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CG is maturing …
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… but it’s still hard to create

… it’s hard to create in real-time
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Data-driven computer graphics

What if we can get models from the 
real world?

Data-driven computer graphics

Three key problems:
• Capture data (from video, 

cameras, mocap, archives, …)
• Build a higher-level model
• Generate new data

Ideally, it should be automatic, 
flexible
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Example: Motion capture

mocap.cs.cmu.edu

Example: character posing
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Example: shape modeling

[Blanz and Vetter 1999]

Example: shape modeling

[Allen et al. 2003]
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Key problems

• How do you fit a model to data?
– How do you choose weights and 

thresholds?
– How do you incorporate prior 

knowledge?
– How do you merge multiple sources 

of information?
– How do you model uncertainty?

Bayesian reasoning provides solutions

Bayesian reasoning is …

Probability, statistics, data-fitting
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Bayesian reasoning is …

A theory of mind

Bayesian reasoning is …

A theory of artificial intelligence

[Thrun et al.]
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Bayesian reasoning is …

A standard tool of computer vision

and …

Applications in:
• Data mining
• Robotics
• Signal processing
• Bioinformatics
• Text analysis (inc. spam filters)
• and (increasingly) graphics!
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Outline for this course

3:45-4pm: Introduction
4pm-4:45: Fundamentals

- From axioms to probability theory
- Prediction and parameter estimation

4:45-5:15: Statistical shape models
- Gaussian models and PCA
- Applications: facial modeling, mocap

5:15-5:30: Summary and questions

More about the course

• Prerequisites
– Linear algebra, multivariate 

calculus, graphics, optimization
• Unique features

– Start from first principles
– Emphasis on graphics problems
– Bayesian prediction
– Take-home “principles”
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Bayesian vs. Frequentist

• Frequentist statistics
– a.k.a. “orthodox statistics”
– Probability = frequency of 

occurrences in infinite # of trials
– Arose from sciences with 

populations
– p-values, t-tests, ANOVA, etc.

• Bayesian vs. frequentist debates 
have been long and acrimonious

Bayesian vs. Frequentist

“In academia, the Bayesian 
revolution is on the verge of 
becoming the majority viewpoint, 
which would have been 
unthinkable 10 years ago.”

- Bradley P. Carlin, professor of 
public health, University of 
Minnesota
New York Times, Jan 20, 2004
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Bayesian vs. Frequentist

If necessary, please leave these 
assumptions behind (for today):

• “A probability is a frequency”
• “Probability theory only applies 

to large populations”
• “Probability theory is arcane and 

boring”

Fundamentals
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What is reasoning?

• How do we infer properties of the 
world?

• How should computers do it?

Aristotelian logic

• If A is true, then B is true
• A is true
• Therefore, B is true

A: My car was stolen
B: My car isn’t where I left it
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Real-world is uncertain

Problems with pure logic:
• Don’t have perfect information
• Don’t really know the model
• Model is non-deterministic

So let’s build a logic of uncertainty!

Beliefs

Let B(A) = “belief A is true”
B(¬A) = “belief A is false”

e.g., A = “my car was stolen”
B(A) = “belief my car was stolen”
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Reasoning with beliefs

Cox Axioms [Cox 1946]
1. Ordering exists

– e.g., B(A) > B(B) > B(C)

2. Negation function exists
– B(¬A) = f(B(A))

3. Product function exists
– B(A ∧ Y) = g(B(A|Y),B(Y))

This is all we need!

The Cox Axioms uniquely define 
a complete system of reasoning: 

This is probability theory!
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“Probability theory is nothing more 
than common sense reduced to 
calculation.”

