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Abstract

I argue that computer graphics can benefit from a deeper
use of machine learning techniques. I give an overview of
what learning has to offer the graphics community, with an
emphasis on Bayesian techniques. I also attempt to ad-
dress some misconceptions about learning, and to give a
very brief tutorial on Bayesian reasoning.

1. Introduction

We live in an age of widespread exploration of art and
communication using computer graphics and animation.
Filmmakers, scientists, graphic designers, fine artists, and
game designers, are finding new ways to communicate and
new kinds of media to create. Computers and rendering
software are now quite powerful. Arguably, the largest bar-
rier to using digital media is not technological limitations,
but the tedious effort required to create digital worlds and
digital life. Suppose you wish to simulate life on the streets
of New York in the 1930’s, or a mysterious alien society.
Someone has to actually create all the 3D models and tex-
tures for the world, physics for the objects, and behaviors
or animations for the characters. Although tools exist for
all of these tasks, the sheer scale of even the most prosaic
world can require months or years of labor. An alternative
approach is to create these models from existing data, either
designed by artists or captured from the world. In this paper,
I will argue that fitting models from data can be very useful
for computer graphics, and that machine learning can pro-
vide powerful tools. I will attempt to address some of the
common concerns about this approach. I will also provide
a brief tutorial on probabilistic reasoning.

Consider the problem of creating motions for a charac-
ter in a movie. You could create the motions procedurally,
i.e. by designing some algorithm that synthesizes motions.
However, synthetic motions typically look very artificial
and lack the essential style of a character, and pure procedu-
ral synthesis is rarely used for animation in practice. More
commonly, one animates characters “by hand,” or captures

motions from an actor in a studio. These “pure data” ap-
proaches give the highest quality motions, but at substantial
cost in time and the efforts of artists or actors. Moreover,
there is little flexibility: if you discover that you did not get
just the right motions in the studio, then you have to go back
and capture more. The situation is worse for a video game,
where one must capture all motions that might conceivably
be needed.

Learning techniques promise the best of both worlds:
starting from some captured data, we can procedurally syn-
thesize more data in the style of the original. Moreover,
we can constrain the synthetic data, for example, according
to the requirements of an artist. Of course, we must begin
with some data produced by an artist or a capture session.
But now, we can do much more with this data than just sim-
ple playback. For these problems, machine learning offers
an attractive set of tools for modeling the patterns of data.

Data-driven techniques have shown a small but steadily
increasing presence in graphics research. Principal compo-
nents analysis and basic clustering algorithms are becom-
ing almostde rigueurat SIGGRAPH. Most significantly,
the recent proliferation of papers on texture synthesis and
motion texture suggests a growing acceptance of learning
techniques. However, the acceptance of these works relies
largely on their accessibility — one does not need to know
much about machine learning to implement texture synthe-
sis. In this article, I will argue that graphics can benefit
more deeply from the learning literature.

Bayesian reasoning.Although I will discuss techniques
from machine learning in general, I particularly advocate
the use of Bayesian methods. Bayesian statistics is one of
the main forms of statistical modeling. Bayesian learning
provides three main tools:

1. Principled modeling of uncertainty

2. General purpose models for unstructured data

3. Effective algorithms for data fitting and analysis under
uncertainty

I will give simple but detailed examples later on. Of the ex-
isting graphics research that uses Bayesian learning, most



of them use existing Bayesian methods as a “black box”
within a larger model. I advocate modeling the entire sys-
tem within a Bayesian framework, which requires more un-
derstanding of Bayesian learning, but yields much more
powerful and effective algorithms.

There are also many useful non-probabilistic techniques
in the learning literature as well. I put more emphasis on
probabilistic methods, since I believe these have the most
value for graphics.

Intended audience for this paper. This paper is written
primarily for computer graphics researchers. There seems
to be some resistance to machine learning in the graphics
community. For example, one researcher said to me last
year:

Graphics researchers are already starting to grum-
ble about “machine learning doesn’t really work,
maybe only on the two examples shown in the
paper.” ... Without commenting on whether this
might actually be true or not, I just want to note
that I’ve heard increasing amounts of this senti-
ment.

On the other hand, the graphics community is very diverse,
and cannot be summarized by a single sensibility. A com-
puter vision researcher with an electrical engineering back-
ground doubts there is any real controversy:

I am surprised that you think there’s so much
resistance to machine learning (even the term)!
... Certainly in EE or other branches of CS
(e.g. database query, robotics, etc.), “machine
learning” is almost a classical term, and covers
an amazing amount of territory. No one would be
shocked by someone using ”machine learning” in
any of the literature I read ...

However, my general impression of the attitude of the
graphics community (which could be wrong) is of a mix-
ture of curiosity with deep skepticism. In my opinion, in-
sofar as there is any resistance, this resistance stems from
misconceptions about learning and its application. At one
time I expected “learning” to be a magical black box that
discovers the meaning of some raw data, and I suspect that
others expect the same. This promise — unfulfilled and pos-
sibly unfulfillable — naturally breeds skepticism. Although
this black box does not exist, machine learning research has
been very fertile in many domains, even without solving the
AI problem. It is a truism that artificial intelligence research
can never become successful, because its successes are not
viewed as AI. Recent successes include work in bioinfor-
matics, data mining, spam filters, and medical diagnoses.
For the reader who is bothered by the term “machine learn-
ing,” I suggest mentally substituting the phrase “statistical
data fitting” instead.

Moreover, data-fitting techniques are widely used in
graphics — whether one is fitting a 3D surface to a point
cloud obtained from a laser range scanner, or fitting a
Mixtures-of-Gaussians (MoG) model to motion capture
data, one is fitting a structured model to observed data. It
should be noted that the MoG model is a direct generaliza-
tion of vector quantization, which is already widely used
in graphics. Similarly, one may think of a Hidden Markov
Model (HMM) as a probabilistic generalization of vector
quantization that models temporal coherence.

One may also object to learning techniques because they
take away control from the artist — but this is really a com-
plaint about all procedural techniques. In my opinion, the
goal of procedural techniques is not to replace the artist, but
to provide effective high-level tools. Data-driven methods
give the artist the ability to build from captured data, and
the ability to design styles by example rather than by set-
ting thousands of parameters manually.

2. What is machine learning?

For the purposes of computer graphics, machine learning
should really be viewed as a set of techniques for leverag-
ing data. Given some data, we can model the process that
generated the data. Then, we can make more data that is
consistent with this process, possibly with new, user-defined
constraints.

In learning, we combine our prior knowledge of the
problem with the information in the training data; the model
that we fit should be carefully chosen. On one hand, trying
to model everything about the world — such as the exact
shape and dynamics of the muscle tissue in a human actor
and the actor’s complete mental state — would be hope-
less. Instead, we must fit simpler models of observed data,
say, of the movements of markers or handles; the parame-
ters of this model will rarely have any direct interpretation
in terms of physical parameters. On the other hand, choos-
ing features that are too general may make learning require
far too much data. For example, Blanz and Vetter [4] mod-
eled the distribution of possible faces and expressions with
a Gaussian probability density function. Such a weak model
allowed them to model patterns in the data without requiring
explicit a priori understanding of them. They can then gen-
erate new faces and expressions by sampling from this den-
sity, or by estimating the most likely pose that matches some
input photograph. However, they did need to represent face
data using training data in correspondence; directly learning
a model from range data not in correspondence would not
be likely to work very well at all. At present, learning al-
gorithms do not perform magic: you must know something
about the problem you want to model. As a rule of thumb,
the less information you specify in advance, the more train-
ing data you will need in order to train a good model. It is



very difficult to get good results without having some high-
level understanding of how the model operates. The main
benefit is that we can still get good results with fairly high-
level models.

