
Interactive 3D Scene Reconstruction from Images

Aaron Hertzmann
Media Research Laboratory

Department of Computer Science
New York University

719 Broadway, 12th Floor
New York, NY 10003

hertzman@mrl.nyu.edu
http://www.mrl.nyu.edu/hertzman

NYU Computer Science Technical Report

April 22, 1999

Abstract

We propose an interactive framework for reconstructing an arbitrary 3D scene consistent with a set of im-
ages, for use in example-based image synthesis. Previous research has used human input to specify feature
matches, which are then processed off-line; however, it is very difficult to correctly match images without
feedback. The central idea of this paper is to perform and display 3D reconstruction during user modifi-
cation. By allowing the user to interactively manipulate the image correspondence and the resulting 3D
reconstruction, we can exploit both the user’s intuitive image understanding and the computer’s processing
power.

1 Introduction and Related Work

The traditional goal of computer vision research is to computationally understand 3D scenes from sensor
data. This research primarily targets real-time applications (such as robot guidance) and understanding the
human visual system; hence, there is ideally no human intervention in the image analysis process. Although
many impressive systems have been demonstrated, it is difficult to speculate if and when we will see effective
algorithms for reconstructingarbitrary scenes from images.

A more recent research goal is the creation of 3D models for visualization and computer animation. The
requirements for this problem differ from the requirements of real-time robot vision. Human assistance in
the 3D reconstruction is often acceptable, because modeling is done in advance of rendering and viewing.
However, artifacts and reconstruction errors are unacceptable, because the resulting models will ultimately
be viewed by humans, in situations such as in movies or video games.

Many of the existing example-based image synthesis systems have used human input at some point in
the correspondence/reconstruction process [3, 6, 7, 8, 9, 12, 14], particularly those that extrapolate views
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in addition to interpolating. User interaction, as reported in the literature, has been limited to marking
feature correspondences, from which a 3D model is then automatically extracted. (Many of the systems
cited represent the model implicitly, with structures such as dense point correspondences and a fundamental
matrix. Up to a projective transform, the implicit representations are equivalent to reconstructing a 3D
model that isconsistentwith the example images.) Work that has focused on specialized domains, such
as architecture [3, 12] and human faces [7], has been particularly successful. However, it is exceptionally
difficult to correctly mark image correspondences for arbitrary surfaces, or even to know which features to
mark. Image correspondences that appear reasonable often result in grossly incorrect 3D models (Figure 2),
requiring the user to repeat the tedious process of matching several times until an acceptable model has been
created.

Our approach is to tightly couple user interaction with 3D reconstruction. The idea is to always display
the 3D model during interaction. As the user selects and modifies point and line matches in the source
images, the resulting 3D model is continually updated in another window. The user can correct a match to
subpixel accuracy by dragging a corresponding point in the image plane, or by directly modifying the 3D
geometry. This method gives the user immediate feedback as to the quality of the correspondence and the
reconstruction.

We believe that including the human in the reconstruction loop will produce a quantum leap in our
ability to reconstruct the geometry of arbitrary scenes. This will be achieved by properly combining the
user’s intuitive image understanding and qualitative reasoning with the computer’s processing power.

2 Camera and Scene Model

We first describe the general mathematical structure of our system. The input is a set of images (e.g. pho-
tographs) of a scene, along with camera calibration information. Each camera calibration consists of:

� A focal centerci.

� A projection functionPi : IR
3 ! IR2 that maps world points to image points.

� An inverse projection functionQi : IR
2 ! IR3 that maps image points to unit-length world vectors.

These quantities are related byQi(Pi(x)) = x�ci

jjx�cijj
, wherex is any world space point visible to camera

i. In our system, we have assumed a pair of pinhole projection cameras in the parallel configuration1 (Figure
1).

A scene reconstruction is represented as a scattered set of world pointsxj . These points specify a set of
sparse correspondences:P0(xj) in image 0 matchesP1(xj) in image 1. We denote the image space points
asxi

j = Pi(xj). A line correspondence is represented as a pair(i; j) that indicates an edge betweenxi and
xj .

In order to render the surface in our system, we triangulate the world points using the topology of the
constrained Delaunay triangulation [10] of the pointsx0i , with line correspondences used as triangulation
constraints. The triangles are rendered in 3D, and texture-mapped with a source image, using the image
coordinates as texture coordinates [2, 4]. These operations are fast enough to perform in real-time.

