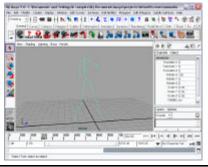
Introduction to Bayesian Learning

Aaron Hertzmann University of Toronto SIGGRAPH 2004 Tutorial

Evaluations: www.siggraph.org/courses_evaluation

CG is maturing ...

... but it's still hard to create



... it's hard to create in real-time

Data-driven computer graphics

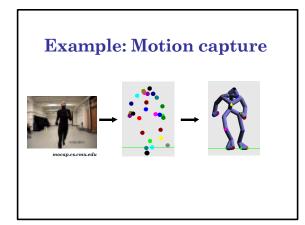
What if we can get models from the real world?

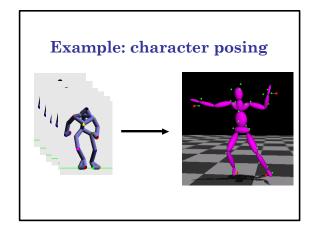
Data-driven computer graphics

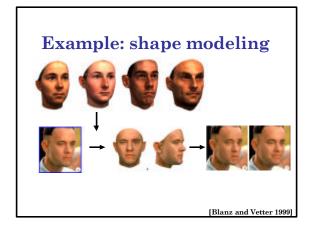
Three key problems:

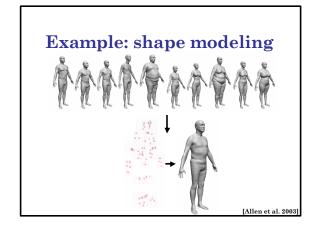
- · Capture data (from video, cameras, mocap, archives, ...)
- · Build a higher-level model
- · Generate new data

Ideally, it should be automatic, flexible









Key problems

- · How do you fit a model to data?
 - -How do you choose weights and thresholds?
 - -How do you incorporate prior knowledge?
 - -How do you merge multiple sources of information?
 - -How do you model uncertainty?

Bayesian reasoning provides solutions

Bayesian reasoning is ... Probability, statistics, data-fitting

Bayesian reasoning is ...

A theory of mind

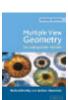
Bayesian reasoning is ...

A theory of artificial intelligence

[Thrun et al.]

Bayesian reasoning is ...

A standard tool of computer vision



and ...

Applications in:

- · Data mining
- · Robotics
- · Signal processing
- · Bioinformatics
- Text analysis (inc. spam filters)
- · and (increasingly) graphics!

Outline for this course

3:45-4pm: Introduction

4pm-4:45: Fundamentals

- From axioms to probability theory
- Prediction and parameter estimation

4:45-5:15: Statistical shape models

- Gaussian models and PCA
- Applications: facial modeling, mocap

5:15-5:30: Summary and questions

More about the course

- Prerequisites
 - -Linear algebra, multivariate calculus, graphics, optimization
- · Unique features
 - -Start from first principles
 - -Emphasis on graphics problems
 - -Bayesian prediction
 - -Take-home "principles"

Bayesian vs. Frequentist

- Frequentist statistics
 - -a.k.a. "orthodox statistics"
 - Probability = frequency of occurrences in infinite # of trials
 - -Arose from sciences with populations
 - -p-values, t-tests, ANOVA, etc.
- Bayesian vs. frequentist debates have been long and acrimonious

Bayesian vs. Frequentist

- "In academia, the Bayesian revolution is on the verge of becoming the majority viewpoint, which would have been unthinkable 10 years ago."
- Bradley P. Carlin, professor of public health, University of Minnesota
 New York Times, Jan 20, 2004

Bayesian vs. Frequentist

If necessary, please leave these assumptions behind (for today):

- · "A probability is a frequency"
- "Probability theory only applies to large populations"
- "Probability theory is arcane and boring"

Fundamentals

What is reasoning?

- How do we infer properties of the world?
- · How should computers do it?

Aristotelian logic

- If A is true, then B is true
- A is true
- · Therefore, B is true

A: My car was stolen

B: My car isn't where I left it

Real-world is uncertain

Problems with pure logic:

- Don't have perfect information
- · Don't really know the model
- · Model is non-deterministic

So let's build a logic of uncertainty!