3. What does learning have to offer?

The idea of driving graphics from data is hardly new,
and one can build some models from data without know-
ing anything about machine learning. One could argue that
the word “learning” should be avoided in computer graph-
ics since it leads to the sort of unrealistic expectations men-
tioned above. However, I believe that using the tools, termi-
nology, and experience of the machine learning community
offer many benefits to computer graphics research and prac-
tice. By employing existing ideas and techniques, we get
the benefit of the collective experience of the researchers
who studied these problems in the past. Otherwise, we will
waste substantial effort reinventing the wheel. The liter-
ature provides many intellectual tools that can be applied
again and again. For example, the authors of the Compos-
able Controllers paper from SIGGRAPH 2001 [13] sought
an algorithm to classify data based on some training ex-
amples. Rather than attempting to solve the classification
problem from scratch, the authors simply used Support Vec-
tor Machines (SVMs), a state-of-the-art classification pro-
cedure that has consistently outperformed competing meth-
ods (including neural networks, and, in this case, nearest-
neighbors). In fact, they did not even have to implement
an SVM classifier; instead, they downloaded one from the
web. This kind of reuse illustrates how accessing existing
research can save us from having to reinvent (and reim-
plement) the wheel. Moreover, it is unlikely that anyone
would casually invent a technique as effective as SVMs in
the course of conducting a larger project.

In general, the machine learning literature and commu-
nity have much to offer graphics:

Problem taxonomy. The literature makes a distinction
between types of problems, such as density estimation, clas-
sification, regression, and reinforcement learning. See Sec-
tion 4 for more detail. Understanding these distinctions
helps one understand a new problem and relate it to existing
approaches. For example, the authors of the Video Tex-
tures paper of SIGGRAPH 2000 [51] identified their syn-
thesis problem as a reinforcement learning problem, which
allowed them to immediately draw on existing solutions
rather than to attempt to solve the problem from scratch.

General-purpose models. Machine learning researchers
have developed many models for learning structure in arbi-
trary data. For many fitting problems, it is likely that one of

these methods will be useful, either as a complete model or
as a starting point for a problem-specific model. Many of
these methods are outlined in the next section.

Reasoning with probabilities. One of the major trends
in learning research is to reason with probabilities, in or-
der to model the uncertainty present in all of our models
and data. Probabilistic modeling provides a very powerful,
general-purpose tool for expressing relative certainty in our
understanding of the world. Often, one source of informa-
tion will be more reliable than another, and we must weigh
the reliability of data along with the data itself when mak-
ing estimates or decisions; probability theory provides a
principled mechanism for reasoning with uncertainty, learn-
ing from data, and generating new data (e.g. by sampling
from a learned model). Machine learning researchers have
developed (or adapted from other disciplines) many pow-
erful tools for statistical reasoning, such as Expectation-
Maximization, Belief Propagation, Markov Chain Monte
Carlo methods, and Particle Filtering. Although probabilis-
tic reasoning is not necessary for every problem (and it will
always be dependent on somea priori assumptions that we
make about the world), it has been shown to be a very pow-
erful tool in many situations. Some cognitive science re-
searchers even believe that the human brain can be viewed
as performing probabilistic inference, at least in low-level
processes [45].

A few papers in graphics have used techniques from
learning in interesting ways. Of these few papers, most of
them use an existing learning technique as a “black box”
subroutine. While these uses are exciting, we have yet to
see much work that does not just reuse models but tightly
fits them into a graphics system. In contrast, the interaction
of learning and computer vision is much more mature. In
much computer vision research, there is no “learning sub-
routine,” but a unified system that completely models the
process being analyzed. For example, Jojic and Frey’s video
processing algorithms extract sprites and solve for all rele-
vant parameters in a unified probabilistic framework [25].

Incidentally, probabilistic methods can be useful in
graphics entirely separate from data-driven techniques, as
argued convincingly by several authors [1, 7, 42, 43]. For
digital actors and behaviors, it is important that the anima-
tion is not the same every time. Probabilistic models al-
low multiple solutions to a problem, and can model random
subtleties for which an exact model is impractical. (Proba-
bilistic methods have long been used in global illumination,
but only as part of numerical integration techniques, not to
represent the uncertainty in the scene).

Some probabilistic methods and deterministic methods
end up with the same formulations. In the past, this has
been a source of contention in the computer vision commu-
nity. Some people argue that, if one can pose the problem



simply as a least-squares fitting problem (as one does with
regression methods such as radial basis functions and neural
networks) then there is no need for probabilistic methods. I
agree with this, however, if the problem involves weigh-
ing between multiple terms, thresholding, and/or estimat-
ing terms that have very different meanings, then generally
a probabilistic technique will be necessary in order to fit
these parameters. For example, linear regression can be
posed in a deterministic least-squares setting, and there is
no real need to state an explicit noise model. Linear regres-
sion where both variables are corrupted by noise, and linear
regression that is robust to outliers requires either (a) pa-
rameter tuning by the user, or (b) probabilistic methods that
can learn the noise and outlier models. Another example is
given in Section 5.3.

Note that there is occasionally some confusion in that
the probabilistic methods mentioned here arenot necessar-
ily randomized algorithms. Probabilistic methods model
uncertainty, but often involve deterministic optimizations.
Randomized algorithms may be used in optimization, and
random sampling may be used to draw from a distribution.

Learning all the parameters. Most computer graphics
systems (including many current data-driven algorithms)
have many parameters to tune. (This fact that is often men-
tioned in paper reviews; it is a very safe thing to comment
on). Bayesian reasoning provides ways to fit energy func-
tions to data, even energy functions that are too complicated
to fit by hand. Moreover, I will go on a limb here and say
that machine learning systems can learnall of the parame-
ters of a model. There are a few caveats: you must choose
a model that is suitably powerful for the problem you wish
to solve, there must be enough training data, and you must
be willing to perform a potentially slow optimization proce-
dure. Probabilistic modeling provides a principled problem
formulation for learning all the parameters, although opti-
mizing the resulting objective function may be difficult for
certain types of parameters. However, there is flexibility
— a good model with few parameters needs less training
data and time than a weak model with many parameters. In
practice, one will generally specify a few parameters of the
model that are difficult to learn (e.g. model dimensionality),
and have the algorithm learn the rest (including noise val-
ues, outlier thresholds, data labeling, and so on). Of course,
if more user control is desired, than one may allow some of
the parameters to be specified by hand.

