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Frames from a voice-driven animation, computed from a single baby picture and an adult model of facial control. Note the
changes in upper facial expression. See figures 5, 6 and 7 for more examples of predicted mouth shapes.

Abstract

We introduce a method for predicting a control signal from another
related signal, and apply it tovoice puppetry: Generating full facial
animation from expressive information in an audio track. The
voice puppet learns a facial control model from computer vision
of real facial behavior, automatically incorporating vocal and facial
dynamics such as co-articulation. Animation is produced by using
audio to drive the model, which induces a probability distribution
over the manifold of possible facial motions. We present a linear-
time closed-form solution for the most probable trajectory over
this manifold. The output is a series of facial control parameters,
suitable for driving many different kinds of animation ranging from
video-realistic image warps to 3D cartoon characters.
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1 Face-syncing and control

As rendering techniques begin to deliver realistic-looking scenes,
people are beginning to expect realistic-looking behavior. There-

fore control is an increasingly prominent problem in animation.
This is especially true in character facial animation, where good
lip-syncing and dynamic facial expression are necessary to make a
character look lively and believable. Viewers are highly attentive to
facial action, quite sophisticated in their judgments of realism, and
easily distracted by facial action that is inconsistent with the voice
track.

We introduce methods for learning a control program for speech-
based facial action from video, then driving this program with
an audio signal to produce realistic whole-face action, including
lip-syncing and upper-face expression, with correct dynamics,
co-articulation phenomena, and ancillary deformations of facial
tissues. In principle this method can be used to reconstruct
any process from a related signal, for example, to synthesize
dynamically correct 3D body motion from a sequence of shadows.
We demonstrate with facial animation because of the obvious
complexity of the process being modeled—the human face has
many degrees of freedom, many nonlinear couplings, and a rather
complicated control program, the mind.

Voice puppetry provides a low-cost quick-turnaround alternative
to motion capture, with the additional flexibility that an actor’s
facial manner can be re-used over and over again to “face-sync”
completely novel audio by other speakers and at other frame rates.
It is fully automatic but an animator can intercede at any level to add
detail. All algorithms have time complexity linear in the length of
the input sequence; production time is slightly faster than utterance-
time on a contemporary mid-level workstation.

2 Background

Psychologists and storytellers alike have observed that there is a
good deal of mutual information between vocal and facial gesture
[27]. Facial information can add significantly to the observer’s
comprehension of the formal [3] and emotional content of speech,
and is considered by some a necessary ingredient of successful
speech-based interfaces. Conversely, the difficulty of synthesizing
believable faces is a widely-noted obstacle to producing acceptable
digital avatars and animations. People are highly specialized for
interpreting facial action; a poorly animated face can be disturbing
and even can interfere with the comprehension of speech [20].

Lip-syncing alone is a laborious process: The voice track is
dissected (often by hand) to identify features such as stops and
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vowels, then matched mouth poses are scheduled in the animation
track, 2-10 per second. Because it can overwhelm production
schedules, lip-syncing has been the focus of many attempts at
quasi-automation. Nearly all lip-syncing systems are based on an
intermediate phonemic representation, whether obtained by hand
[23, 24], from text [9, 12, 1, 17] or, with varying degrees of success,
via speech recognition [18, 28, 7, 8, 29]. Typically, phonemic or
visemic tokens are mapped directly to lip poses, ignoring dynamical
factors. Efforts toward dynamical realism have been heuristic
and use limited contextual information (e.g., [10, 7]). Consider
the problem of co-articulation—the interaction between nearby
speech segments due to latencies in tissue motion. To date, all
attempts at co-articulation have depended on heuristic formulæ
andad hocsmoothing methods. E.g., BALDY [9] is a phoneme-
driven computer graphics head that uses hand-designed vocal
co-articulatory models inspired by the psychological literature.
Although VIDEO REWRITE [7] works by re-ordering existing
video frames rather than by generating animations, it deserves
mention because it partially models vocal (but not facial) co-
articulation with triphones—phonemes plus one 1 unit of left and
right context. The quality of a video rewrite is determined by the
amount of video that is available to be provide triphone examples
and how successfully it is analyzed; smoothing is necessary because
triphones don’t fully constrain the solution and no video will
provide an adequate stock of triphones.

