Bayesian Learning for Computer graphics

Aaron Hertzmann University of Toronto

Computers are really fast If you can create it, you can render it

How do you create it? Digital Michaelangelo Project Steven Schkolne

Key questions • How do you fit a model to data? - How do you choose weights and thresholds? - How do you incorporate prior knowledge? - How do you merge multiple sources of information? - How do you model uncertainty? Bayesian reasoning provides a solution

Talk outline

- Bayesian reasoning
- Facial modeling example
- Non-rigid modeling from video

What is reasoning?

- How do people reason?
- How should computers do it?

Aristotelian Logic

- If A is true, then B is true
- A is true
- Therefore, B is true
 - A: My car was stolen
 - B: My car isn't where I left it

Real-world is uncertain

Problems with pure logic

- Don't have perfect information
- Don't really know the model
- Model is non-deterministic

Beliefs

- Let B(X) = "belief in X",
- $B(\neg X) = \text{"belief in not X"}$
- 1. An ordering of beliefs exists
- 2. $B(X) = f(B(\neg X))$
- 3. B(X) = g(B(X|Y),B(Y))

Cox axioms

R.T. Cox, "Probability, frequency, and reasonable expectation," American J. Physics, 14(1):1-13, 1946

$$p(TRUE) = 1$$

$$p(A) = f_{B=b_i g} p(A; B)$$

$$p(A; B) = p(AjB)p(B)$$

"Probability theory is nothing more than common sense reduced to calculation."

- Pierre-Simon Laplace, 1814

Bayesian vs. Frequentist

- Frequentist ("Orthodox"):
 - -Probability = percentage of events in infinite trials
- Medicine, biology: Frequentist
- Astronomy, geology, EE, computer vision: largely Bayesian

Learning in a nutshell

- Create a mathematical model
- Get data
- Solve for unknowns

Face modeling

 Blanz, Vetter, "A Morphable Model for the Synthesis of 3D Faces," SIGGRAPH 99

Generative model

· Faces come from a Gaussian

$$p(Sj\ddot{9}; \boldsymbol{p}) = P \hspace{-1.5cm} \frac{1}{(2\dot{u})^d j\!\!\!/ \!\!\!/ \!\!\!\!/} e^{\grave{a}(S\grave{a}\ddot{S})^T \boldsymbol{p}^{\grave{a}_1}(S\grave{a}\ddot{S}) = 2}$$

$$p(fS_igj\hat{9}; b) = \bigcap_i p(S_ij\hat{9}; b)$$

Learning

 $arg max_{8;b} p(9; bjfS_ig)$

Bayes Rule

P(A; B) = p(AjB)p(B)

= p(BjA)p(A)

P(BjA) = p(AjB)p(B)=p(A)

p(modeljdata) / p(datajmodel)p(model)

Often: p(modeljdata) / p(datajmodel)

Learning a Gaussian

$$\begin{array}{l} \text{arg max}_{\mathring{S};p} \; p(\mathring{S}; \, p)fS_ig) \\ = \text{arg max}_{\mathring{S};p} \; p(fS_ig)\mathring{S}; \, p) \\ = \text{arg max}_{\mathring{S};p} \; \overbrace{_{i}}^{i} \; p(S_ij\mathring{S}; \, p) \\ = \text{arg max}_{\mathring{S};p} \; \overbrace{_{i}}^{i} \; \underbrace{_{i}^{i} \; p(S_ij\mathring{S}; \, p)}_{\stackrel{i}{(2\dot{u})^djpj}} e^{\grave{a}_{2}^{1}(S_i\grave{a}\mathring{S})^Tp^{\grave{a}_{1}}(S_i\grave{a}\mathring{S})=2} \\ \mathring{S} \; \ \ \, _{i}^{i} \; S_i = N \\ p \; \ \, _{i}^{i} \; (S_i\,\grave{a}\,\mathring{S})(S_i\,\grave{a}\,\mathring{S})^T = N \end{array}$$