For many graphics applications, the learning process
may be viewed aslearning the objective function for pro-
cedural synthesis. Objective functions and energy func-
tions are widely used throughout computer graphics; one
typically synthesizes data by optimizing an energy function
subject to some constraints. For example, geometric models
are often created by optimizing a specific objective function

(sometimes implicitly). Instead of designing this objective
function by hand, we could use machine learning methods
to create the objective function from data — or, more pre-
cisely, to fit the parameters of an objective function. Syn-
thesis is then a matter of optimizing with respect to this ob-
jective. In a sense, the learned objective function measures
the similarity of the synthesized motion to the examples, but
in a much more general way. See Section 5.3 for a detailed
example.

4. Taxonomy of Problems, with References

In this section, I give an overview of some of the main
problem areas in learning, together with some related ref-
erences. I do not at all promise that this is an authoritative
or complete list. I highly recommend the machine learn-
ing chapters of MacKay’s book [32] as an introduction to
Bayesian learning and reasoning. Also, the first two chap-
ters of Bishop’s book [3] provide an excellent overview of
statistical learning. Forsyth and Ponce’s computer vision
textbook [14] is a good reference, and contains a significant
amount of content on learning related to computer vision.

Learning is typically broken up into three problem areas:
Classification, Regression, and Density Estimation. In addi-
tion, several other important topics are summarized below.

Classification. Perhaps the most-studied problem in
learning is classification: learning to classify data points as
belonging to one of two classes. In a typical problem, one is
first given a set of training data{xi, yi}, where each value
xi is a floating-point vector representing a measurement,
and eachyi ∈ {−1, 1} is a binary classification of the train-
ing vectorxi. For example, in a classifier that learns cancer
diagnoses, thexi values might represent various measure-
ments of blood level counts, age, weight, etc., andyi might
indicate whether the diagnosis is positive or negative.

Related reading:Perhaps the most prominent classifica-
tion algorithm is Support Vector Machines; Burges provides
an excellent tutorial [6]. There are several other competitive
techniques, such as AdaBoost [50]. One effective appli-
cation of AdaBoost in vision is real-time face recognition
[58].

Regression. In regression, one attempts to learn a map-
pingy = f(x), wherex represents some input vector, and
y represents an output vector. A simple example is linear re-
gression, wheref(x) = Ax+b. Given a set of training data
{xi,yi}, these mappings are typically learned by minimiz-
ing a least-squares error criterion (e.g.

∑
i ||f(xi)− yi||2),

plus some smoothing terms (a.k.a. “regularization”). Neu-
ral networks and Radial Basis Functions are both regression
techniques, which use two specific forms for the function



f(x); . (RBFs were originally developed for scattered data
interpolation and later adopted within the learning commu-
nity). Radial Basis Functions and neural networks have al-
ready found a fair amount of use in graphics. Gaussian
Processes, a more recent technique, provide a much more
elegant way to formulate regression problems [61].

Related reading: Bishop’s book [3] provides several
chapters on neural networks and RBFs. Mackay provides
a good tutorial on Gaussian Processes [33].

Density estimation. In density estimation, one attempts
to learn a probability distribution from some training data
vectors{xi}. One assumes that the data was sampled from
some PDFp(x), and attempts to fit parameters of the PDF
that best explain the data. This problem is discussed in more
detail in Section 5.

Related reading:MacKay’s book is a good starting point
[32]. Frey and Jojic give a detailed tutorial on learning and
graphical models, with a focus on computer vision prob-
lems [15].

Relation of classification, regression, and density esti-
mation. The boundaries between these different areas is
somewhat fuzzy. For example, one can build a classifier by
first learning PDFsp0(x) andp1(x) for the two classes, and
then classifying new values by testing ifp0(x) > p1(x) for
the new data. One can learn a classifier by solving a re-
gression problem that maps from input values to positive or
negative numbers. And one can learn classifiers and regres-
sion in a probabilistic setting. For example, we can learn
the parameters of a regression model in a setting of noisy or
uncertain data, and also learn the noise model.

That being said, it is often best to use the algorithms de-
signed for a certain task — e.g. a classifier is optimized for
classification, whereas density estimation is not. Regres-
sion is most appropriate in cases where each input valuex
maps to a single output valuey (or is corrupted by Gaussian
noise). If there are multiple possibley values forx, then it
may be better to learn the conditional probability distribu-
tionp(y|x) or the joint distributionp(x,y). Density estima-
tion requires one to select an appropriate functional form for
the density — that form might be a regression model plus
noise.

Time-series analysis. An important special case of den-
sity estimation is density estimation for time-series data or
sequential data; these models are also sometimes calledDy-
namic Bayesian Networks. Perhaps the simplest model
for continuous data is the Linear Dynamical System (LDS).
For example, consider the motion of an object, with coor-
dinatesxt at time t. In an LDS, we assume that (a) our
observations ofxt are corrupted with Gaussian noise, and
(b) that the motion of the object is linear, e.g. velocity is

constant plus a Gaussian PDF. In this case, most analysis
can be done in closed form. One special case — when we
have no knowledge of future events past the current timet
— is known as the Kalman filter. However, linear dynam-
ics are an inappropriate model for many real-world cases
with complex dynamics. There are many non-linear gener-
alizations of LDS that yield tractable learning algorithms
(e.g. [18, 19, 30, 40]). For complex non-linear dynam-
ics, the technique known as particle systems is very widely
used, particularly in visual tracking and robotics. Another
well-known time-series model is the Hidden Markov Model
(HMM), which is widely used in text processing, and a con-
tinuous form in speech processing.

Related reading:These topics are widely presented in
the signal-processing literature. Rabiner’s tutorial is the
classic reference for HMMs [44]. Linear Dynamical Sys-
tems can be a very deep topic, with relations to analog cir-
cuit design, mass-spring systems, and so on, and textbooks
in these areas and ordinary differential equations can pro-
vide insight into the general properties of LDSs. Some of
this material is discussed by Forsyth and Ponce [14] as well
as the special case of Kalman filtering. Ghahramani and
Hinton describe an algorithm for learning LDSs with the
EM algorithm [17]. Welch and Bishop have written a tuto-
rial [60] and webpage focusing on Kalman filters. Several
authors have developed tractable non-linear dynamical sys-
tems [18, 19, 30, 40]. For more difficult problems, appli-
cations in computer vision and robotics use methods such
as particle filtering and related methods (e.g. Condensation
[21]).

Reinforcement learning. Reinforcement learning is a
method for decision-making agents to learn optimal solu-
tions to tasks [27]. Reinforcement learning is sometimes
used for creating robot controllers. So far, they have used
relatively little in graphics, Video Textures being the only
exception [51], and a very non-traditional application at
that.