Considerable information can be lost when discretizing to
phonemic or visemic representations. The international phonetic
alphabet is often mistaken for a catalog of the sounds and articu-
lations humans make while communicating; in fact, phonemes are
designed only to provide the acoustic features thought necessary
to distinguish pronunciations of higher, meaning-carrying language
elements. Phonemic representations are useful for analysis but
quite suboptimal for synthesis because they obliterate predictive
relationships such as those of vocal prosody to upper facial gesture,
vocal energy to gesture magnitude, and vocal phrasing to lip
articulation. There have been attempts to circumvent phonemes and
generate lip poses directly from the audio signal (e.g., [22, 19]) but
these are limited to predicting instantaneous vowel shapes.

None of these methods address the actual dynamics of the
face. Facial muscles and tissues contract and relax at different
rates. There are co-articulations at multiple time-scales—50-250
milliseconds in the vocal apparatus [21], possibly longer on the
face. Furthermore, there is evidence that lips alone convey less
than half of the visual information that human subjects can use
to disambiguate noisy speech [3]. Much of the expressive and
emotional content of facial gesture occurs in the upper half of the
face. This is not addressed at all in speech-driven systems; some
text-driven systems attempt upper-face animation, usually via hand
annotations orad hocrules that exploit clues to sentence meaning
such as punctuation.

We propose a more realistic mapping from voice to face by
learning a model of a face’sobserveddynamics during speech, then
learning a mapping from vocal patterns to facial motion trajectories.
Animation is accomplished by using voice information to steer the
model. This strategy has several appealing properties:

• Voice is analyzed with regard to learned (equivalently,
optimized) categories of facial gesture, rather than with regard
to hypothesized categories of speech perception.

• A consistent probabilistic framework allows us to find the
optimal face trajectory for a whole utterance, making full
use of forward and backward context and avoiding unjustified
shortcuts such as smoothing or windowing.

• Video is analyzed just once, for training; the resulting model
can be used re-used to face-sync any other person or creature to
novel audio.

• The puppet animates speech and non-speech sounds.

• It predicts full facial motion from the neck to the hairline.

• The output is a sequence of facial motion vectors that can be
used to drive 2D, 3D, or image-based animations.

3 Modeling the facial behavior manifold

It is useful to think of control in terms of the face’s true behavioral
manifold—a surface of all possible facial pose and velocity
configurations embedded in a high-dimensional measurement
space, like crumpled paper in 3-space. Actual performances
are trajectories over this manifold. Our learning strategy
is to piecewise approximate this manifold with quasi-linear
submanifolds, then glue together these pieces with transition
probabilities. Approximation is unavoidable because there isn’t
enough information in a finite training set to determine the shape
of the true manifold. Therefore our control model is a probabilistic
finite state machine, in which each state has an “output” probability
distribution over facial poses and velocities, including how they
covary. E.g., for every instantaneous pose each state predicts a
unique most likely instantaneous velocity. The states are glued
together with a distribution of transition probabilities that specify
state-to-state switching dynamics and, implicitly, expected state
durations.

Formally, this is ahidden Markov model(HMM)—Markov
because all the context needed to do inference can be summed
up in a vector of current state probabilities, and hidden because
we never actually observe the states; we must infer them from the
signal. For this we have the Viterbi algorithm [13], which identifies
the most likely state sequence given a signal. The related Baum-
Welch algorithm [2] estimates parameter values, given training data
and a prior specification of the model’s finite state machine. Both
algorithms are based on dynamic programming and give locally
optimal results in linear time. For this reason,HMMs dominate the
literature of speech and gesture recognition.