- Pierre-Simon Laplace, 1814

Principle #1:

Definitions

P(A) = “probability A is true”
= B(A) = “belief A is true”

P(A) 2 [0…1]

P(A) = 1  iff “A is true”
P(A) = 0  iff “A is false”

P(A|B) = “prob. of A if we knew B”
P(A, B) = “prob. A and B”
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Examples

A: “my car was stolen”
B: “I can’t find my car”

P(A) = .1
P(A) = .5

P(B | A) = .99
P(A | B) = .3

Sum rule:

P(A) + P(¬A) = 1

Basic rules

Example:
A: “it will rain today”

p(A) = .9       p(¬A) = .1
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Sum rule:

∑i P(Ai) = 1

Basic rules

when exactly one of Ai must be true

Product rule: 

P(A,B) = P(A|B) P(B)
= P(B|A) P(A)

Basic rules
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Basic rules

Conditioning

∑i P(Ai) = 1 ∑i P(Ai|B) = 1

P(A,B) = P(A|B) P(B)

P(A,B|C) = P(A|B,C) P(B|C)

Sum Rule

Product Rule

Summary

Product rule
Sum rule

All derivable from Cox axioms; 
must obey rules of common sense

Now we can derive new rules

P(A,B) = P(A|B) P(B)

∑i P(Ai) = 1



19

Example

A = you eat a good meal tonight
B = you go to a highly-recommended 

restaurant
¬B = you go to an unknown restaurant

Model: P(B) = .7, P(A|B) = .8, P(A|¬B) = .5

What is P(A)?

Example, continued

Model: P(B) = .7, P(A|B) = .8, P(A|¬B) = .5

1 = P(B) + P(¬B)
1 = P(B|A) + P(¬B|A)
P(A) = P(B|A)P(A) + P(¬B|A)P(A)

= P(A,B) + P(A,¬B)
= P(A|B)P(B) + P(A|¬B)P(¬B)
= .8 .7 + .5 (1-.7) = .71

Sum rule

Conditioning

Product rule

Product rule
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Basic rules

Marginalizing

P(A) = ∑i P(A, Bi)
for mutually-exclusive Bi

e.g., p(A) = p(A,B) + p(A, ¬B)

Given a complete model, we can 
derive any other probability

Principle #2:
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Model: P(B) = .7, P(A|B) = .8, P(A|¬B) = .5

If we know A, what is P(B|A)?
(“Inference”)

Inference

P(A,B) = P(A|B) P(B) = P(B|A) P(A)

P(B|A) =
P(A|B) P(B)

P(A)
= .8 .7 / .71 ˜ .79

Bayes’ Rule

Inference

Bayes Rule

P(M|D) =
P(D|M) P(M)

P(D)

Posterior

Likelihood
Prior
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Describe your model of the 
world, and then compute the 

probabilities of the unknowns 
given the observations

Principle #3:

Use Bayes’ Rule to infer unknown 
model variables from observed data

Principle #3a:

P(M|D) =
P(D|M) P(M)

P(D)

Likelihood
Prior

Posterior
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Discrete variables

Probabilities over discrete 
variables

C 2 { Heads, Tails }

P(C=Heads) = .5

P(C=Heads) + P(C=Tails) = 1

Continuous variables

Let x 2 RN

How do we describe beliefs over x?
e.g., x is a face, joint angles, …
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Continuous variables

Probability Distribution Function (PDF)
a.k.a. “marginal probability”

p(x) P(a · x · b) = sa
b p(x) dx

x

Notation: P(x) is prob
p(x) is PDF

Continuous variables

Probability Distribution Function (PDF)
Let x 2 R
p(x) can be any function s.t. 

s-1
1 p(x) dx = 1

p(x) ¸ 0

Define P(a · x · b) = sa
b p(x) dx
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Uniform distribution

x » U(x0, x1)
p(x) = 1/(x0 – x1)    if     x0 · x · x1

= 0                  otherwise

x0 x1

p(x)

Gaussian distributions

x » N(µ, σ2)
p(x|µ,σ2) = exp(-(x-µ)2/2σ2) / p 2πσ2

µ

σ
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Why use Gaussians?