Dimension reduction. In dimension reduction, one at-
tempts to learn a low-dimensional manifold to represent
complex data. The idea is that the observed data{xi} can
be described by some natural, continuous parameterization
x = f(z). The goal of dimension reduction (DR) is to learn
the parameterizationf , even though the manifold structure
of the dataz is unknown. DR is often used a preprocess,
or as the entire learning process (there is no sharp divi-
sion between DR and other types of learning), depending
on the difficulty of the problem and the sophistication of
the DR technique. For example, Matusik et al. [34] ap-
ply non-linear dimension reduction (NLDR) to the space of
Bidirectional Reflectance Distribution Functions (BRDFs),
in order to learn a natural parameterization for capturing,



representing and specifying BRDFs.
Principal components analysis (PCA) is an extremely

simple, linear DR method that is primarily used as a pre-
process for high-dimensional problems. This can be used as
the entirety of the learning process (e.g. as in “eigenfaces”
[28, 57]), or as a preprocess before executing a more so-
phisticated learning procedure. For example, we used PCA
as a preprocess in our Style Machines [5] technique. The
human body pose data is typically contains 30-40 degrees-
of-freedom (DOFs). However, our algorithm would learn
very slowly on such a large number of DOFs. Applying
linear dimension reduction was very fast, and, the resulting
10-dimensional space maintained the important underlying
structure of the motion data; we could then apply our more
sophisticated analysis to the linearly-reduced data.

Related reading:Many sophisticated NLDR learning al-
gorithms have been developed; a few of the more inter-
esting ones are IsoMap [55], Locally-Linear Embedding
(LLE) [49], Locally Linear Coordination (LLC) [54], Non-
Linear PCA [36, 52], and Independent Components Analy-
sis (ICA) [2].

Clustering. Clustering refers to techniques to segment-
ing data into coherenct “clusters.” Perhaps the simplest
and most widely-known method isk-means clustering
(a.k.a vector quantization) [3, 32, 16]. The Mixtures-of-
Gaussians model is a probabilistic generalization of this
[3]. Recently, a sophisticated class of techniques has
emerged under the name “spectral clustering;” these meth-
ods can discover clusters with complex shapes (e.g. see
[39, 53, 59]), although a formal understanding of such
methods has been harder to come by (although progress is
being made in this direction [35, 47]). A method known
as mean-shift has also been found to be extremely effective
in computer vision problems [8], although again without a
strong theoretical foundation (as far as I know).

Model selection. One common question that occurs when
building models is: “How big should the model be?” A
model with more parameters will fit the data better, but it
could also overfit the data. For example, we may not know
in advance how many clusters to use in a clustering prob-
lem, or how many PCA dimensions to keep. The more gen-
eral problem is: “Given a choice of two models, which one
is more appropriate to the data?” This question is addressed
by model selection techniques, most of which implement
some formalization of Occam’s Razor. Although there is
substantial controversy over which is the “right” model se-
lection algorithm (or even if one exists [11]), the use of
some technique will generally improve performance.

Related reading:Many model selection principles have
been proposed, such as Maximum Entropy [24], and Min-
imum Description Length [20]. One of the most intrigu-

ing techniques, Bayesian Model Selection [31, 32], applies
Bayesian reasoning to determine the best model to fit any
problemwithout making any additional assumptions about
which models are better; many previous methods can be
viewed as approximations to this approach, and I am cur-
rently very persuaded by the arguments for this approach.
However, this approach can be very difficult to work with
mathematically.

5. A brief tutorial in Bayesian probabilistic
reasoning and learning

“Probability theory is nothing but common sense
reduced to calculation.” — Marquis de Laplace, 1814 [29]

In this section I will give an overview of some basic con-
cepts of probabilistic reasoning and learning. I will then
show a few basic examples to illustrate these concepts. Al-
though none of these examples will be extremely sophisti-
cated, my hope is that they will suffice to make the basic
concepts and terminology clear.

The most interesting material from a graphics perspec-
tive is in Section 5.3, so you might want to skip directly
there if the following material is already famililar.

5.1. Probabilistic reasoning

The classical model for reasoning and decision-making
is pure logic, originally proposed by the ancient Greeks. In
pure logic, you begin with a set of known facts about the
world, and use logical rules to deduce additional facts. Pure
logic is a very clean and elegant way to describe reasoning.

Unfortunately, pure logic assumes that all of your
premises are known with absolute certainty, which makes
it useless as a model for how humans actually reason about
the real world, or for how computers should reason. For
example:

• When deciding whether or not to take your umbrella
with you when you go out, you need to know whether
or not it will rain. Since it is not possible to predict the
weather with absolute certainty, we normally make an
estimate of the likelihood that it will rain, by combin-
ing various sources of information such as the current
weather (is it currently overcast? windy?), the weather
forecast, yesterday’s weather, and our experience with
weather patterns. Pure logic is of no use here — it can
only be used to deduce that “it might rain,” which is of
little help in making a practical decision.

• When you meet someone new, you immediately make
hundreds of inferences (most of them unconscious)
about who this person is and what their emotions and



goals are. You make these decisions based on the per-
son’s appearance, they way they are dressed, their fa-
cial expressions, their actions, the context in which you
meet, and what you have learned from previous expe-
rience with other people. Of course, you have no con-
clusive basis for making quick opinions (e.g. the pan-
handler you meet on the street might be a method actor
preparing for a role). However, we need to be able to
make judgements about other people based on incom-
plete information; otherwise, normal interpersonal in-
teraction would be impossible (e.g. how do you really
knowthat everyone isn’t out to get you?).

Probability theory provides the tools necessary for rea-
soning under uncertainty. The central idea is to model un-
certainty with probability distributions. Every variable in
our model of the world is treated as not having a known
value, but having a range of possible values, some more
likely than others. In other words: every variable has a fixed
value, but we do not know these values, so we must model
their range of possible values. Probabilities are subjective,
in that they reflect an individual’s level of uncertainty given
their knowledge and assumptions, and may change over
time as new information is acquired. This mode of reason-
ing is usually known asBayesian statistics, in contrast to
frequentist(or “orthodox”) statistics which is more com-
monly taught in statistics classes and in the sciences. More
on that distinction in a moment.

A coin-flipping example. To introduce a concrete exam-
ple, suppose we observe a coin being flipped. LetH be a
variable that indicates the result of the flip:H = heads
if the coin lands on its head, andH = tails otherwise.
Although this may seem like familiar territory at first, if
your experience is primarily with frequentist statistics, it
will soon be quite different from what you are used to.

Suppose you flip a coin, what is the probability that the
coin ends up heads? This probability should be some real
numberh, 0 ≤ h ≤ 1. For most coins, we would say
h = .5. What does this number mean? The numberh is a
representation of our belief about the possible values ofH.
Some examples:

h = 0 we are absolutely certain the coin will land tails
h = 1/3 we believe that tails is twice as likely as heads
h = 1/2 we believe heads and tails are equally likely
h = 1 we are absolutely certain the coin will land heads

Probabilities can also describe events that have not yet hap-
pened, or, more generally, our belief are whether certain
statements are true or false. For example, we can use the
probability distributionp(h) to describe our beliefs about
what biases of the coin are more likely. We can talk about
the probability that the stock market will go up next month,

that a lone gunner shot JFK, or that you forgot to turn off the
stove when leaving your house. A “probability” is nothing
more than a mapping from events to real numbers, obeying
a few basic rules.