Unfortunately, even for very small problems such as individual
phoneme recognition, finding an adequate state machine is a matter
of guesswork. This limits the utility ofHMMs for more complex
modeling because the structure of the state machine (pattern of
available transitions) is the most important determinant of a model’s
success. Structure also determines the machine’s ability to carry
context; the rate at which anHMM forgets context is determined by
how easily it can transition between any two states.

Voice puppetry features two significant innovations in the theory
of HMMs: In §4.2 we outline the mathematical basis for training
algorithms that estimate both theHMM parameter valuesand the
structure of its finite state machine. This substantially generalizes
Baum-Welch. In §4.5 we introduce an efficient solution for
synthesizing the most probable signal from a state sequence.
This can be thought of as an inverse Viterbi. Together, these
techniques allow us to turnHMMs—traditionally only good enough
for classification—into models of behavioral manifolds that are
accurate enough for synthesis. As such, they can be trained to
predict any nonrandom time-varying signal from a coordinated
signal.

4 System overview

Figure 1 schematically outlines the main phases of voice puppetry.
In training (first line), video is analyzed to yield a probabilistic
finite state machine; a mapping from states into regions of
facial configuration space; and an occupancy matrix giving
state probabilities for each frame of the training sequence. In
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Figure 1: Schematic of the training, remapping, analysis, and
synthesis steps of voice puppetry. See§4 overview.

A. tracking B. reconstruction C. control
Figure 2: (A) Tracking of facial features for training data. See§4.1.
(B) Voice-predicted facial feature locations (blue) superimposed
over ground-truth locations (red). See§4.5. (C) A 3D model
articulated via vertex motions. See§4.6.

remapping (second line), the occupancy matrix is combined with
the synchronized audio to give each state a dual mapping into
acoustic feature space. These two steps define a puppet. In
analysis of novel audio (third line), the state machine and the
vocal distributions are combined to form anHMM which is used
to analyze control audio, resulting in a most likely facial state
sequence. This is much like speech recognition, except that
the units of interest are facial states rather than phonemes. In
synthesis (last line), the system solves for a trajectory through
facial configuration space that is optimal with regard to the state
sequence and learned facial output distributions.

4.1 Signal processing

To obtain facial articulation data, we developed a computer vision
system that simultaneously tracks many individual features on the
face, such as corners and creases of the lips. Taking Hager’sSSD
texture-based tracker [15] as a starting point, we developed a mesh
of such trackers to cover the face. Figure 2A shows the system
tracking 26 points on a face. We assigned spring tensions to each
edge connecting a pair of trackers, and the entire system was made
to relax by simultaneously minimizing the spring energies and the
residuals of the individual trackers. If a tracker falls off its landmark
feature, spring forces from its neighbors tend to push it back into
place. To estimate spring lengths and stiffnesses for a specific
sequence, we run the video through the system, record the mean
and variance of the distance between pairs of trackers, and use
this to re-estimate the spring properties. A few repetitions sufficed

to obtain stable and accurate tracking in our training videos. By
tracking from two views we can also obtain stereo estimates of 3D
depth. Our tracker can track on unmarked faces but depends on
high-quality video to deliver facial texture, e.g., wrinkles or beard
shadow. Since obtaining accurate data was more important than
stress-testing our tracker, we marked low-texture facial areas and
asked subjects to reduce head motions.

To obtain a useful vocal representation, we calculate a mix
of LPC and RASTA-PLP audio features [16]. These are known
to be useful to speech recognition and somewhat robust to
variations between speakers and recording conditions. However,
they are designed for phonemic analysis and aren’t necessarily
good indicators of facial activity. We also extract some prosodic
features such as the formant frequencies and the energy in sonorant
frequency bands.

Note that the puppet may work equally well with other
representations of vocal and facial signals, and even different kinds
of signals. Indeed, the success of our experiments notwithstanding,
“Where in the signal is the information?” is still an open question
for voice-driven facial animation and more generally for face
perception and speech recognition.