Beliefs

Let B(A) = "belief A is true" $B(\neg A)$ = "belief A is false"

e.g., A = "my car was stolen" B(A) = "belief my car was stolen"

Reasoning with beliefs

Cox Axioms [Cox 1946]

- 1. Ordering exists
 - e.g., B(A) > B(B) > B(C)
- 2. Negation function exists
 - $B(\neg A) = f(B(A))$
- 3. Product function exists
 - $B(A \dot{\mathbf{U}} Y) = g(B(A|Y),B(Y))$

This is all we need!

The Cox Axioms uniquely define a complete system of reasoning:
This is probability theory!

Principle #1:

"Probability theory is nothing more than common sense reduced to calculation."

- Pierre-Simon Laplace, 1814

Definitions

P(A) = "probability A is true" = B(A) = "belief A is true"

 $P(A) \in [0...1]$

P(A) = 1 iff "A is true"

P(A) = 0 iff "A is false"

P(A|B) = "prob. of A if we knew B"

P(A, B) = "prob. A and B"

Examples

A: "my car was stolen" B: "I can't find my car"

$$P(A) = .1$$

 $P(A) = .5$
 $P(B \mid A) = .99$
 $P(A \mid B) = .3$

Basic rules

Sum rule:

$$P(A) + P(\neg A) = 1$$

Example:

A: "it will rain today"

$$p(A) = .9 - p(\neg A) = .1$$

Basic rules

Sum rule:

$$\dot{\mathbf{a}}_i P(A_i) = 1$$

when exactly one of A must be true

Basic rules

Product rule:

$$P(A,B) = P(A | B) P(B)$$
$$= P(B | A) P(A)$$

Basic rules

Conditioning

Product Rule

P(A,B) = P(A|B) P(B)

 \rightarrow P(A,B|C) = P(A|B,C) P(B|C)

Sum Rule

 $\dot{\mathbf{a}}_{i} P(A_{i}) = 1 \rightarrow \dot{\mathbf{a}}_{i} P(A_{i} | B) = 1$

Summary

Product rule P(A,B) = P(A | B) P(B)Sum rule $\dot{\mathbf{a}}_i P(A_i) = 1$

All derivable from Cox axioms; must obey rules of common sense Now we can derive new rules

Example

A = you eat a good meal tonight

B = you go to a highly-recommended restaurant

¬B = you go to an unknown restaurant

Model: P(B) = .7, P(A | B) = .8, $P(A | \neg B) = .5$

What is P(A)?

Example, continued

Model: P(B) = .7, P(A | B) = .8, $P(A | \neg B) = .5$

$$\begin{split} 1 &= P(B) + P(\neg B) & \text{Sum rule} \\ 1 &= P(B \mid A) + P(\neg B \mid A) & \text{Conditioning} \\ P(A) &= P(B \mid A)P(A) + P(\neg B \mid A)P(A) \\ &= P(A,B) + P(A,\neg B) & \text{Product rule} \\ &= P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B) & \text{Product rule} \\ &= .8 .7 + .5 (1-.7) = .71 \end{split}$$

Basic rules

Marginalizing

$$P(A) = \dot{a}_i P(A, B_i)$$

for mutually-exclusive B_i

e.g., $p(A) = p(A,B) + p(A, \neg B)$

Principle #2:

Given a complete model, we can derive any other probability

Inference

Model: P(B) = .7, P(A | B) = .8, $P(A | \neg B) = .5$

If we know A, what is P(B|A)? ("Inference")

P(A,B) = P(A | B) P(B) = P(B | A) P(A)

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)} = .8.7 / .71^{-3}.79$$

Bayes' Rule

Inference

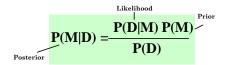
 $\frac{Bayes\ Rule}{P(M|D)} = \frac{P(D|M)\ P(M)}{P(D)}$ Posterior

Principle #3:

Describe your model of the world, and then compute the probabilities of the unknowns given the observations

Principle #3a:

Use Bayes' Rule to infer unknown model variables from observed data



Discrete variables

Probabilities over discrete variables

 $C \in \{ Heads, Tails \}$

P(C=Heads) = .5

P(C=Heads) + P(C=Tails) = 1

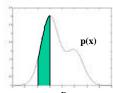
Continuous variables

Let $x \in \mathbb{R}^{\,N}$

How do we describe beliefs over x? e.g., x is a face, joint angles, ...