If you are used to the thinking about probabilities as fre-
quencies of repeated events, the above view may seem arbi-
trary at first. However, Cox [9] has shown thatanymapping
of events to real values that obeys a few intuitive properties
must lead to the exact same familiar axioms of probabil-
ity theory. In other words, suppose you are uncomfortable
using the word “probability” in this highly-subjective way.
But suppose that you would like to describe reasoning under
uncertainty with a system based on real numbers anyway.
As long as your system obeys a few simple requirements
— and these rules are hard to argue against — then Cox
showed that you will have, in fact, rederived basic probabil-
ity theory, and will be using the same Bayesian reasoning
as everyone else, whether or not you like to call it that. See
the first two chapters of Jaynes’ book [23] for a detailed
discussion of this point.

Formally, we denote the probability of the coin coming
up heads asP (H = heads), orP (H) for short. In this case,
P (H = heads) = h. In general, we denote the probability
of a specific eventevent asP (event).

Frequentist statistics. In contrast to the above view, fre-
quentist (or “orthodox”) statistics defines probabilities in
terms of repeated events. For example, suppose we flip a
coin many times; what proportion of those trials will land
heads? In the frequentist view, the probability of heads is
defined as the limit of this ratio as the number of trials
goes to infinity; one generally assumes absolute certainty
about the other variables in the experiment. This definition
of probability has had success in areas where repeated tri-
als are possible, such as in biology and chemistry, where
one can perform thousands of repeated tests on chemicals
or plants. However, in cases where one cannot repeat trials,
the frequentist view is useless for modeling uncertainty. For
example, we make judgements based on meeting someone
for the first time despite not having thousands of interac-
tions; similarly, in graphics, we would like to synthesize
data from small amounts of user input.

There is often confusion in the distinction between
Bayesian and Frequentist statistics, since they both yield
the same estimates in some very simple cases. However, in
most nontrivial examples, frequentist methods provide rela-
tively little value — even the simple coin-flipping reasoning
that I will describe in the next section cannot be modeled in
the Frequentist view. For an entertaining (though one-sided)
history of the debates between Bayesian and Frequentist
statistics, see Jaynes [23] (Chapter 16). Minka [37] gives
examples of problems with frequentist methods that occur
in simple cases.



Although Bayesian methods are very strong in the learn-
ing literature, frequentist methods remain useful and widely
used in learning — the popular Support Vector Machine
(SVM) architecture is frequentist1. However, these meth-
ods are primarily concered with classification, which, in my
opinion, is of much less interest for graphics applications
than is density modeling. (In many of the sciences, I am of
the impression that frequentist methods remain dominant,
as evidenced by the preeminence of significance testing).

Fuzzy logic. Fuzzy logic became fashionable in the
1980’s as a way to model a notion of “partial” set member-
ship. In my opinion, this formulation ultimately attempts
to express the notion of uncertainty, but does so clumsily;
Bayesian methods express it much more elegantly, while
also modeling continuously-valued data. Fuzzy logic also
appears to be problematic mathematically [12].

5.2. A more detailed discrete example

If we flip a coin and observe the result, then we can be
pretty sure that we know the value ofH; there is no real
need to model the uncertainty in this measurement. How-
ever, suppose we do not observe the coin flip, but instead
hear about it from a friend, who may be forgetful or un-
trustworthy. LetF be a variable indicating how the friend
claims the coin landed, e.g.F = heads means the friend
says that the coin came up heads. How can we make our
own estimate of what happened? As we shall see, proba-
bilistic reasoning can obtain quantitative values that corre-
spond directly to our common sense reasoning about likely.

Suppose we know something about our friend’s typical
behavior. We can represent our beliefs with the following
probabilities: P (F = heads|H = heads) represents the
likelihood that the friend says “heads” when the the coin
landed heads, and so on. Because the friend can only say
one thing, we know

P (F = heads|H = heads) + P (F = tails|H = heads) = 1
P (F = heads|H = tails) + P (F = tails|H = tails) = 1

If our friend always tells the truth, then we knowP (F =
heads|H = heads) = 1 andP (F = tails|H = heads) = 0.
If our friend usuallylies, then, for example, we might have
P (F = heads|H = heads) = .3

Knowing these probabilities and knowingh allows us to
make useful estimates of the coin flip. Supppose our friend
says that the coin landed “heads.” What is our estimate of
the actual state of the coin? In order to make this estimate,
we can computeP (H = heads|F = heads), the likeli-
hood that the coin landed headsgiven that our friend said
it landed heads. By the axioms of probability theory, we

1Although there is also a Bayesian derivation of SVMs [22].

know thatP (a, b) = P (a|b)P (b) for any random variables
a andb. (P (a, b) denotes the joint probability ofa andb;
that is, the probability that they both occur). Hence,

P (H,F) = P (H|F)P (F) = P (F|H)P (H) (1)

Solving forP (H|F) gives:

P (H|F) =
P (F|H)P (H)

P (F)
(2)

(P (H,F) is the joint probability over both events occur-
ring). Using this formula allows us to estimate a distribu-
tion over the actual value ofH given all of the evidence
that we have (in this case,F). In fact, this is an important
formula, known asBayes’ Rule— it allows us tomake in-
ferences about the world, based on observations of it, while
incorporating all the uncertainty in the system.

In our case, we are interested in determining:

P (H = heads|F = heads) = (3)

P (F = heads|H = heads)P (H = heads)
P (F = heads)

We can also expand the denominator using the axioms of
probability:

P (F = heads) = P (F = heads,H = heads) +
P (F = heads,H = tails) (4)

which can then be expanded using Equation 1. All of the
terms ofP (H = heads|F = heads) are known; now, ob-
serve what happens mathematically in different situations
when our friend says “heads”:

• If our friend is totally trustworthy (P (F = heads|H =
heads) = 1), then we know with certainty that the coin
landed heads, becauseP (H = heads|F = heads) =
(1 + 0)/(1 + 0) = 1.

• If our friend always lies (P (F = heads|H = heads) =
0), then we know that the coin landed tails, by similar
reasoning.

• If our friend behaves completely randomly (P (F =
heads|H = heads) = .5), thenP (H = heads|F =
heads) = .5h/(.5h + .5(1 − h)) = h = P (H =
heads). In this case, what our friend says gives no in-
formation about how the coin landed, and our uncer-
tainty about its state is the same as if our friend had
said nothing.

• If our friend sometimes tells the truth, but we know
with certainty that the coin lands headsh = 1, then
P (H = heads) = 1; in this case, since we know that
the coin can only land heads, what the friend says is
irrelevant.



• Suppose our friend usually tells the truth, e.g.P (F =
heads|H = heads) = .7 and P (F = heads|H =
tails) = .3. In this case,P (H = heads|F = heads) =
.7h/(.7h + .3(1−h)) = .7h/(.4h + .3). So ifh = .5,
thenP (H = heads|F = heads) = .7. If h = .8, then
P (H = heads|F = heads) ≈ .91.

In each of these cases, we combine the information pro-
vided by our friend, our prior assumptions about the friend’s
trustworthiness, and the coin’s bias to obtain a probability
estimate of whether the coin actually landed heads. The re-
sulting distributionqualitatively matches our common sense
reasoning.We can estimate whether the coin landed heads
simply by evaluating whetherP (F = heads|H = heads) >
.5; if it is, then the coin is more likely to be heads. However,
P (F = heads|H = heads) gives us more than just this es-
timate, it also expresses our uncertainty in the estimate. If
P (F = heads|H = heads) = .99 then we will guess heads
with great certainty; ifP (F = heads|H = heads) = .55,
then, even though we would say that the coin probably
landed heads, we are not very sure about this. These uncer-
tainties can be used in decision-making (should you place a
bet based on the coin toss?) and in further inferences (for
other unknown events that depend on the coin toss).