4.2 Learning by entropy minimization

The mapping from vocal configurations to facial configurations is
many-to-many: Many sounds are compatible with one facial pose;
many facial poses are compatible with one sound. Were it not
for this ambiguity, we could use a regression method such as a
neural network or radial basis function network. Since much of
the complexity arises from causal factors such as co-articulation,
the best remedy is to use context from before and after the frame
of interest. The fact that the disambiguating context has no fixed
length or proximity to the current frame strongly recommends that
we use a hidden Markov model, which (if properly trained) can
make optimal use of context across an entire utterance, regardless
of its length. AnHMM uses its hidden states to carry contextual
information forward and backward in time; a sufficiently powerful
training algorithm will naturally assign some states to that task.

Since the hidden state changes in each frame under the influence
of the observed data, it is important for the probability matrix
governing state transitions to be sparse, otherwise a context-
carrying state will easily transition to a data-driven state, and
the contextual information will be lost. We have developed
a framework for training probabilistic models that minimizes
their internal entropy; inHMMs that translates to maximizing
compactness, sparsity, capacity to carry contextual information,
and specificity of the states. The last property is also important
because conventionally trainedHMMs typically express the content
of a frame as a mixture of states, making it impossible to say that
the system was in any one state.

We briefly review the entropic training framework here, and
refer readers to [5, 4] for details and derivations. We begin with
a datasetX and a model whose parameters and structure are
specified by the vectorθ. In conventional training, one guesses
the sparsity structure ofθ in advance and merely re-estimates
nonzero parameters to maximize the likelihood functionf(X|θ).
In entropic training, we learn the size of theθ, its sparsity
structure, and its parameter values simultaneously by maximizing
the posterior probability given by Bayes’ rule,

θ∗ = argmax
θ

[P (θ|X) ∝ f(X|θ)Pe(θ)] (1)

Bayes’ rule tells us how the probability of a hypothesisθ changes
after we have seen some evidenceX. The key to entropic
estimation is that we derive the prior probability of a hypothesis
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from its entropy,
Pe(θ) ∝ e−H(θ) (2)

where H(·) is an entropy measure defined on the model’s
parameters. Entropy measures uncertainty, thus we are seeking
the least ambiguous model that can explain the data. The entropic
prior can be understood as a mathematization of Occam’s razor:
Choose the simplest hypothesis that adequately explains the data.
Simpler models are less ambiguous because they allow fewer
alternatives. Entropic estimation has interpretations as optimal
compression and free energy minimization [5], depending on the
formulation ofH(θ). The free energy interpretation derives from
the differential entropyHF(θ) = −

∫
P (X|θ) logP (X|θ) dX

or the more tractable expected entropy; algorithmic complexity
theory recommends that we use the compression formulation,
which upper-boundsHF with the sum the entropies of the model’s
component distributions. For discrete-state Gaussian-outputHMMs,
the likelihood function and compression entropy are:

f(X|θ) =
∑
S

T∏
t

θs(t)|s(t−1)N (xt;µs(t),Ks(t)), (3)

HC(θ) =
∑
i

∑
j

θj|i log 1/θj|i + 1
2 log(2πe)d|Ki|, (4)

where θj|i are transition probabilities andµi,Ki are the d-
dimensional mean and covariance of theith state’s Gaussian output
probability density function.

Given a factorizable model such as anHMM, the maximum
a posteriori (MAP) problem decomposes into a separate equation
for each independent parameter, each having its own entropic
prior. In [5] we present exact solutions for a wide variety of such
equations, yielding very fast learning algorithms; the case ofHMMs
is extensively treated in [4]. MAP estimation extinguishes excess
parameters and maximizes the information content of the surviving
parameters. Consequently, if we begin with a large fully-connected
HMM, the training procedure whittles away all parts of the model
that are not in accord with the hidden structure of the signal. This
allows us to learn the proper size and sparsity structure of a model.
Frequently, entropic estimation ofHMMs recovers a finite-state
machine that is very close to the mechanism that generated the data.