Continuous variables

Probability Distribution Function (PDF) a.k.a. "marginal probability"



 $P(a \le x \le b) = \int_a^b p(x) dx$

Notation: P(x) is prob p(x) is PDF

Continuous variables

Probability Distribution Function (PDF) Let $x \in \mathbb{R}$

p(x) can be any function s.t.

$$\int_{-\infty}^{\infty} p(x) dx = 1$$
$$p(x) \ge 0$$

Define $P(a \le x \le b) = \int_a^b p(x) dx$

Uniform distribution

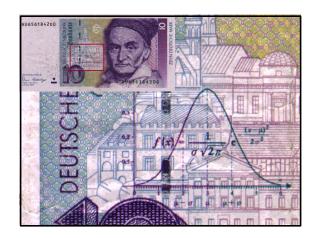
$$\begin{aligned} \mathbf{x} &\sim \mathcal{U}(\mathbf{x}_0, \ \mathbf{x}_1) \\ \mathbf{p}(\mathbf{x}) &= 1/(\mathbf{x}_0 - \mathbf{x}_1) \quad \text{if} \quad \mathbf{x}_0 \leq \mathbf{x} \leq \mathbf{x}_1 \\ &= 0 \qquad \qquad \text{otherwise} \end{aligned}$$

Gaussian distributions

$$\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \mathbf{s}^2)$$
 $\mathbf{p}(\mathbf{x} \mid \mathbf{m}\mathbf{s}^2) = \exp(-(\mathbf{x} - \mathbf{m})^2/2\mathbf{s}^2) / \sqrt{2\mathbf{p}\mathbf{s}^2}$

Why use Gaussians?

- Convenient analytic properties
- · Central Limit Theorem
- · Works well
- Not for everything, but a good building block
- For more reasons, see [Bishop 1995, Jaynes 2003]



Rules for continuous PDFs

Same intuitions and rules apply

"Sum rule": $\int_{-\infty}^{\infty} p(x) dx = 1$ Product rule: p(x,y) = p(x|y)p(x)Marginalizing: $p(x) = \int p(x,y)dy$

... Bayes' Rule, conditioning, etc.

Inference

How do we reason about the world from observations?

Three important sets of variables:

- observations
- · unknowns
- · auxiliary ("nuisance") variables

Given the observations, what are the probabilities of the unknowns?

Inference

Example: coin-flipping

$$P(C = heads | q) = q$$

 $p(q) = U(0,1)$

Suppose we flip the coin 1000 times and get 750 heads. What is **q**?

Intuitive answer: 750/1000 = 75%

What is \mathbf{q} ?

$$p(\mathbf{q}) = Uniform(0,1)$$

$$P(C_i = h | q) = q, P(C_i = t | q) = 1-q$$

$$\frac{P(C_{1:N} \mid \mathbf{q}) = \mathbf{\tilde{O}}_i \ P(C_i = \mathbf{h} \mid \mathbf{q})}{p(\mathbf{q} \mid C_{1:N}) = P(C_{1:N} \mid \mathbf{q}) \ p(\mathbf{q})}$$

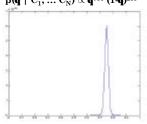
$$\mathbf{p}(\mathbf{q} \mid \mathbf{C}_{1:N}) = \frac{\mathbf{P}(\mathbf{C}_{1:N} \mid \mathbf{q}) \mathbf{p}(\mathbf{q})}{\mathbf{P}(\mathbf{C}_{1:N} \mid \mathbf{q})}$$
Bayes' Rule

$$= \mathbf{\tilde{O}}_i \ P(C_i \mid \mathbf{q}) \ P(\mathbf{q}) \ / \ P(C_{1:N}) \\ \propto \mathbf{q}^H \ (1\text{-}\mathbf{q})^T$$

H = 750, T = 250

What is **q**?