• Convenient analytic properties
• Central Limit Theorem
• Works well
• Not for everything, but a good 

building block
• For more reasons, see 

[Bishop 1995, Jaynes 2003]
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Rules for continuous PDFs

Same intuitions and rules apply

“Sum rule”: s-1
1 p(x) dx = 1

Product rule: p(x,y) = p(x|y)p(x)
Marginalizing: p(x) = s p(x,y)dy

… Bayes’ Rule, conditioning, etc.

Multivariate distributions

Uniform: x » U(dom) Gaussian: x » N(µ, Σ)
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Inference

How do we reason about the world from 
observations?

Three important sets of variables:
• observations
• unknowns
• auxiliary (“nuisance”) variables

Given the observations, what are the 
probabilities of the unknowns?

Inference

Example: coin-flipping
P(C = heads|θ) = θ
p(θ) = U(0,1)

Suppose we flip the coin 1000 times and 
get 750 heads.  What is θ?

Intuitive answer: 750/1000 = 75%
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What is θ?

p(θ) = Uniform(0,1)
P(Ci = h|θ) = θ, P(Ci = t|θ) = 1-θ
P(C1:N | θ) = ∏i P(Ci = h | θ)
p(θ | C1:N) = P(C1:N| θ) p(θ)

P(C1:N)
Bayes’ Rule

= ∏i P(Ci | θ) P(θ) / P(C1:N)
/ θH (1-θ)T

H = 750, T = 250

What is θ?

θ

p(θ | C1, … CN) / θ750 (1-θ)250

“Posterior distribution:” new beliefs about θ
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Bayesian prediction

What is the probability of another 
head?

P(C=h|C1:N) = s P(C=h,θ|C1:N) dθ
= s P(C=h|θ, C1:N) P(θ | C1:N) dθ
= (H+1)/(N+2)
= 751 / 1002 = 74.95 %

Note: we never computed θ

Parameter estimation

• What if we want an estimate of θ?
• Maximum A Posteriori (MAP):

θ* = arg maxθ p(θ | C1, …, CN)
= H / N 
= 750 / 1000 = 75%
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A problem

Suppose we flip the coin once
What is P(C2 = h | C1 = h)?

MAP estimate: θ* = H/N = 1
This is absurd!
Bayesian prediction: 

P(C2 = h | C1 = h) = (H+1)/(N+2) = 2/3

What went wrong?

p(θ | C1)p(θ | C1:N)
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Over-fitting

• A model that fits the data well 
but does not generalize

• Occurs when an estimate is 
obtained from a “spread-out” 
posterior

• Important to ask the right 
question: estimate CN+1, not θ

Parameter estimation is not 
Bayesian. It leads to errors, 

such as over-fitting.

Principle #4:
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p(x|D) = s p(x, θ | D) dθ

Advantages of estimation

Bayesian prediction is usually 
difficult and/or expensive

Q: When is estimation safe?

A: When the posterior is “peaked”
• The posterior “looks like” a spike
• Generally, this means a lot more data 

than parameters
• But this is not a guarantee (e.g., fit a 

line to 100 identical data points)
• Practical answer: use error bars 

(posterior variance)
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Parameter estimation is easier 
than prediction. It works well 

when the posterior is “peaked.”

Principle #4a:

Learning a Gaussian

?

µ, σ2{x2}
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Want: max p(x1:K|µ, σ2)
= min –ln p(x1:K|µ, σ2)
= ∑i (x-µ)2/2σ2 + K/2 ln 2π σ2

Closed-form solution:
µ = ∑i xi / N
σ2 = ∑i (x - µ)2/N

Learning a Gaussian

p(x|µ,σ2) = exp(-(x-µ)2/2σ2) / p 2πσ2

p(x1:K|µ, σ2) = ∏ p(xi | µ, σ2)

Stereology

[Jagnow et al. 2004 (this morning)]

Model:

PDF over solids

Problem: What is the PDF over solids?
Can’t estimate individual solid shapes:

arg max p(θ, S | I) is underconstrained)

p(θ) p(S | θ) p(I|S)
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Stereology

PDF over solids

Marginalize out S:
p(θ | I) = s p(θ, S | I) dS

can be maximized

p(θ) p(S | θ) p(I|S)

When estimating variables, 
marginalize out as many 
unknowns as possible.