4.2.1 Example

The topmost illustration in figure 4 shows anHMM entropically
estimated from very noisy samples of a system that orbits in a
figure-eight. The true system is a 2D manifold (phase and its rate
of change) embedded in a 4D measurement space (observed 2D
position and velocity); theHMM approximates this manifold with
neighborhoods of locally consistent curvature in which velocity
covaries linearly with position. Note that even though the data
is noisy and has a continuation ambiguity where it crosses itself,
the entropically estimatedHMM recovers the deterministic structure
of the system. A conventionally estimatedHMM will get “lost”
at the crossing, bunching states at the ambiguity and leaving
many of them incorrectly over-connected, thus allowing multiple
circuits on either loop as well as small circuits on the crossing
itself. It is this additional concision and precision of entropic
models makes them significantly outperform their conventionally
estimated counterparts in traditional inference tasks, and enables
novel applications such as voice puppetry.

4.3 Training and remapping

Using entropic estimation, we learn a facial dynamical model from
the time-series of poses and velocities output by the vision system.

Figure 3: Reuse of the facialHMM’s internal state machine in
constructing the vocalHMM. Circles signify hidden states; arrows
signify conditional probabilities; icons signify regions of facial and
vocal configuration space contained within each output distribution.
See§4.3.

The learning algorithm gives us anHMM plus an occupancy matrix
γi,t = Prob(HMM hidden statei explains framet) of the training
video. We useγ to estimate a second set of output probabilities,
given each state, of the synchronized audio track. This associates
audio features to each facial state, resulting in a new vocalHMM
which has the dynamics of the face, but is driven by the voice
(figure 3).

4.4 Analysis

Given a new vocal track, we apply the Viterbi algorithm to the vocal
HMM to find the most likely sequence of predicted facial states.
Although it is steered by information in the new vocal track, the
Viterbi sequence is constrained to follow the natural dynamics of
the face.

4.5 Synthesis

We use the facial output probabilities to make a mapping from
the Viterbi states to actual facial configurations. Were we to
simply pick the most probable configuration for each state—its
mean face—the animation would jerk from pose to pose. Most
phoneme- and viseme-based lip-sync systems address this problem
by interpolating or splining between poses. This might ameliorate
the jerkiness, but it is anad hocsolution that ignores the face’s
natural dynamics.

A proper solution should yield a short, smooth trajectory that
passes through regions of high probability density in configuration
space at the right time—in our framework, a geodesic on
the facial behavior manifold. Prior approaches to trajectory
estimation typically involve optimizing an objective function
having a likelihood term plus penalty terms for excess length
and/or kinkiness and/or point clumpiness. The user must
choose a parameterization and weighting for each term. This
leads to variational algorithms that are often approximate and
computationally intensive (e.g., [26]); often the objective function
is nonconvex and one cannot tell whether the found optimum is
global or mediocre.

Our current setting constrains the problem so significantly that
a globally optimal closed-form solution is available. Because
we model both pose and velocity, the facial output probabilities
alone contain enough information to completely specify the smooth
trajectory that is most consistent with the facial dynamics and a
given facial state sequence.

24



The formulation is quite clean: We assume that each state has
Gaussian outputs that model positions and velocities. For simplicity
of exposition, we’ll assume a single Gaussian per state, but our
treatment trivially generalizes to Gaussian mixtures. Letµi, µ̇i be

the mean position and velocity for statei, andK−1
i =

[
Kxx
i
Kxẋ
i

Kẋx
i
Kẋẋ
i

]
be a full-rank covariance matrix relating positions and velocities
in all dimensions. Furthermore, lets(t) be the state governing
framet and letY = {y1,y2,y3, . . .}> be the variable of interest,
namely, the points the trajectory passes through at frame 1,2,3,...
(All vectors in this paper are row-major.) We seek the maximum
likelihood trajectory