 $p(\boldsymbol{q} \ | \ C_1, \ldots \, C_N) \propto \boldsymbol{q}^{750} \ (1\text{-}\boldsymbol{q})^{250}$



 ${f q}$ "Posterior distribution:" new beliefs about ${f q}$

Bayesian prediction

What is the probability of another head?

$$P(C=h \mid C_{1:N}) = \int P(C=h,q \mid C_{1:N}) dq$$

$$= \int P(C=h \mid \mathbf{q}, C_{1:N}) P(\mathbf{q} \mid C_{1:N}) d\mathbf{q}$$

$$= (H+1)/(N+2)$$

Note: we never computed q

Parameter estimation

- What if we want an estimate of **q**?
- · Maximum A Posteriori (MAP):

$$\theta^* = arg \ max_q \ p(q \mid C_1, ..., C_N)$$

$$= H/N$$

A problem

Suppose we flip the coin once What is $P(C_2 = h \mid C_1 = h)$?

MAP estimate: $\mathbf{q}^* = H/N = 1$ This is absurd! Bayesian prediction: $P(C_2 = h \mid C_1 = h) = (H+1)/(N+2) = 2/3$

What went wrong? $p(\mathbf{q}|C_{1:N}) \qquad p(\mathbf{q}|C_1)$

Over-fitting

- A model that fits the data well but does not generalize
- Occurs when an estimate is obtained from a "spread-out posterior
- * Important to ask the right question: estimate $C_{N\!+\!1}$, not ${\boldsymbol q}$

Principle #4:

Parameter estimation is not Bayesian. It leads to errors, such as over-fitting.

Advantages of estimation

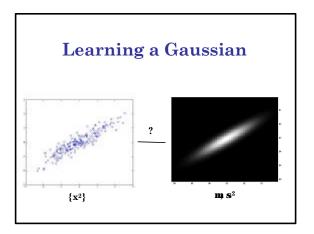
Bayesian prediction is usually difficult and/or expensive $p(x \mid D) = \int p(x, \mathbf{q} \mid D) d\mathbf{q}$

Q: When is estimation safe?

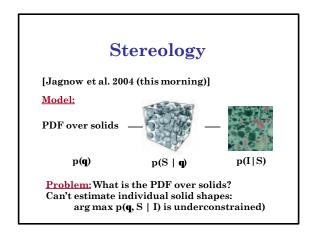
A: When the posterior is "peaked"

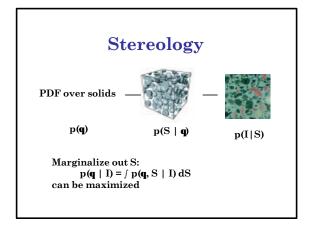
- · The posterior "looks like" a spike
- · Generally, this means a lot more data than parameters
- But this is not a guarantee (e.g., fit a line to 100 identical data points)
- Practical answer: use error bars (posterior variance)

Principle #4a: Parameter estimation is easier than prediction. It works well when the posterior is "peaked."

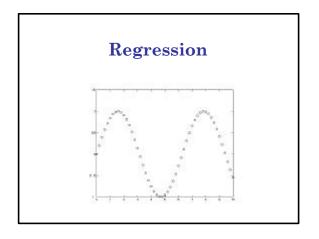


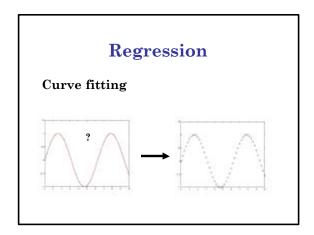
Learning a Gaussian $p(x | \mathbf{m} \mathbf{s}^2) = \exp(-(\mathbf{x} - \mathbf{m})^2/2\mathbf{s}^2) / \sqrt{2\mathbf{p} \mathbf{s}^2}$ $p(\mathbf{x}_{1:K} | \mathbf{m}, \mathbf{s}^2) = \tilde{\mathbf{O}} p(\mathbf{x}_i | \mathbf{m}, \mathbf{s}^2)$ $= \min_i | \ln p(\mathbf{x}_{1:K} | \mathbf{m}, \mathbf{s}^2)$ $= \min_i | \ln p(\mathbf{x}_{1:K} | \mathbf{m}, \mathbf{s}^2)$ $= \dot{\mathbf{a}}_i (\mathbf{x} - \mathbf{m})^2/2\mathbf{s}^2 + K/2 \ln 2\mathbf{p} \mathbf{s}^2$ Closed-form solution: $\mathbf{m} = \dot{\mathbf{a}}_i \mathbf{x}_i / N$ $\mathbf{s}^2 = \dot{\mathbf{a}}_i (\mathbf{x} - \mathbf{m})^2 / N$

