How to do Research
(from a Theory Perspective)

Derek Corneil1

1Computer Science, University of Toronto

Oct. 14, 2010
Overview

- Ranges of Research Results
- How to Find good Problems to Work on
- Research Reading
- Tips on Becoming a Good Researcher
- Final Comments
Ranges of Research Results:

1. Solution of an interesting well established problem.
Ranges of Research Results:

1. Solution of an interesting well established problem.
2. Improvement(s) on, and/or new technique(s) for, an existing solution to an interesting problem.
Ranges of Research Results:

1. Solution of an interesting well established problem.
2. Improvement(s) on, and/or new technique(s) for, an existing solution to an interesting problem.
Ranges of Research Results:

1. Solution of an interesting well established problem.
2. Improvement(s) on, and/or new technique(s) for, an existing solution to an interesting problem.
4. Showing connections between problems in diverse areas (and transferring techniques between the areas).
Ranges of Research Results:

1. Solution of an interesting well established problem.
2. Improvement(s) on, and/or new technique(s) for, an existing solution to an interesting problem.
4. Showing connections between problems in diverse areas (and transferring techniques between the areas).
5. Developing a new, interesting area of research.
How to Find good Problems to Work on:

- Get ideas from your supervisor.
How to Find good Problems to Work on:

- Get ideas from your supervisor.
- Read the top journals and conference proceedings.
How to Find good Problems to Work on:

- Get ideas from your supervisor.
- Read the top journals and conference proceedings.
- Attend seminars and colloquia - meet the speakers and ask questions.
How to Find good Problems to Work on:

- Get ideas from your supervisor.
- Read the top journals and conference proceedings.
- Attend seminars and colloquia - meet the speakers and ask questions.
- Try to come up with good research questions in all courses, including those outside your own area. Take course projects seriously.
How to Find good Problems to Work on:

- Get ideas from your supervisor.
- Read the top journals and conference proceedings.
- Attend seminars and colloquia - meet the speakers and ask questions.
- Try to come up with good research questions in all courses, including those outside your own area. Take course projects seriously.
- Give a lecture on your research. Often, anticipation of good questions from the audience leads to a new research problem.
How to Find good Problems to Work on:

- Get ideas from your supervisor.
- Read the top journals and conference proceedings.
- Attend seminars and colloquia - meet the speakers and ask questions.
- Try to come up with good research questions in all courses, including those outside your own area. Take course projects seriously.
- Give a lecture on your research. Often, anticipation of good questions from the audience leads to a new research problem.
- Learn to read!
Deep Reading - go through every detail of every proof;
primarily used for refereeing and learning new techniques from papers in your area of research
Research Reading:

- Deep Reading - go through every detail of every proof;
 primarily used for refereeing and learning new techniques from papers
 in your area of research

- Judgement Reading - concentrate on the abstract, introduction and
 concluding remarks (i.e. for the moment assume that the authors
 prove what they claim);
Research Reading:

- Deep Reading - go through every detail of every proof; primarily used for refereeing and learning new techniques from papers in your area of research
- Judgement Reading - concentrate on the abstract, introduction and concluding remarks (i.e. for the moment assume that the authors prove what they claim);
 - Is this work of interest?
Research Reading:

- Deep Reading - go through every detail of every proof; primarily used for refereeing and learning new techniques from papers in your area of research.
- Judgement Reading - concentrate on the abstract, introduction and concluding remarks (i.e. for the moment assume that the authors prove what they claim);
 - Is this work of interest?
 - Why didn’t they do · · · ?
Research Reading:

- Deep Reading - go through every detail of every proof; primarily used for refereeing and learning new techniques from papers in your area of research.