Principle #4b:

Algorithms for this:
•Expectation-Maximization (EM)
•Variational learning
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Regression

Regression

Curve fitting

?
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Linear regression

x

y y = a x + b + ε
ε » N(0, σ2I)

Model:

Or:

p(y|x,a,b,σ2) =
N(ax + b, σ2I)x

Linear regression

p(y|x, a, b,σ2) = N(ax + b, σ2I) 

p(y1:K | x1:K, a, b, σ2) = ∏i p(yi | xi, a, b, σ2)
Maximum likelihood:

a*,b*,σ2* = arg max ∏i p(yi|xi,a,b,σ2)
= arg min –ln ∏i p(yi|x, a, b, σ2)

Minimize:
∑i (yi-(axi+b))2/(2σ2) + K/2 ln 2 π σ2

Sum-of-squared differences: “Least-squares”



39

Linear regression

Same idea in higher dimensions
y = Ax + µ + ε

x y

x

y

Nonlinear regression

y = f(x;w) + ε
ε » N(0, σ2I)

Model:

Or:

p(y|x,w,σ2) =
N(f(x;w), σ2I)x

y

Curve parameters
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Typical curve models

Line
f(x;w) = w0 x + w1

B-spline, Radial Basis Functions
f(x;w) = ∑i wi Bi(x)

Artificial neural network
f(x;w) = ∑i wi tanh(∑j wj x + w0)+w1

Nonlinear regression

p(y|x, w, σ2) = N(f(x;w), σ2I) 

p(y1:K | x1:K, w, σ2) = ∏i p(yi | xi, a, b, σ2)
Maximum likelihood:

w*,σ2* = arg max ∏i p(yi|xi,a,b,σ2)
= arg min –ln ∏i p(yi|x, a, b, σ2)

Minimize:
∑i (yi-f(xi;w))2/(2σ2) + K/2 ln 2 π σ2

Sum-of-squared differences: “Least-squares”
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Least-squares estimation is a 
special case of maximum 

likelihood.

Principle #5:

Because it is maximum 
likelihood, least-squares suffers 

from overfitting.

Principle #5a:
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Overfitting

Smoothness priors

Assumption: true curve is smooth

Bending energy:
p(w|λ) ~ exp( -s kr fk2 / 2 λ2)

Weight decay:
p(w|λ) ~ exp( -kwk2 / 2 λ2)
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MAP estimation:
arg max p(w|y) = p(y | w) p(w)/p(y)=
arg min –ln p(y|w) p(w) =
∑i (yi – f(xi; w))2/(2σ2) + kwk2/2λ2 + K ln σ

Smoothness priors

Sum-of-squares differences Smoothness

Underfitting



44

Underfitting

MAP estimation with smoothness 
priors leads to under-fitting.

Principle #5b:
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Applications in graphics

Two examples:

[Rose III et al. 2001]

[Grzeszczuk et al. 1998]

Shape interpolation Approximate physics

Choices in fitting

• Smoothness, noise parameters
• Choice of basis functions
• Number of basis functions

Bayesian methods can make these 
choices automatically and 
effectively
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Learning smoothness

Given “good” data, solve
λ* , σ2* = arg max p(λ , σ2 | w, x1:K, y1:K)

Closed-form solution
Shape reconstruction

in vision [Szeliski 1989]

Learning without shape

Q: Can we learn smoothness/noise 
without knowing the curve?