Maximization trick

Maximize p(x)
 minimize à ln p(x)

Fitting a face to an image

Generative model

$$p(Sj\ddot{S}; b) = \frac{1}{(2\dot{u})^dj_{Dj}} e^{\dot{a}(S\dot{a}\ddot{S})^Tb^{\dot{a}_1}(S\dot{a}\ddot{S})=2}$$

$$\begin{split} I &= Render(S; \acute{u}) + n \\ &\searrow p(IjS; \acute{u}; \mathring{u}^2) = \frac{p_{-1}}{(2 \grave{u})^d j \flat j} e^{\grave{a}jjI \grave{a} Render(S; \acute{u}) j j^2 = 2 \acute{u}^2} \end{split}$$

Fitting a face to an image

Maximize

 $p(S; újI; \ddot{9}; \dot{p}; \dot{u}^2)$

minimize

 $\hat{a} \ln p(S; \hat{u}_{1}; S; \hat{p}; \hat{u}^{2}) =$

jjl à Render(S; ú)jj²=2û² + (S à Ÿ)^T p^{a_1} (S à Ÿ)=2 + $\frac{N}{2}$ ln 2ùû² + $\frac{1}{2}$ ln(2ù)^djpj

Why does it work? p(fx_igjmodel) = p(x_ijmodel) s:t: p(xjmodel) = 1

General features

- Models uncertainty
- · Applies to any generative model
- Merge multiple sources of information
- · Learn all the parameters

Caveats

- Still need to understand the model
- Not necessarily tractable
- Potentially more involved than ad hoc methods

Applications in graphics

- Shape and motion capture
- Learning styles and generating new data

Learning Non-Rigid 3D Shape from 2D Motion

Joint work with Lorenzo Torresani and Chris Bregler (Stanford, NYU)

Camera geometry

Orthographic projection

Non-rigid reconstruction

Input: 2D point tracks

Output: 3D nonrigid motion

$$p_t = R_t S_t + T_t$$

Totally ambiguous!

Shape reconstruction

Least-squares version

$$p_t = R_t S_t + T_t$$

minimize

Bayesian formulation

$$\begin{split} p(S_t \hat{j} \hat{\mathbf{S}}; \boldsymbol{b}) &= \frac{p_{-1}}{(2\hat{\mathbf{u}})^d j p_t^j} \, e^{\hat{\mathbf{a}}(S_t \hat{\mathbf{a}} \hat{\mathbf{S}})^T p^{\hat{\mathbf{a}}^T} (S_t \hat{\mathbf{a}} \hat{\mathbf{S}}) = 2} \\ p_{-;t} &= R_t S_{-;t} + T_t + n & \text{n } \varnothing \ N(0; \hat{\mathbf{u}}^2) \end{split}$$

maximize p(R; S; T; 9: |p|P)/ p(PjR; S; T)p(Sj9: |p|

How does it work?

Minimize

$$\hat{\textbf{a}} \stackrel{=}{_{t}} ln \, p(P_t j R_{t^{\flat}} \, S_{t^{\flat}} \, T_t) \, \, \hat{\textbf{a}} \stackrel{=}{_{t}} ln \, p(S_t j \textbf{9}; \, \textbf{p})$$

$$= \int_t jjp_t \,\grave{a}\, R_t S_t \,\grave{a}\, T_t jj^2 = 2\hat{u}^2 + \frac{N}{2} \ln \hat{u}^2 \\ + \int_t \frac{1}{2} (S_t \,\grave{a}\, \mathring{g})^T p^{\grave{a}1} (S_t \,\grave{a}\, \mathring{g}) + \frac{T}{2} \ln j pj$$

(actual system is slightly more sophisticated)

Conclusions

- Bayesian methods provide unified framework
- Build a model, and reason about it
- The future of data-driven graphics