- Judgement Reading - concentrate on the abstract, introduction and concluding remarks (i.e. for the moment assume that the authors prove what they claim);

- Is this work of interest?
- Why didn’t they do · · · ?
- What if you try · · · ?
Research Reading:

- Deep Reading - go through every detail of every proof;
 primarily used for refereeing and learning new techniques from papers in your area of research

- Judgement Reading - concentrate on the abstract, introduction and concluding remarks (i.e. for the moment assume that the authors prove what they claim);

 - Is this work of interest?
 - Why didn’t they do · · · ?
 - What if you try · · · ?
 - Are their open questions interesting?
Tips on Becoming a Good Researcher

Make careful and detailed notes

- write down ideas, questions, conjectures, observations, proof attempts, examples, counter-examples
- when you hit a blind alley, reread your old notes
Start small

- It’s unfortunate that when you read a paper you don’t see all the blind alleys, failed conjectures etc.
- Work on lots of examples, even trivial ones.
- Having seen some examples, try to extrapolate to a conjecture.
- Alternate between trying to prove/disprove the conjecture.
- Learn to appreciate counter-examples, not just for the time saving since you don’t have to try a proof. Understand the structure of the problem illustrated by the counter-example.
- When you have a counter-example, adjust your conjecture - sometimes the counter-example just illustrates a special case.
- When you have a proof, try to generalize the new result.
Put emphasis on definitions

- Without the proper definitions, you can’t hope to build an elegant theory.
- Gian-Carlo Rota - approx. quote. “The key to doing mathematics is getting the right definitions - proving theorems becomes a matter of hygiene.”
- Try to develop a feel for when you have the right foundation of definitions.
- If things just don’t feel right, there is a good chance that they’re not right.
Manage your time

- Make sure you’re devoting enough time for research - at least 50%.
- Prime thinking time should be spent on research.
- Most people should avoid marathon research sessions, especially when alone.
- It’s very easy to avoid doing research by spending too much time on courses.
- Become a persistent researcher - be reluctant to “give up” on a problem. Discuss abandoning a problem with your supervisor.
- Meet regularly with your supervisor, especially if you’re having trouble keep your nose to the grindstone.
Other Tips

- **Keep your eyes open for “orthogonal research”:** How would this observation relate to problem X? This may lead to interdisciplinary research and possibly a new supervisor or cosupervisor.
Other Tips

- **Keep your eyes open for “orthogonal research”:** How would this observation relate to problem X? This may lead to interdisciplinary research and possibly a new supervisor or cosupervisor.

- **Learn to embrace getting lost with what you had regarded as trivial concepts:** Often, this is caused by a whole shift in your understanding of the area.
Other Tips

- **Keep your eyes open for “orthogonal research”:** How would this observation relate to problem X? This may lead to interdisciplinary research and possibly a new supervisor or cosupervisor.

- **Learn to embrace getting lost with what you had regarded as trivial concepts:** Often, this is caused by a whole shift in your understanding of the area.

- **Try to learn how to think laterally:** Let your mind wander - go for a walk, listen to soft music · · ·.
Other Tips

- **Keep your eyes open for “orthogonal research”:** How would this observation relate to problem X? This may lead to interdisciplinary research and possibly a new supervisor or cosupervisor.

- **Learn to embrace getting lost with what you had regarded as trivial concepts:** Often, this is caused by a whole shift in your understanding of the area.

- **Try to learn how to think laterally:** Let your mind wander - go for a walk, listen to soft music · · ·.

- **Work on more than one problem at a time:** Helps when you run into a blind alley.
Other Tips

- **Keep your eyes open for “orthogonal research”:** How would this observation relate to problem X? This may lead to interdisciplinary research and possibly a new supervisor or cosupervisor.

- **Learn to embrace getting lost with what you had regarded as trivial concepts:** Often, this is caused by a whole shift in your understanding of the area.

- **Try to learn how to think laterally:** Let your mind wander - go for a walk, listen to soft music · · ·

- **Work on more than one problem at a time:** Helps when you run into a blind alley.

- **Learn to criticize your own writing:** Reading out loud often helps.
Research is an incredible amount of fun

- The highs are high - at times you’ll realize that you’ve seen something that nobody else has ever seen.

 “Getting the chills”
Final Comments

Research is an incredible amount of fun

- The highs are high - at times you’ll realize that you’ve seen something that nobody else has ever seen.
 “Getting the chills”

- The lows can be very low - but, in my experience, most failed results have eventually contributed to something that has succeeded.
Final Comments

Research is an incredible amount of fun

- The highs are high - at times you’ll realize that you’ve seen something that nobody else has ever seen.

 “Getting the chills”

- The lows can be very low - but, in my experience, most failed results have eventually contributed to something that has succeeded.

- As you mature as a researcher, you’ll develop a set of great (international) research colleagues. The friendships can be as rewarding as the research itself.
Thank you for your attention