The basic elements of Bayes Rule are used so often, that
they have all been given names:

P (H|F)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (F|H)

prior︷ ︸︸ ︷
P (H)

P (F)︸ ︷︷ ︸
evidence

(5)

In the general case,H is some variable we wish to estimate,
given dataF. Theprior distribution describes our assump-
tions aboutH before observing the dataF. The likelihood
distribution describes the likelihood ofF given H — it
reflects our assumptions about how the dataH was gener-
ated. Theposterior distribution describes our knowledge
of H, incorporating both the data and the prior. In general,
when people discuss their “priors,” they are discussing prior
assumptions made about the problem that is separate from
the data at hand. The meaning of theevidenceis somewhat
more esoteric (it can be used for model selection [31, 32]);
this variable is often ignored, since it is constant with re-
spect to the unknown variable.

Learning. We can use these tools to learn a model of the
world. Suppose we wish to learnh by flipping a coin 100
times and observing the resultsHi for i ∈ [1..100]. Sup-
posek of the coin flips landed heads, and100−k were tails.
We now will treath as the random variable to be estimated,

and assume that we have auniform prior :2 p(h) = 1.

p(h|H1, ...,H100) =
P (H1, ...,H100|h)p(h)

P (H1, ...,H100)
(6)

=
∏

i P (Hi|h)p(h)
P (H1, ...,H100)

(7)

=
.5hk(1− h)100−k

P (H1, ...,H100)
(8)

This form gives a probabilty distribution overh that ex-
presses our uncertainty over whath might be, and can be
used we making predictions about later coin-tosses. Since
maintaining this distribution is often unwieldly, and it is
easier simply to compute a single estimate ofh by taking its
most-likely value:ĥ = arg max p(h|H1, ....,H100). This
is called theMaximum a Posteriori (MAP) estimate ofh
(since it maximizes the posterior). We compute this esti-
mate by setting∂p(h|H1, ...,H100)/∂h = 0 and solving
for h, yielding the intuitive estimatêh = k/100. (Note that
we made use of the fact thatP (H1, ...,H100) is constant
with respect toh and can be ignored).

The general form of Bayes’ Rule for learning is:

P (model|data)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (data|model)

prior︷ ︸︸ ︷
P (model)

P (data)︸ ︷︷ ︸
evidence

(9)

wheredata is the data that we observed, andmodel denotes
parameters of a model we wish to learn. In other words,
MAP estimation entails choosing themodel that assigns
highest probability to thedata, biased by our assumptions
(if any) about whichmodel is more likely.

Very often, we assume “uniform priors,” in which
P (model) is a uniform distribution. In this case,
P (model|data) ∝ P (data|model), and estimating the
model amounts to maximizing the likelihood function. This
estimate of the model is called theMaximum Likelihood
(ML) estimate; it is simply the MAP estimate under uni-
form priors. In this case, no preference is given to any spe-
cific models during estimation.3

So far, we have obtained a conventional result for esti-
matingh. However, the power of the approach presented
here is that we can easily generalize to more difficult situa-
tions, when our observations our noisy, or where there are
multiple sources of information:

2Note thatp(h) = 1 is a uniform probability distribution; it states that
all values ofh ∈ [0, 1] are equally likely. It shouldnot be read as “the
probability ofh.” For example, the probability thath lies in the interval0

to .3 is
∫ .3

0
p(h)dh = .3. The lowercasep is used inp(h) becauseh is a

real-valued variable rather than a discrete variable.
3However, it should be noted that uniform priors are not invariant to

reparameterizing the model.



• Suppose we wish to estimateh based only on what
our friend tells us about 100 coin flips, rather than ob-
serving them directly. In this case, we do not observe
Hi directly, but rather indirectly through the friend.
Again, we can solve for the optimalh by plugging
in the elements of the model top(h|H1, ...,H100) and
optimizing. In this case, our final uncertainty abouth
will be increased if our friend is not always reliable,
and may be skewed towardsh = 1 or h = 0, if we
believe the friend has a preference for lying one way
or another.

• Suppose we get two different sources of information
about each coin flip; perhaps our friend tells us some-
thing about every coin flip, and another, more reliable
friend tells us something about just a few of those coin
flips. We can merge these two sources of information
— and will have less uncertainty for data where we get
the more reliable information — to estimateh.

5.3. Learning Gaussians

The above examples were all given in the discrete case;
in graphics, we are generally interested in continuous distri-
butions. In this case, we wish to learn from a collection of
training data vectorsX = {x1,x2, ...,xn} — these could
represent body poses, face shapes and expressions, radiance
transfer coefficients, or any other continuously-valued data.
Perhaps the simplest and most general model of continuous
data is the Gaussian probability distribution function (PDF):

p(x|µ, φ) =
1√

(2π)d|φ|
e−(x−µ)T φ−1(x−µ)/2 (10)

whered is the dimensionality of a data vector. In this case,
we model the data by assuming that it was randomly sam-
pled from a Gaussian PDF with some mean vectorµ and
d× d covariance matrixφ. There are many good reasons to
use Gaussians in situations where we cannot or do not want
to make any further assumptions (see [3], Section 2.1.2).

As an example, consider the head-shape modeling de-
scribed by Blanz and Vetter [4]. In this case, a single per-
son’s head is represented by a parameter vectorx, contain-
ing the 3D positions of a set of facial features and the colors
of a texture map. Blanz and Vetter assumed that human
head shapes and textures are “generated” by random sam-
pling from a Gaussian PDF4 . We are given a set ofN head
shapes, and would like to learn the parameters of the Gaus-
sian (µ, φ). As described in the previous section, learning
according theMaximum A Posteriori principle requires
computing the values ofµ andφ that maximizep(µ, φ|X)

4Due to the large size of the data vectors, Blanz and Vetter use PCA to
represent the Gaussian PDF. Note that there is a close connection between
PCA and Gaussian distributions, e.g. see [48].

with respect to these variables. In other words, given the
dataX, we would like to compute the parameters of the
Gaussian that ismost likelyto have generated the data. We
will further assume uniform priors. In this case, the MAP
estimate is equivalent to maximizing the likelihood:

p(µ, φ|X) ∝ p(X|µ, φ) (11)

which follows from Bayes Rule. Since we assume that the
head shapes are independently sampled:

p(X|µ, φ) =
∏

i

p(xi|µ, φ) (12)

A very common trick for optimizing this function is to in-
stead optimize

L(µ, φ) ≡ − ln p(X|µ, φ) (13)

The functionL(µ, φ) is usually known as the “negative log-
likelihood,” for reasons which should be obvious. Sinceln
is a monotonically-increasing function, minimizingL(µ, φ)
is equivalent to maximizingp(µ, φ|x). We could use either
one, but the negative log-likelihood is usually much easier
to work with. SimplifyingL(µ, φ) gives

L(µ, φ) = −
∑

ln p(xi|µ, φ) (14)

=
∑

i

(xi − µ)T φ−1(xi − µ)/2 + (15)

N

2
ln |φ|+ Nd

2
ln(2π) (16)

Solving for µ and φ by setting∂L(µ, φ)/∂µ = 0 and
∂L(µ, φ)/∂φ = 0 gives the maximum likelihood estimates:

µ̂ =
1
N

∑
i

xi (17)

φ̂ =
1
N

∑
i

(xi − µ̂)(xi − µ̂)T (18)

The ML estimates make intuitive sense: we estimate the
Gaussian’s mean to be the mean of the data, and the Gaus-
sian’s covariance to be the covariance of the data. Max-
imum likelihood estimates usually make sense intuitively.
This is very helpful when debugging your math — I have
found bugs in derivations on a few occasions simply be-
cause the ML estimates did not look right.

