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Imagery?

S Create

1. How do artis



1. How do artists create imagery?



ow do viewers respond to artistic Imagery?



2. How do viewers respond to artistic imagery?



Non-Photorealistic Rendering
must play a central role in the
scientific understanding of
visual art and illustration



A scientific understanding of art could:
1. Further human knowledge
2. Lead to new tools

3. ... and new kinds of art and illustration
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A Beautiful vs Ugly B Beautiful vs Neutral

[Gooch et al. 2004]

Peak-Shift
|Ramachandran and
Hirstein 1999]

MRI data
[ Kawabata and Zeki 2004]
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|[Haeberli 1990]



[DeCarlo et al. 2003]



The pillars of science
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Experiment




Theory Experiment Computation

[Cole 2008]



This work research experimental studies

e Current usage of studies Is very
haphazard

* WAk need a new methodology for NPR

e But many papers do not need any
studies

See the paper for much more discussion



Some useful models for us:
1. Optimality theories in biology

2. Computational neuroscience and vision



REVIEW ARTICLE

Optimality theory in evolutionary biology

G. A. Parker & J. Maynard Smith

Optimization models help us to test our insight into the biological constrain
of evolution. They serve to improve our understanding about adaptations,

that natural selection produces optimal solutions.

ptimajfe]i

[N recent years, optimization theory and game theory have been
widely used, particularly by field biologists, to analyse evolution-
ary adaptation'~’. During the same period, originating with a
classic paper by Gould and Lewontin®, there has been continuing
criticism of the optimization approach. This criticism seems to
anise from the 1dea that those who adopt the approach assume
either that animals and plants are optimally adapted, or that
they are trying to prove that they are so. Hence any demonstra-
tion of the role of chance events—for example, that much
molecular variation is selectively neutral, or that unpredictable
events have had a major effect on evolution—has been seen as
undermining the optimization approach. If, by this review, we
could lay rest to the idea that the application of optimization
theory requires either that we assume, or that we attempt to
prove, that organisms are optimal, we would be well satisfied.

It 1s true that the optimization approach starts from the idea,
already familiar to Darwin, Wallace and Weismann in the last
century, that adaptation i1s a pervasive feature of living organ-
isms, and that i1t 1s to be explained by natural selection. It is
not our aim to add to this the claim that adaptation is perfect.
Rather, the aim is to understand specific examples of adaptation,
in terms of the selective forces and the historical and develop-
mental constraints operating. This requires that we have an
explicit model, in each specific case, that tells us what to expect
from a given set of assumptions. The predictions are an inevi-
table consequence of the assumptions. A model cannot then be
‘wrong’ (unless analysed incorrectly), but it can certainly be
inappropnate if it 1s based on assumptions that are not well
founded.

We distinguish between general models and specific models”,
though in reality they form part of a continuum. General models
have a heuristic function; they give qualitative insights into the

nnnnn nan d Bancmese alf cale.ddase Fan oamese aomcanatadd alactacal ek

Animals

the question is defined. Fc
obvious strategy set (the r:
sider is all points in the ¢
offspring to producing onl
need not be continuous: ma
Thus, for a bird’'s choice o
might include nesting in a

The strategy set simply
given what we consider i
Often, as in the case of sex
strategy sct that logically cc
cases it 1s necessary to rely
feel for candidate strategi
existing range of variation.’
define some obvious boun
but strategic possibilities t
are included unless there
them out.

In the construction of thg
about what is being maxim
fitness is usually used. The §
ted lifetime number of s
individual pursuing a gi
defined in units of gener]
phenotype). Many life-hist
cumbersome rate of increa
the Euler-Lotka equation
relative reproductive out
equate roughly with the se

REVISED EDITION

population genetics) will s
are relatives, however, it is
‘inclusive fitness'"”, which s

20 ondoime t M

R. McNeill Alexander

21Y2akla laaaleeaniess

A foininkiad s At dimeedttms o 8lanmd




Optimality may arise from evolution, learning, or both



Much NPR research is algorithmic

Can we describe an art/illustration
as optimizing an objective function?

For example, optimize viewer's
response



Pros and cons of optimality

Optimality allows us to reason about goals
without reasoning about mechanisms

Testable, reusable components (energy
terms)

Usually very di Lculk to optimize

Deterministic (but see paper)



Computational neuroscience and vision

Computational models have played a role
In building theories

Reason about how something can be
computed separately from how It Is
computed [Marr 1982]
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Optimal receptive fields match V1 | “ield and Olshausen]
(Image courtesy Geo [Hinton)
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Final thoughts

NPR will play a central role in the scientific understanding
of visual art and illustration

We need to develop new experimental methodologies and
perform more experimental work

This work must ultimately be interdisciplinary

This view of NPR leads to many new research ideas

Please read the paper:
WWW.dgp.toronto.edu/~hertzman/ScienceOfArt/
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