Y ∗ = argmax
Y

log
∏
t

N (ỹt;Ks(t))

= argmin
Y

∑
t

ỹtK
−1
s(t)ỹ

>
t /2 + c (5)

whereN (x;K) is the Gaussian probability ofx given covariance
K; and ỹt = [yt−µs(t), (yt−yt−1)−µ̇s(t)] is a vector of the
mean-subtracted facial position and velocity at timet. Eqn. 5
is a quadratic form having a single global optimum. Setting its
derivative to zero yields a block-banded system of linear equations:

Kxx
s(t) +Kẋx

s(t)

Kẋx
s(t) +Kẋẋ

s(t)

Kẋx
s(t+1) +K ẋẋ

s(t+1)

Kẋx
s(t+1)

Kẋẋ
s(t+1)


⊥

yt −µs(t)
yt − yt−1 − µ̇s(t)
yt − yt+1

µs(t+1)

µ̇s(t+1)


⊥>

= 0

(6)

where the block-transpose
[
AB
CD

]⊥
=

[
AC
BD

]
6=
[
A>C>

B>D>

]
and

K ẋx
i = (Kxẋ

i +K ẋx
i )/2. For T frames andD = dim(yt)

dimensions, the system can be LU-decomposed and solved in time
O(TD3) [14, §4.3.1]. By scaling the velocity terms, one may also
solve for this trajectory at frame rates other than that of the training
video.

Figure 4 shows various ways of estimating trajectories from an
HMM model of the manifold of motion in a figure-eight. Increasing
the number ofHMM states improves the quality of the synthesized
trajectory, provided there is sufficient data to support estimates of
the additional parameters. Entropic estimation will automatically
remove insufficiently supported parameters.

Eqn. 5 is only justified when the Viterbi sequenceV =
{s(1), s(2), . . . , s(T )} strongly dominates the distribution of
probable sequences. The Viterbi sequence, while most likely, may
only represent a small fraction of the total probability mass—there
may be thousands of slightly different state sequences that are
nearly as likely. If this were to happen in the voice puppet,V
would be a very poor representation of the relevant information
in the audio, and the animation quality would suffer greatly.
Consequently, we found that voice puppetry works very poorly
with conventionally estimatedHMMs. These problems are virtually
banished with entropically estimated models because entropy
minimization concentrates the probability mass on the optimal
Viterbi sequence. (see§5, paragraph 2 for an empirical example).
In [6] we present a full BayesianMAP solution which considers
all possible state sequences and show that it and the maximum
likelihood solution are only valid for low-entropy models, where
they give almost identical results inferring 3D full-body pose and
motion from shadows.

4.6 Animation

The puppet synthesizes would-be facial tracking data—what most
likely would have been seen had the training subject produced the

HMM entropically estimated from noisy data

BEGIN

END

Geodesic calculated from random walk on the HMM

locally smoothed positional geodesic

Geodesics generated without probabilities on velocities

positional geodesic

Figure 4: TOP: An entropically estimatedHMM projected onto
synthetic training data. An× indicates the mean output of a
state; an ellipse indicates its covariance; and arcs indicate allowable
transitions. See§4.2.1. SECOND: A trajectory generated using
our method based on positional and velocity distributions. The
state sequence is obtained from a random walk through theHMM.
(Irregularities are due to variations between state dwells in the
random walk.) See§4.5. THIRD: If one solves for a geodesic
using just positional constraints, all control points clump on the
means. BOTTOM: Traditionally, clumpiness is ameliorated by
smoothing terms, but the trajectory is still unacceptable. (This
could be improved if one is able and willing to hand-tune the
objective function.)