A: Yes.
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Learning without shape

λ* , σ2* = arg max p(λ , σ2 | x1:K, y1:K)
(2 unknowns, K measurements)

p(λ , σ2 | x1:K, y1:K) = s p(λ, σ2, w | x1:K,y1:K) dw
/ s p(x1:K,y1:K|w,σ2,λ)p(w|λ,σ2)dw

Bayesian regression

don’t fit a single curve, but keep 
the uncertainty in the curve: 

p(x | x1:N, y1:N)

x
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Bayesian regression

MAP/Least-squares
(hand-tuned λ, σ2,
basis functions)

Gaussian Process regression
(learned parameters λ, σ2)

Bayesian regression
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Bayes’ rule provide principle for 
learning (or marginalizing out) 

all parameters.

Principle #6:

Prediction variances

More info: D. MacKay’s Introduction to Gaussian Processes
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NIPS 2003 Feature Selection 
Challenge

• Competition between classification 
algorithm, including SVMs, nearest 
neighbors, GPs, etc.

• Winners: R. Neal and J. Zhang
• Most powerful model they could 

compute with (1000’s of parameters) 
and Bayesian prediction

• Very expensive computations

Summary of “Principles”

1. Probability theory is common sense 
reduced to calculation.

2. Given a model, we can derive any 
probability

3. Describe a model of the world, and 
then compute the probabilities of the 
unknowns with Bayes’ Rule
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Summary of “Principles”

4. Parameter estimation leads to over-fitting 
when the posterior isn’t “peaked.” However, 
it is easier than Bayesian prediction.

5. Least-squares estimation is a special case of 
MAP, and can suffer from over- and under-
fitting

6. You can learn (or marginalize out) all 
parameters.

Statistical shape and 
appearance models with PCA
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Key vision problems

• Is there a face 
in this image?

• Who is it?
• What is the 3D 

shape and 
texture?

Turk and Pentland 1991

Key vision problems

• Is there a person in this picture?
• Who?
• What is their 3D pose?
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Key graphics problems

• How can we easily create new 
bodies, shapes, and appearances?

• How can we edit images and 
videos?

The difficulty

• Ill-posed problems
– Need prior assumptions
– Lots of work for an artist
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Outline

• Face modeling problem
– Linear shape spaces
– PCA
– Probabilistic PCA

• Applications
– face and body modeling

Background: 2D models

• Eigenfaces
– Sirovich and Kirby 1987, Turk and 

Pentland 1991

• Active Appearance 
Models/Morphable models
– Beier and Neely 1990
– Cootes and Taylor 1998
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Face representation

• 70,000 vertices with (x, y, z, r, g, b)
• Correspondence precomputed

[Blanz and Vetter 1999]

Data representation

yi = [x1, y1, z1, …, x70,000, y70,000, z70,000]T

Linear blends:

ynew = (y1 + y2) / 2

a.k.a. blendshapes, morphing

.5 . +   .5. =
y1

y2 y3
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Linear subspace model

y = ∑i wi yi (s.t., ∑i wi = 1)
= ∑i xi ai + µ
= A x + µ

Problem: can we learn this linear space?

x y

Principal Components Analysis 
(PCA)

Same model as linear regression
Unknown x

x y

x

y
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Conventional PCA
(Bayesian formulation)

x, A, µ » Uniform, AT A = I 
ε » N(0, σ2 I)
y = A x + µ + ε
Given training y1:K, what are A, x, µ, σ2?

Maximum likelihood reduces to:
∑i k yi – (A xi + µ) k2 / 2σ2 + K/2 ln 2 π σ2

Closed-form solution exists

PCA with missing data

x y

Linear constraint

ML point

Problems:
•Estimated point far from data if data is noisy
•High-dimensional y is a uniform distribution
•Low-dimensional x is overconstrained
Why? Because x » U
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Probabilistic PCA

x y

x » N(0,I)
y = Ax + b + ε

[Roweis 1998, Tipping and Bishop 1998]