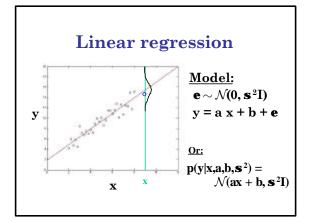


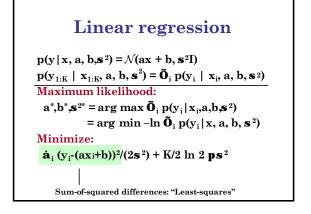


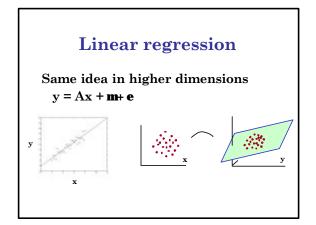
Principle #4b: When estimating variables, marginalize out as many unknowns as possible. Algorithms for this: • Expectation-Maximization (EM) • Variational learning

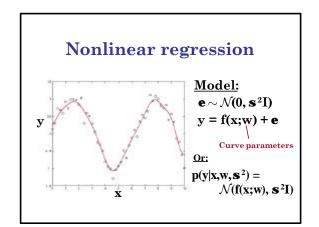












Typical curve models

Line

$$\begin{split} f(x;w) &= w_0 \ x + w_1 \\ \textbf{B-spline, Radial Basis Functions} \\ f(x;w) &= \dot{\boldsymbol{a}}_i \ w_i \ B_i(x) \\ \textbf{Artificial neural network} \\ f(x;w) &= \dot{\boldsymbol{a}}_i \ w_i \ tanh(\dot{\boldsymbol{a}}_i \ w_i \ x + w_0) + w_1 \end{split}$$

Nonlinear regression

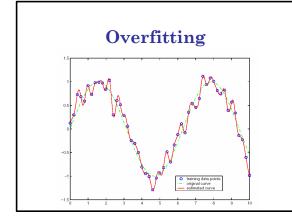
$$\begin{aligned} \mathbf{p}(\mathbf{y} \mid \mathbf{x}, \mathbf{w}, \mathbf{s}^2) &= \mathcal{N}(\mathbf{f}(\mathbf{x}; \mathbf{w}), \mathbf{s}^2\mathbf{I}) \\ \mathbf{p}(\mathbf{y}_{1:K} \mid \mathbf{x}_{1:K}, \mathbf{w}, \mathbf{s}^2) &= \tilde{\mathbf{O}}_i \, \mathbf{p}(\mathbf{y}_i \mid \mathbf{x}_i, \mathbf{a}, \mathbf{b}, \mathbf{s}^2) \\ \hline \mathbf{Maximum likelihood:} \\ \mathbf{w}^*, \mathbf{s}^{2^*} &= \arg \, \max \, \tilde{\mathbf{O}}_i \, \mathbf{p}(\mathbf{y}_i \mid \mathbf{x}_i, \mathbf{a}, \mathbf{b}, \mathbf{s}^2) \\ &= \arg \, \min \, -\ln \, \tilde{\mathbf{O}}_i \, \mathbf{p}(\mathbf{y}_i \mid \mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{s}^2) \\ \hline \mathbf{Minimize:} \\ \dot{\mathbf{a}}_i \, (\mathbf{y}_i - \mathbf{f}(\mathbf{x}_i; \mathbf{w}))^2 / (2\mathbf{s}^2) + \mathbf{K}/2 \, \ln \, 2 \, \mathbf{p} \, \mathbf{s}^2 \\ &\mid \\ \mathrm{Sum-of-squared \, differences: ``Least-squares''} \end{aligned}$$

Principle #5:

Least-squares estimation is a special case of maximum likelihood.

Principle #5a:

Because it is maximum likelihood, least-squares suffers from overfitting.