TheL(µ, φ) can be viewed as an energy function to be
optimized forµ andφ. Inspecting the terms ofL(µ, φ) can
be enlightening. The first term measures the fit of the data
to the model. Note that the first and second terms must be
balanced to optimizeφ: the first term prefers large covari-
ances (φ →∞), whereas the second term penalizes increas-
ing φ. The second term can be thought of as a penalty for



learning too “vague” a model — such a penalty is built-in
to Bayesian learning methods in general [32]. We did not
have to manually specify this penalty term — it is a conse-
quence of the fact that the likelihood function is required to
be a normalized PDF.

Once we have estimates ofµ andφ, we have a descrip-
tion of how “likely” any given face model is. For example,
suppose we wish to estimate a face shape from a given im-
age of someone’s face. We assume that the face was cre-
ated by selecting some viewing and lighting parametersV,
rendering an imageI of the facex, and adding zero-mean
Gaussian noise with varianceσ2. In other words,

p(I|x,V, σ2) =
∏
(x,y)

1
2πσ2

e−
1

2σ2 (I(x,y)−Irendered (x,y,x))2

where Irendered(x, y,x,V) represents a rendering of the
facex at pixel(x, y) with pose and lighting parametersV.

To solve for the head shape and pose, we wish to esti-
mate unknownsV andx by maximizingp(x,V|I, µ, φ).
Assuming uniform priors onV, and assuming thatx andV
are independent, we have

p(x,V|I, µ̂, φ̂, σ2) =
p(I|x,V, σ2)p(x|µ̂, φ̂)p(V)

p(I)
(19)

Again, maximizing this is equivalent to minimizing the neg-
ative log-likelihood :

L(x,V) = − ln p(x,V|I, µ̂, φ̂, σ2) (20)

= (x− µ̂)T φ̂−1(x− µ̂)/2 + (21)
1

2σ2

∑
(x,y)

(I(x, y)− Irendered(x, y,x,V))2

(Terms that are constant with respect tox and V have
been dropped.) Observe that this energy function over head
shapes includes two terms: a facial “prior” that measures
how “face-like” our 3D reconstruction is, and an image-
fitting term. Although we could have arrived at this energy
function without thinking in probabilistic terms, the advan-
tage of the Bayesian approach is that we learned theµ andφ
parameters of the energy function from data — we did not
have to tune those parameters. Optimizing this objective
form is more difficult than the previous one, and requires an
iterative solver [4, 46].

It would also be straightforward to learn theσ2 param-
eter from one or more images by optimizingp(x,V, σ2|I).
Writing out the terms of the negative log-likelihood in this
case, we get an optimization similar to the above fitting, but,
with σ2 as a free parameter, and a penalty term proportional
to lnσ2 that penalizes large image noise estimates. If we do
this, there are nowno parameters to tune in the energy func-
tion; all parameters are learned from the input data. This is

one of the many benefits of the Bayesian approach — with-
out this approach, you might come up with an optimization
similar to the above, but you would have the tedious and
difficult task of manually tuning the parametersµ, φ and
σ2. (Again, the caveats regarding the need for adequate ini-
tialization in the training, and the need for adequate training
data apply.)

Not only do they require less user effort, automatically-
learned parameters often perform better in vision tasks than
hand-tuned parameters, since setting such parameters by
hand can be very difficult. The quadratic error function
L(x,V) for faces may have thousands of parameters, which
would be impractical to set by hand. For example, in a
recent project on non-rigid modeling from video, we used
maximum likelihood to estimate 3D shapes, non-rigid mo-
tion, image noise, outlier likelihoods, and visibility from an
image sequence [56]. We found that learning these param-
eters always gave better results than the manually-specified
initial values.

Note that the probabilistic model is more expressive than
an energy function, since it can be used to randomly gen-
erate data as well. For example, we can randomly sam-
ple heads by sampling fromp(x|µ̂, φ̂). Given some user-
specified constaints on a shape model, we can sample heads
that satisfy that constraint.

5.4. Marginalization

One subtle but interesting technical point is that the
MAP and ML learning principles are heuristics that discard
knowledge. An “ideal” Bayesian learner would never make
these approximations, but would always keep around all un-
certainty. For example, consider the facial modeling exam-
ple in Section 5.3. Given the face shape dataX, we have
a distributionp(µ, φ|X) over the possible parametersµ and
φ. We still don’t know for sure what these values are, and to
pick specific ML estimates of them is to discard the uncer-
tainty that we have in these values. Instead, the ideal option
would be to keep around this uncertainty, and use it when
making future decisions. For example, when estimating a
new face shape from an image, the posterior distribution is

p(x,V|I,X, σ2) =
∫

p(x,V, µ, φ|I, σ2)dµdφ (22)

=
∫

p(x,V|µ, φ, I, σ2)p(µ, φ|X)dµdφ

In other words, we marginalize out the model parameters5.
We could then use this posterior distribution for any further
tasks regarding this new face. If we need to pick a single

5One subtlety is that it is necessary to define the priorsp(µ, φ) in such
a way that is it normalizable, in order for the integral to be finite [32]. Nor-
mally, we would use a prior that is uniform over an extremely large extent.
This is detail that usually be ignored when we are not marginalizing.



estimate of the face (for example, for rendering from a new
view), we could use ML estimates ofx andV.

In most cases, people use MAP or ML estimates because
the full integration problem above is often quite compli-
cated, difficult, or slow. Quite often, the MAP/ML estimates
are good enough. The full Bayesian solution can often give
better results, however, since it uses more of the information
present in the training data.

One informative case to consider is learning a Gaussian
distribution from only a single data point [37]. In this case,
the posterior distributionp(φ, µ|x) is uniform with respect
to the variance, which makes sense — a single data point
gives no information about the variance of the Gaussian.
Computing the ML estimate in this case makes no sense,
since it makes no sense to attempt to compute the “best” es-
timate from a uniform distribution. However, the posterior
in Equation 22 is still meaningful in this case; marginaliza-
tion handles this degenerate case without requiring special
treatment. Of course, this model is most useful when we
have multiple training face shapes.

In general, we can integrate out some unknown pa-
rameters when estimating others [32]. Integrating out pa-
rameters allows us to get more reliable estimates of the
other parameters that we are most interested in. In many
cases, these integrals cannot be optimized in closed-form,
and variational optimization — usually, the Expectation-
Maximization (EM) algorithm — is used for optimization
[10, 15, 38].