Fitting a Gaussian

y » N(µ, Σ)
easy to learn, and nice properties
… but Σ is a 70,0002 matrix

y
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PPCA vs. Gaussians

However…
PPCA: p(y) = s p(x,y) dx

= N(b, A AT + σ2 I)
This is a special case of a Gaussian!
PCA is a degenerate case (σ2=0)

Face estimation in an image

p(y) = N(µ, Σ)
p(Image | y) = N(Is(y), σ2 I)

-ln p(S,T | Image) = kImage – Is(y)k2 /2σ2 + (y-µ)TΣ-1(y-µ)/2

Image fitting term Face likelihood

Use PCA coordinates for efficiency
Efficient editing in PCA space

y

Image

[Blanz and Vetter 1999]
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Comparison 

PCA: unconstrained latent space –
not good for missing data

Gaussians: general model, but 
impractical for large data

PPCA: constrained Gaussian – best 
of both worlds
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Estimating a face from video

[Blanz et al. 2003]

The space of all body shapes

[Allen et al. 2003]
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The space of all body shapes

[Allen et al. 2004]

Non-rigid 3D modeling from video

What if we don’t have training data?

[Torresani and Hertzmann 2004]
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Non-rigid 3D modeling from 
video

• Approach: learn all parameters
– shape and motion
– shape PDF
– noise and outliers

• Lots of missing data (depths)
– PPCA is essential

• Same basic framework, more 
unknowns

Results

Lucas-Kanade tracking

Tracking result

3D reconstruction

Reference frame
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Results

Robust algorithm

3D reconstruction

[Almodovar 2002]

Inverse kinematics

Constraints

DOFs (y)

[Grochow et al. 2004 (tomorrow)]
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Problems with Gaussians/PCA

Space of poses may is nonlinear, 
non-Gaussian

x y

Non-linear dimension reduction

y = f(x;w) + ε
Like non-linear regression w/o x

x y

f(x;w)

NLDR for BRDFs: [Matusik et al. 2003]
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Problem with Gaussians/PPCA

Style-based IK

f(x;w)

Walk cycle:

Details: [Grochow 2004 (tomorrow)]

y
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Discussion and frontiers

Designing learning algorithms 
for graphics

Write a generative model
p(data | model)

Use Bayes’ rule to learn the model 
from data

Generate new data from the model 
and constraints

(numerical methods may be 
required)
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What model do we use?

• Intuition, experience, 
experimentation, rules-of-thumb

• Put as much domain knowledge in as 
possible
– model 3D shapes rather than pixels
– joint angles instead of 3D positions

• Gaussians for simple cases; nonlinear 
models for complex cases (active 
research area)

Q: Are there any limits to 
the power of Bayes' Rule?

A: According to legend, one who 
fully grasped Bayes' Rule would 
gain the ability to create and 
physically enter an alternate 
universe using only off-the-shelf 
equipment. One who fully grasps 
Bayes' Rule, yet remains in our 
universe to aid others, is known 
as a Bayesattva.

http://yudkowsky.net/bayes/bayes.html:
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Problems with Bayesian methods

1. The best solution is usually 
intractable

• often requires expensive numerical 
computation

• it’s still better to understand the real 
problem, and the approximations

• need to choose approximations 
carefully

Problems with Bayesian methods

2. Some complicated math to do
• Models are simple, algorithms 

complicated
• May still be worth it
• Bayesian toolboxes on the way 

(e.g., VIBES, Intel OpenPNL)
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Problems with Bayesian methods

3. Complex models sometimes 
impede creativity

• Sometimes it’s easier to tune
• Hack first, be principled later
• Probabilistic models give insight 

that helps with hacking

Benefits of the Bayesian 
approach

1. Principled modeling of noise 
and uncertainty

2. Unified model for learning and 
synthesis

3. Learn all parameters
4. Good results from simple models
5. Lots of good research and 

algorithms
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Course notes, slides, links:
http://www.dgp.toronto.edu/~hertzman/ibl2004

Course evaluation
http://www.siggraph.org/courses_evaluation

Thank you!