1This configuration is also known as the stereo configuration.
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Figure 1: The parallel camera configuration.

For the goal of example-based image synthesis, it is sufficient to create a 3D model that isconsistent
with the source images. We could also use a representation such as point correspondences and a fundamental
matrix that would make the calibration ambiguities explicit. We find the 3D formulation to be simpler to
implement and understand, and easier to generalize. This use of 3D is inspired by [5].

3 The Interactive System

The 3D reconstruction begins with an initial point matching. We begin with an empty matching (no vertecies
or triangles); an automatically-generated disparity map could also be used.

Given the initial model, the user may add point matches and modify point matches. To add a point
match, the user simply clicks the point’s initial locationxi

0
in one of the images. The matching point

in the other image is computed using a default disparityd: x1
0

= x0
0
� [d; 0]T or x0

0
= x1

0
+ [d; 0]T .

x0 is computed as the intersection of the rays from the camera centers to the image points (i.e.x0 =
ray(c0;Q0(x

0
0
)) \ ray(c1;Q1(x

1
0
)), whereray(P; V ) denotes a ray from pointP in directionV ). The new

mesh is then retriangulated and rendered.
The majority of the user time with our method is spent modifying point matches. Point matches are

displayed on each image as green crosses; when the mouse is moved over a match, the corresponding point
in the other image is highlighted. The user first identifies a point match that does not appear correct, usually
by looking for errors in the 3D mesh or by visually comparing the images under the match. Once a match is
selected, the user simply drags the match in one of the images to a new location. While the match is being
modified, the 3D model is continually updated and rendered, allowing the user to interactively refine the
mesh shape. This “human-in-the-loop” reconstruction idea is simple, but very effective.

The new world point locationxi for the match is computed by intersecting the ray through the new match
point r0 = ray(c0;Q0(x

0

i )) and the ray through the corresponding pointr1 = ray(c1;Q1(x
1

i )). If the rays
do not intersect, then the point onr1 is chosen that is nearest tor0, and new values for the image points are
computed by projection (xi

j = Pi(xj)). This is equivalent to constraining the match to lie on the epipolar
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line of the corresponding point. If the user drags with the right mouse button instead of the left button, then
the point onr0 nearest tor1 is chosen. In this case, the user may move a point freely, and the corresponding
point is constrained to lie on the new epipolar line.

The user creates a line correspondence simply by specifying two existing points as the endpoints. Line
constraints are useful for restricting mesh topology.

In addition to the textured rendering mode, we display a difference image (Figure 4). The difference
image is the absolute value of difference between the left source image rendered onto the mesh and the right
image rendered onto the mesh. Poorly-matched pixels are light and good matches are dark. With this image,
the user can try to manipulate matching points in order to “black out” the difference image. This method
is very useful in textured areas without many discontinuities. However, the difference image is often an
insufficient measure of a match, especially in areas with little texture; difference image editing must be used
in conjunction with the standard editing modes.

4 Discussion and Future Work

We have presented an approach to reconstructing arbitrary 3D scenes from models, by exploiting human
image understanding together with computational power. We believe that this framework can potentially
make 3D reconstruction cheap and effective for a wide variety of applications.

There are several important extensions.

� Support many example images, to allow reconstruction of large environments.

� Provide a standard 3D modeling interface for direct modification of the geometry and topology of the
3D model. For instance, the ability to mark discontinuities in the mesh is critical.

� Provide interactive modification of the camera calibration.

� Include local stereo computations during interactive updates. For example, surfaces could “stiffen” in
proportion to the level-set evolution term of [5].

For each of these extensions, the underlying mathematics are straightforward, but the user interface is
not.
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Figure 2: (a),(b) Hand-marked feature correspondences, without interactive reprojection. (c) Reprojection
of feature matches. Feature correspondences that look reasonable on the image plane often produce grossly
incorrect 3D models. (d) Interactive adjustments to the matching can vastly improve the 3D reconstruction.
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Figure 3: (a),(b) Fruit stereo pair. (c),(d) Model generated from fruit stereo pair.
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Figure 4: Difference between source images textured on the same mesh. Most errors appear near disconti-
nuites, which are not yet handled by our system.
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