Physics-Based Character Animation

Aaron Hertzmann University of Toronto

What determines how we move?

<u>Individual Style:</u> Biology Physics Intention Emotion

Can we build realistic and accurate models?

Applications

- 1. Computer animation
- 2. Computer vision
- 3. Biomechanics

Problems

- 1. Very labor intensive
- 2. Mocap is inexpressive
- 3. Don't work in real-time (e.g. for games)

Physics-Based Animation

- Spacetime optimization
- Motion editing
- Real-time control

Spacetime Animation

High-energy motions

Fang video

Controller-based animation

Hodgins video

Goals of this course

- 1. Understand mechanics
- 2. How can we build better models of motion?
- 3. How can we apply these models to animation, vision, etc.?

Outline of this course

- Lectures (first few weeks or so)
- Paper reading and discussion
- Assignments

Lecture topics

- 1. Newton's laws; forces and energies
- 2. Ordinary Differential Equations
- 3. Numerical Integration
- 4. Calculus of variations
- 5. Lagrangian Dynamics
- 6. Rigid body simulation
- 7. Numerical Optimization

Assignments (tentative)

- 1. Written problems and 1D numerical solver
- 2. Inverse kinematics
- 3. Real-time rigid-body implementation
- 4. Open-ended (implementation or research project)