Smoothness priors

Assumption: true curve is smooth

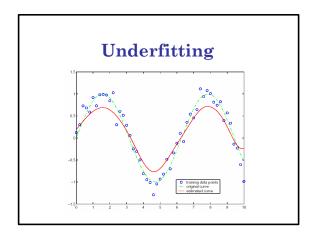
Bending energy:

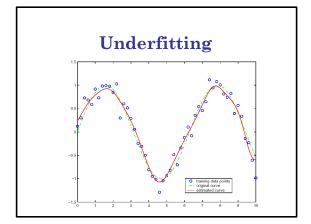
 $p(w | 1) \sim exp(-\int ||\nabla f||^2/2 1^2)$

Weight decay:

 $p(w|1) \sim \exp(-||w||^2/2 |1^2)$

Smoothness priors MAP estimation: arg max $p(w|y) = p(y | w) p(w)/p(y) = arg min - ln p(y|w) p(w) = \sum_{i} (y_i - f(x_i; w))^2/(2s^2) + ||w||^2/2l^2 + K ln s$ Sum-of-squares differences Smoothness





Principle #5b:

MAP estimation with smoothness priors leads to under-fitting.

Applications in graphics

Two examples:

Approximate physics

[Grzeszczuk et al. 1998]

Choices in fitting

- · Smoothness, noise parameters
- Choice of basis functions
- · Number of basis functions

Bayesian methods can make these choices automatically and effectively

Learning smoothness

Given "good" data, solve

 \mathbf{l}^* , $\sigma^{2^*} = \arg \max \mathbf{p}(\mathbf{l}, \mathbf{s}^2 \mid \mathbf{w}, \mathbf{x}_{1:K}, \mathbf{y}_{1:K})$

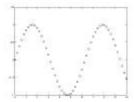
Closed-form solution Shape reconstruction in vision [Szeliski 1989]



Learning without shape

Q: Can we learn smoothness/noise without knowing the curve?

A: Yes.



Learning without shape

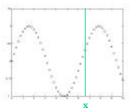
 l^* , $\sigma^{2*} = arg max p(l, s^2 | x_{1:K}, y_{1:K})$ (2 unknowns, K measurements)

 $p(\mathbf{l}, \mathbf{s}^2 \mid x_{1:K}, y_{1:K}) = \int p(\mathbf{l}, \mathbf{s}^2, w \mid x_{1:K}, y_{1:K}) dw$ $\propto \int p(x_{1:K},\!y_{1:K}\,|\,w,\!s^2,\!l)p(w\,|\,l,\!s^2)dw$

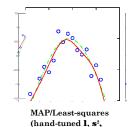
Bayesian regression

don't fit a single curve, but keep the uncertainty in the curve:

 $p(x | x_{1:N}, y_{1:N})$



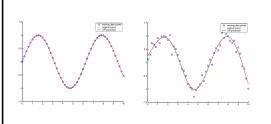
Bayesian regression



basis functions)

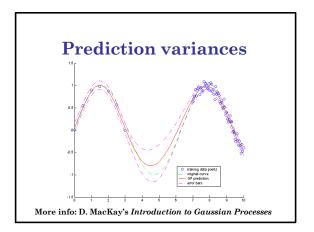
Gaussian Process regression (learned parameters 1, s2)

Bayesian regression



Principle #6:

Bayes' rule provide principle for learning (or marginalizing out) all parameters.



NIPS 2003 Feature Selection Challenge

- Competition between classification algorithm, including SVMs, nearest neighbors, GPs, etc.
- · Winners: R. Neal and J. Zhang
- Most powerful model they could compute with (1000's of parameters) and Bayesian prediction
- Very expensive computations

Summary of "Principles"

- 1. Probability theory is common sense reduced to calculation.
- 2. Given a model, we can derive any probability
- 3. Describe a model of the world, and then compute the probabilities of the unknowns with Bayes' Rule

Summary of "Principles"

- 4. Parameter estimation leads to over-fitting when the posterior isn't "peaked." However, it is easier than Bayesian prediction.
- 5. Least-squares estimation is a special case of MAP, and can suffer from over- and underfitting
- 6. You can learn (or marginalize out) all parameters.

Statistical shape and appearance models with PCA

Key vision problems

- Is there a face in this image?
- · Who is it?
- What is the 3D shape and texture?

Turk and Pentland 199

Key vision problems

- Is there a person in this picture?
- · Who?
- · What is their 3D pose?

Key graphics problems

- How can we easily create new bodies, shapes, and appearances?
- · How can we edit images and videos?