input vocalization. This can be used to control a 3D animated
head model or to warp a 2D face image to give the appearance
of motion. Or, by learning an inverse mapping from tracking
data back to training video, we can directly synthesize new video.
We chose a versatile solution which provides a surprisingly good
illusion—a 2D image such as a photograph is texture-mapped onto
a 3D model having a low triangle count—roughly 200 (figure 2C).
Deformations of the 3D model give a naturalistic illusion of facial
motion while the smooth shading of the image gives the illusion
of smooth surfaces. The deformations can be applied directly
by moving vertices according to puppet output, or indirectly by
projecting synthesized facial configurations onto a basis set of
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Figure 5: Visualization of the mean configuration for some of the learned states. Dynamical content is not shown.

motion vectors (a.k.a. facial action units) that are defined on the
model (e.g., [25]). The latter approach has the advantage of giving
us full 3D control of a model even when the training data is only
2D. Action units are also commonly used for facial animation and
image coding, e.g.,MPEG-4.

5 Examples

We recorded subjects telling a variety of children’s stories and
processed 180 seconds of video, tracking 25 features on the face,
mostly around the mouth and eyes. Roughly 60 seconds of the data
were modeled with a 26-state entropically estimatedHMM. Many
of the learned states had mean outputs resembling visemes and
common facial morph targets, augmented with dynamical content
(figure 5). The perplexity (average branching factor) of the learned
facial state machine was 2.08, indicating that the model is carrying
context effects such as co-articulation an average of≈ 4.5 frames
(≈ 150 milliseconds) in either temporal direction1. In practice,
we have seen this model carry context over 330 milliseconds,
indicating that the system has discovered facial co-articulation
phenomena that last longer than vocal co-articulations (and have
yet to be mentioned in the speech psychology literature). These
properties are due to entropic estimation; anHMM conventionally
trained from the same initialization carried context an average of
slightly under 2 frames.

Figure 6 shows this model animating Mt. Rushmore under
the control of novel voice data. In this synthesis task, the
predicted face state sequence had an entropy rate of 0.0315. This
means that roughly one out of every 22 predictions in the facial
state sequence had a single plausible alternative. By contrast, a
conventionally trainedHMM yielded an entropy rate of 0.875—
roughly 2.4 plausible alternatives foreveryprediction in the facial
state sequence. As expected, the most probable sequence from the
conventionally estimatedHMM yielded an unacceptably degraded
animation, while the properly weighted combination of all such
sequences produced only a slight improvement.

5.1 Evaluation via error and coding measures

Remarkably, we found that the training data could be quite
accurately reconstructed (via the model) from its most probable
state sequence. After string compression, this works out to facial
motion coding of less than 4 bits per frame. Reconstruction of facial
motion from the vocal track was almost as good. We quantified
this with a squared error measure of divergence between ground-
truth (x) and reconstructed (y) facial motion vectors, weighted to

1More precisely,log2.08 26 ≈ 4.5 is the average number of transitions
the state machine takes to go between any two states. We use this as a
heuristic indicator of the model’s memory. The actual amount of time the
HMM takes to forget that it was in any particular state is a function of the
data and the output distributions, and can be determined empirically from
differences between the most likely state sequence and the set of states that
are most likely to output the observed data.

penalize motions in the wrong direction:

Err(x,y) = (x− y)(x− y)>/(x+ y)(x+ y)> (7)

We reconstructed facial motion from (1) most probable state
sequences of the ground-truth motion; (2) the vocal track; and (3) a
minimum squared error coding of the data via activations of action
units of the facial action coding system (FACS2 [11, 25]). The table
below shows mean errors as well as coding costs for storing and
transmitting animations:

model bits/ reconstruction error
coding Kbytes frame train test

state sequence ≈1.1 ≈4 0.1255 0.1698
vocal features ≈2.0 <500 0.1731 0.2115

FACS ≈0.6 >600 0.4735 0.4692

The same ranking obtains if one switches to an unweighted
squared-error measure. Note that synthesis from voice is
significantly better than the reconstruction from action unit codings,
indicating that the learned representation of theHMM is superior to
the psychologically-motivated but heuristic representation ofFACS.

