, ACM Press, 1996, pp. 453-460.

4. P.E. Haeberli, “Paint By Numbers: Abstract Image Repre-
sentations,” Computer Graphics (Proc. Siggraph 90), vol.
24, ACM Press, 1990, pp. 207-214.

5. M.P. Salisbury et al., “Interactive Pen–And–Ink Illustra-
tion,” Proc. Siggraph 94, ACM Press, 1994, pp. 101-108.

6. M.P. Salisbury et al., “Orientable Textures for Image-Based
Pen-and-Ink Illustration,” Proc. Siggraph 97, ACM Press,
1997, pp. 401-406.

7. G. Winkenbach and D.H. Salesin, “Computer-Generated
Pen-And-Ink Illustration,” Proc. Siggraph 94, ACM Press,
1994, pp. 91-100.

8. G. Winkenbach and D.H. Salesin, “Rendering Parametric
Surfaces in Pen and Ink,” Proc. Siggraph 96, ACM Press,
1996, pp. 469-476.

9. M. Woo, J. Neider, and T. Davis, OpenGL Programming
Guide: The Official Guide to Learning OpenGL, 2nd ed.,
Addison-Wesley Developers Press, 1997.

10. K. Hoff III et al., “Fast Computation of Generalized Voronoi
Diagrams using Graphics Hardware,” Proc. Siggraph 99,
ACM Press, 1999, pp. 277-286.

11. O. Deussen et al., “Floating Points: A Method for Comput-
ing Stipple Drawings,” Computer Graphics Forum, vol. 19,
no. 3, Aug. 2000.

12. A. Secord, “Weighted Voronoi Stippling,” Proc. 2nd Ann.
Symp. Non-Photorealistic Animation and Rendering (NPAR
2002), ACM Press, 2002, pp. 27-43.

13. A. Secord, Random Marks on Paper: Non-Photorealistic Ren-
dering with Small Primitives, master’s thesis, Dept. of Com-
puter Science, Univ. of British Columbia, Oct. 2002.

14. A. Hausner, “Simulating Decorative Mosaic,” Proc. Sig-
graph 2001, ACM Press, 2001, pp. 573-578.

15. B. Jobard and W. Lefer, “Creating Evenly-Spaced Stream-
lines of Arbitrary Density,” Proc. 8th Eurographics Work-
shop on Visualization in Scientific Computing, Eurographics,
1997, pp. 45-55.

16. A. Hertzmann, “Paint by Relaxation,” Computer Graphics
Int’l 2001, IEEE CS Press, 2001, pp. 47-54.

17. P. Litwinowicz, “Processing Images and Video for an
Impressionist Effect,” Proc. Siggraph 97, ACM Press, 1997,
pp. 407-414.

18. P. Perona and J. Malik, “Scale-Space and Edge Detection
Using Anisotropic Diffusion,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, July 1990, pp. 629-
639.

19. A. Hertzmann and D. Zorin, “Illustrating Smooth Sur-
faces,” Proc. Siggraph 2000, ACM Press, 2000, pp. 517-526.

20. R.D. Kalnins et al., “WYSIWYG NPR: Drawing Strokes
Directly on 3D Models,” ACM Trans. Graphics, vol. 21, no.
3, 2002, pp. 755-762.

Aaron Hertzmann is an assistant
professor in the Department of Com-
puter Science at the University of
Toronto. His research interests are
3D shape reconstruction, nonphoto-
realistic rendering, and applications
of machine learning to computer

graphics. Hertzmann received a PhD in computer science
from New York University. He is a member of the IEEE.

Readers may contact Aaron Hertzmann at the Dept. of
Computer Science, University of Toronto, 10 King’s College
Rd., Room 3303, Toronto, ON, M5S 3G4; hertzman@
dgp.toronto.edu.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 81

Related Topics
Space limitations precluded a complete survey

of stroke-based rendering. You can find a
detailed list of references at http://www.
dgp.toronto.edu/~hertzman/sbr02. A few of the
major related topics are

� animation and real-time rendering for creating
stroke-based animations, virtual environments,
and interfaces;

� example-based strokes for creating illustration
styles from hand-drawn examples;

� thresholding algorithms, which decouple stroke
placement and stroke tones;

� tensor field visualization, where stroke-like ele-
ments are used for scientific visualization of
complex data;

� photomosaics and jigsaw image mosaics, in
which an image is approximated by a collection
of smaller images; and

� simulating stroke texture by numerical simula-
tion and/or procedural synthesis.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