The difficulty

- Ill-posed problems
 - -Need prior assumptions
 - -Lots of work for an artist

Outline

- Face modeling problem
 - $-Linear\ shape\ spaces$
 - -PCA
 - $Probabilistic\ PCA$
- Applications
 - -face and body modeling

Background: 2D models

- Eigenfaces
 - Sirovich and Kirby 1987, Turk and Pentland 1991
- Active Appearance Models/Morphable models
 - Beier and Neely 1990
 - Cootes and Taylor 1998

Face representation

- 70,000 vertices with (x, y, z, r, g, b)
- · Correspondence precomputed

[Blanz and Vetter 1999]

Data representation

 $\mathbf{y_i} = [x_1, y_1, z_1, ..., x_{70,000}, y_{70,000}, z_{70,000}]^T$ **Linear blends:**

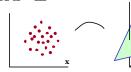
$$y_{new} = (y_1 + y_2) / 2$$

a.k.a. blendshapes, morphing

Linear subspace model

$$y = \dot{a}_i w_i y_i$$
 (s.t., $\dot{a}_i w_i = 1$)
= $\dot{a}_i x_i a_i + m$

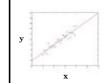
 $= \mathbf{A}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \mathbf{a}_{\mathbf{i}}$ $= \mathbf{A} \mathbf{x} + \mathbf{m}$



Problem: can we learn this linear space?

Principal Components Analysis (PCA)

Same model as linear regression Unknown x



Conventional PCA (Bayesian formulation)

x, A, m \sim Uniform, $A^T A = I$

 $e \sim \mathcal{N}(0, s^2 I)$

y = A x + m + e

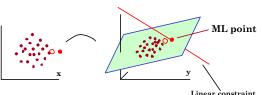
Given training $y_{1:K}$, what are A, x, **m**, s^2 ?

Maximum likelihood reduces to:

 $\dot{\mathbf{a}}_{i} \parallel \mathbf{y}_{i} - (\mathbf{A} \mathbf{x}_{i} + \mathbf{m}) \parallel^{2} / 2\mathbf{s}^{2} + \mathbf{K}/2 \ln 2 \mathbf{p} \mathbf{s}^{2}$

Closed-form solution exists

PCA with missing data



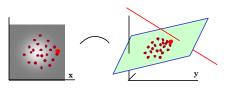
Problems:

- \cdot Estimated point far from data if data is noisy
- · High-dimensional y is a uniform distribution
- ${}^{\textstyle \bullet} Low\text{-}dimensional\ x\ is\ overconstrained$

Why? Because $x \sim U$

Probabilistic PCA

$$\begin{aligned} \mathbf{x} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \mathbf{y} &= \mathbf{A}\mathbf{x} + \mathbf{b} + \mathbf{e} \end{aligned}$$



[Roweis 1998, Tipping and Bishop 1998]

Fitting a Gaussian

 $y \sim \mathcal{N}(\pmb{m}, \pmb{S})$ easy to learn, and nice properties ... but \pmb{S} is a $70,000^2$ matrix

PPCA vs. Gaussians

 ${\bf However...}$

PPCA: $p(y) = \int p(x,y) dx$

= $\mathcal{N}(\mathbf{b}, \mathbf{A} \mathbf{A}^{\mathrm{T}} + \mathbf{s}^2 \mathbf{I})$

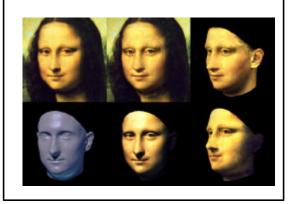
This is a special case of a Gaussian! PCA is a degenerate case ($s^2=0$)

Face estimation in an image

$$\begin{aligned} \mathbf{p}(\mathbf{y}) &= \mathcal{N}(\mathbf{m}, \mathbf{S}) \\ \mathbf{p}(\mathbf{Image} \mid \mathbf{y}) &= \mathcal{N}(\mathbf{I}_{s}(\mathbf{y}), \mathbf{s}^{2} \mid \mathbf{I}) \end{aligned}$$

-ln p(S,T | Image) = $\|\text{Image} - I_s(y)\|^2/2s^2 + (y-m)^3S^{-1}(y-m)/2$ Image fitting term Face likelihood

Use PCA coordinates for efficiency Efficient editing in PCA space



Comparison

PCA: unconstrained latent space – not good for missing data
Gaussians: general model, but impractical for large data
PPCA: constrained Gaussian – best of both worlds

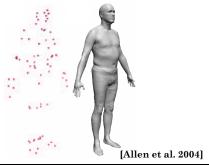
Estimating a face from video

[Blanz et al. 2003]

The space of all body shapes

[Allen et al. 2003]

The space of all body shapes



Non-rigid 3D modeling from video

What if we don't have training data?