At this point, it is worth noting that some authors in
learning and vision use the word “Bayesian” in their pa-
per titles and algorithms in different ways. If you see a pa-
per title “Bayesian X,” it may mean that some parameters
are being marginalized out (which is considered better than
solving for them), but it could also just mean that the paper
is introducing a probabilistic formulation to the problem.

5.5. Generative models and graphical models

The approach of learning a model by maximizing the
probability of the model given the data is not limited to
Gaussians. As discussed in more detail, a general strategy
for probabilistic reasoning is to write a probabilistic model
that describes how the data is generated, and then solve for
the parameters of this model from some data by maximum
likelihood.

In this section, I’ll briefly describe two ways of viewing
probabilistic modeling that may sound trivial at first, but
are extremely useful in thinking about and describing such
problems.

Up to now, most graphics research that uses learning
methods at all uses them as a black box, e.g. a classification
subroutine, a clustering subroutine, a dimension reduction
subroutine, etc. This makes the most sense when a problem

may be broken into subtasks that can be solved separately.
However, this is not possible in some cases, for example,
when a problem involves many interdependent unknown
variables that cannot easily be separated. In this case, it is
natural to formulate a single energy function or probability
model that can be used to optimize all parameters simulta-
neously.

When formulating such problems, it is useful to view
them in the framework ofgenerative models. In a gen-
erative model, one describes the variables in a problem as
being generated by a random sampling process. For exam-
ple, in the facial modeling example in Section 5.3, suppose
we wanted to generate a random facial photograph accord-
ing to a learned model: first, the parameters of a person’s
face are generated by randomly sampling from “face space”
(i.e. the Gaussian distribution over face shape and texture);
next, pose and lighting parameters are uniformly sampled
from the space of possible poses and lightings; the image
is finally generated by projecting and lighting the face, and
adding random image noise. In the generative view of this
problem, we imagine that the original data was created by
exactly this process, i.e. the data arose by random sampling
from p(data|model). When we wish to describe a model
for a new problem, we write down all of the variables, and
the probability models that describe how they are gener-
ated/sampled, and which variables are generated as a func-
tion of which others. Although this may not seem like it
has changed the problem much, this formalism provides a
useful way of thinking and talking about probability mod-
els. It is sometimes tempting to avoid a generative formu-
lation, since one often doesn’treally believe that the gener-
ative model accurately describes how the data is generated
— it is a simplified model of the world. However, with-
out a generative model, there can be substantial confusion
between the elements of the model, the problem statement,
and the algorithm actually used. Stating a generative model
clarifies thinking about the problem and helps avoid some
of the confusion. In my experience, once you start thinking
in terms of generative models, it is difficult to stop.

An important special class of generative models are
graphical models[15, 26, 32, 41]. In graphical models, one
represents the variables in a model visually with a graph.
Graphical models also go under a few other names, includ-
ing Bayesian Networks, andBelief Networks, and, con-
fusingly, are occasionally referred to as neural networks.

The graphical model formalism may be viewed as the
marriage of probability theory with graph theory. Although
it does not change the fundamental structure of a problem,
it is extremely useful for visualizing the structure, and for
communicating it. It provides a sort of flowchart for the
variables in the generative model. Additionally, many al-
gorithms are easiest to describe and understand in terms of
graph operations [26, 41, 62].



6. Caveats

A few words of caution:

• You can’t learn something from nothing. Your algo-
rithm only “knows” what (a) you tell it explicitly, and
(b) its models can deduce from the data. If you learn a
Gaussian PDF over XYZ marker data, you will not get
a very useful model of human motion. You will get a
much better model working from joint angles.

• As tempting as it is to use a learning algorithm as a
“black box,” the more you understand about the inner
workings of your model, the better. If you understand
your formalisms well, you can predict when it will and
won’t work, and can debug it much more effectively.
Of course, if you find that some method works as a
“black box” for a given problem, then it is still useful.

• On a related note, it always pays to understand your
assumptions and to make them explicit. For exam-
ple, human faces are notreally generated by random
sampling from a Gaussian distribution — this model
is an approximation to the real process, and should
be understood as such. (Making your assumptions ex-
plicit and discussing the advantages and disadvantages
is also very important in communicating your results
to other people.)

• There are times when trying to define formal problem
statements and to properly optimize objective func-
tions or posterior likelihoods can impede creativity.
The graphics community has a long history of being
driven by clever, powerful hacks. Sometimes, clever
hacks end up being more useful than their formal coun-
terparts. On the other hand, clever hacks can some-
times lead to deeper understanding of a problem, and
more formal and principled generalizations that would
not be possible with hacks alone.

7. Research problems

The future is bright for applying learning to graphics
problems, both in research and applications to industry and
art. In the future, I expect that we will see more examples of
directly modeling in a Bayesian setting in graphics. I expect
that some of the major themes of research will be:

• Designing good models and algorithms for various
concepts used in graphics

• Novel synthesis and sampling algorithms for learned
models

• Discovering which models work will for which prob-
lems

• Integrating learned models and learning algorithms
with user interfaces

• Providing artistic control in a system that uses learning
in some components

• Interactive and real-time learning and synthesis
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Rätsch. Kernel PCA and de-noising in feature spaces.
In Proc. NIPS. MIT Press, 1999.



[37] Thomas Minka. Pathologies of Ortho-
dox Statistics, 2001. Unpublished note.
http://www.stat.cmu.edu/∼minka/papers/pathologies.html.

[38] Radford M. Neal and Geoff E. Hinton. A view of the
EM algorithm that justifies incremental, sparse, and
other variants. In M. I. Jordan, editor,Learning in
Graphical Models, pages 355–368. Kluwer Academic
Publishers, 1998.

[39] Andrew Y. Ng, Michael Jordan, and Yair Weiss. On
Spectral Clustering: Analysis and an algorithm. In
Proc. NIPS 14. MIT Press, 2002.

[40] Vladimir Pavlovíc, James M. Rehg, and John Mac-
Cormick. Learning Switching Linear Models of Hu-
man Motion. InProc. NIPS 13. MIT Press, 2001.

[41] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufman, 2nd edition, 1997.

[42] Ken Perlin. An Image Synthesizer.Computer Graph-
ics (Proceedings of SIGGRAPH 85), 19(3):287–296,
July 1985.

[43] Ken Perlin and Athomas Goldberg. IMPROV: A Sys-
tem for Scripting Interactive Actors in Virtual Worlds.
In Proceedings of SIGGRAPH 96, pages 205–216,
August 1996.

[44] L. R. Rabiner. A tutorial on hidden Markov mod-
els and its application to speech recognition.IEEE,
17:257–286, February 1989.

[45] Rajesh P. N. Rao, Bruno A. Olshausen, and Michael S.
Lewicki, editors. Probabilistic Models of the Brain:
Perception and Neural Function. MIT Press, 2002.

[46] Sami Romdhani, Volker Blanz, and Thomas Vetter.
Face Identification by Fitting a 3D Morphable Model
using Linear Shape and Texture Error Functions. In
Proc. ECCV 2002, pages 3–19, May 2002.
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