We obtained even better results by training and using separate
models for the lower and upper face (e.g., eyes and up).
Surprisingly, even with a single model, motion in the upper face
is more accurately predicted than motion around the mouth. One
possible explanation is that upper facial behavior is a much less
complicated phenomenon, even though it seems less directly linked
to vocal behavior.

5.2 Evaluation by naive viewers

In order to judge the subjective quality of the animations, we
designed a set of blind trials in which naive observers tried to
distinguish synthesized from real facial motion. We took 1500
frames of tracked video that had not been used for training, set the
tracking data aside, and synthesized new facial motion from the
audio. We generated animations from both the synthesized motion
and the “ground-truth” tracked motion, broke each animation into
three segments, and presented all segments in random order to naive
observers. The subjects were asked to select the “more natural”
animations. Three observers consistently preferred the synthesized
animation; three consistently preferred the ground-truth animation;
and one preferred the ground-truth animation in two out of three
segments. This modest experiment indicates that while true and
synthesized facial action can be distinguished (real facial action is
more varied); they are almost equally plausible to naive viewers.

6 Discussion

The main determinant of puppetry quality is the extent and variety
of speech behavior in the training video. With 12 seconds of

2FACS, like phonemes and visemes, was designed for psychological
analysis, but has been pressed into service for modeling and coding by
computer scientists.
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Figure 6: President Jefferson at rest and face-syncing to novel audio. Animation runs from neck to hairline. On contemporary hardware,
compute time is less than the duration of the utterance.

training video we can produce tolerable animation; with 3 minutes
we approach video-realism. The quality of puppeteering degrades
gracefully as we increase acoustic noise levels or change to
microphones or speakers unlike those in the training set. E.g.,
when trained on adult men, the puppet has some difficulty with
children’s and women’s voices. We would recommend separate
models for each group because of large differences in facial manner
and spectral profiles between gender and age groups. It is possible
to train one large model on all groups, but this requires more data
than needed for separate models.

We have used French-trained puppets to produce English
animations and English-trained puppets to produce Russian and
Japanese animations. This compares favorably with phoneme-
based systems, which typically use an English subset of phonemes.
We have also found it reasonably easy, via projection, to animate
heads with substantially varied geometries, e.g., toddlers and
animals (figure 7).

We currently train withNTSC 29.97Hz video—a sampling rate
too low to reliably capture fast facial transients such as plosives
and blinks. The puppet can infer most plosives from context, but
true film-quality puppetry will probably require higher-resolution
training data, tracking a hundred or so points on the face over tens
of minutes of 100Hz video. In addition, we currently make no effort
to track and model the shape of the tongue; we are currently looking
into using archival x-ray films to complement the training set.
Finally, for photo-realism we must handle wrinkling and changes in
skin translucency; we are exploring variants of voice puppetry that
predict changes in both the facial geometry and the texture map.

The voice puppet is fully automatic. Animators, on the other
hand, want full control of an animation. Aside from adjusting the
raw vertex motions predicted by the voice puppet, there are several
ways an animator could intercede to customize the animation. Here
we list a few, beginning with the easiest: (1) Choose from a
palette of puppets, each trained on a different style of speech and
facial mannerisms. (2) Increase the variance of the training data,
which produces a cartoon-like exaggerated range of motion in facial
expression. (3) Add whole-face expression vectors (e.g., a grin)
to those generated by the voice puppet. (4) Edit the facial state
sequence. Options 3&4 are analogous to the present-day practices
of superimposing multiple morph targets and editing a phoneme
sequence, respectively.

7 Summary

Voice puppetry combines the voice, face, and facial mannerisms of
three different people into a realistic speaking animation. Given
novel audio, the system accurately generates lip and whole-face
motions in the style of the training performance, even reproducing
subtle effects such as co-articulation. This purely data-driven
approach stands on two innovations: An entropy-minimization
algorithm learns extremely compact and accurate probabilistic

models of the facial behavior manifold from training video; a
closed-form solution for geodesics on this manifold yields facial
motion sequences that are optimally compatible with new audio and
with learned facial behavior.
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