[Torresani and Hertzmann 2004]

Non-rigid 3D modeling from video

- · Approach: learn all parameters
 - -shape and motion
 - -shape PDF
 - -noise and outliers
- Lots of missing data (depths)
 - -PPCA is essential
- Same basic framework, more unknowns

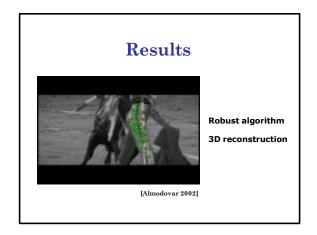
Results

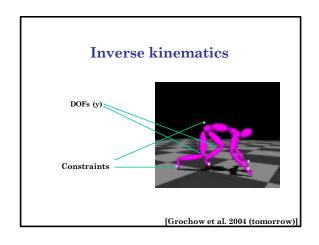
Lucas-Kanade tracking

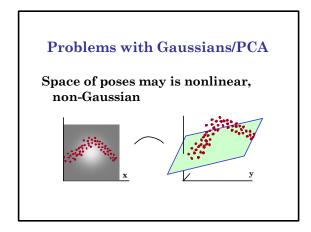
Tracking result

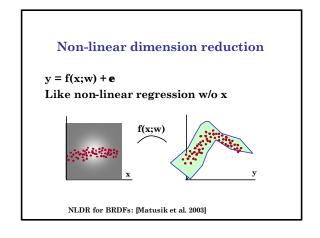
3D reconstruction

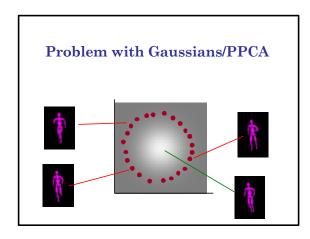
Reference frame

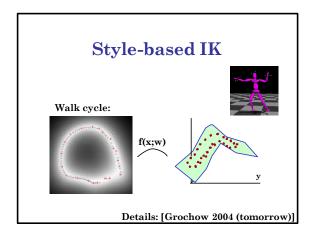












Discussion and frontiers

Designing learning algorithms for graphics

Write a generative model p(data | model)

Use Bayes' rule to learn the model from data

Generate new data from the model and constraints

(numerical methods may be required)

What model do we use?

- Intuition, experience, experimentation, rules-of-thumb
- Put as much domain knowledge in as possible
 - model 3D shapes rather than pixels
 - joint angles instead of 3D positions
- Gaussians for simple cases; nonlinear models for complex cases (active research area)

Q: Are there any limits to the power of Bayes' Rule?

http://yudkowsky.net/bayes/bayes.html:

A: According to legend, one who fully grasped Bayes' Rule would gain the ability to create and physically enter an alternate universe using only off-the-shelf equipment. One who fully grasps Bayes' Rule, yet remains in our universe to aid others, is known as a Bayesattva.

Problems with Bayesian methods

- 1. The best solution is usually intractable
- often requires expensive numerical computation
- it's still better to understand the real problem, and the approximations
- need to choose approximations carefully

Problems with Bayesian methods

- 2. Some complicated math to do
- Models are simple, algorithms complicated
- · May still be worth it
- Bayesian toolboxes on the way (e.g., VIBES, Intel OpenPNL)

Problems with Bayesian methods

- 3. Complex models sometimes impede creativity
- · Sometimes it's easier to tune
- · Hack first, be principled later
- Probabilistic models give insight that helps with hacking

Benefits of the Bayesian approach

- 1. Principled modeling of noise and uncertainty
- 2. Unified model for learning and synthesis
- 3. Learn all parameters
- 4. Good results from simple models
- 5. Lots of good research and algorithms

Course notes, slides, links:

http://www.dgp.toronto.edu/~hertzman/ibl2004

Course evaluation

http://www.siggraph.org/courses_evaluation

Thank you!