Machine Learning and Data Mining
Lecture Notes

CSC 411/D11
Computer Science Department
University of Toronto

Version: February 6, 2012

Copyright(©) 2010 Aaron Hertzmann and David Fleet

CSC411/CsC D11 CONTENTS
Contents
Conventions and Notation v
1 Introduction to Machine Learning 1
1.1 TypesofMachinelLearning it 2
1.2 Asimpleproblem 2
2 Linear Regression 5
21 ThelDCase i i e e e
2.2 Multidimensional inputs e e 6
2.3 Multidimensionaloutputs e 8
3 Nonlinear Regression 9
3.1 Basisfunctionregression e e 9
3.2 Overfitting and Regularization 11
3.3 Artificial Neural Networks 13
3.4 K-NearestNeighbors e 5
4 Quadratics 17
4.1 Optimizingaquadratic e e e 18
5 Basic Probability Theory 21
5.1 Classicallogic. e 21
5.2 Basicdefinitionsandrules e 22
5.3 Discreterandomvariables Lo 24
5.4 Binomial and Multinomial distributions 25
5.5 Mathematical expectation 26
6 Probability Density Functions (PDFs) 27
6.1 Mathematical expectation, mean,andvariance 28
6.2 Uniformdistributions e 29
6.3 Gaussiandistributions L e 29
6.3.1 Diagonalization 31
6.3.2 Conditional Gaussian distribution 33
7 Estimation 35
7.1 Learning a binomial distribution L oo 35
7.2 Bayes'Rule
7.3 Parameterestimation e 37
7.3.1 MAP, ML, and Bayes'Estimates 38
7.4 Learning GaussSians e e e e e e 39
Copyright(© 2011 Aaron Hertzmann and David Fleet i

CSC411/CsCD11 CONTENTS

7.5 MAP nonlinear regression e 40
8 Classification 42
8.1 ClassConditionals 42
8.2 LogisticRegression 44
8.3 Artificial Neural Networks 46
8.4 K-Nearest Neighbors Classification 46
8.5 Generative vs. Discriminative models 47
8.6 Classification by LS Regression i 48

8.7 NaveBayes e 49
8.7.1 DiscretelnputFeatures 49

8.7.2 Learning e e 51
9 Gradient Descent 53
9.1 Finitedifferences 55
10 Cross Validation 56
10.1 Cross-Validation e 56
11 Bayesian Methods 59
11.1 Bayesian Regression i 60
11.2 Hyperparameters i e e e e e 63
11.3 Bayesian Model Selection e 63
12 Monte Carlo Methods 69
12.1 SamplingGaussians e e 70
12.2 Importance Sampling e 70
12.3 Markov Chain Monte Carlo(MCMC) 73
13 Principal Components Analysis 75
13.1 Themodelandlearning 75
13.2 Reconstruction e 76
13.3 Propertiesof PCA e 77
13.4 Whitening o 78
135 Modeling e 79
13.6 Probabilistic PCA 79
14 Lagrange Multipliers 83
14.1 Examples 84
14.2 Least-Squares PCA inone-dimension 87
14.3 Multiple constraints 90
14.4 Inequality constraints e e 90

Copyright© 2011 Aaron Hertzmann and David Fleet i

CSC411/CsCD11 CONTENTS

15 Clustering 92
15.1 K-means Clustering 92
15.2 K-medoids Clustering e 94
15.3 Mixturesof Gaussians e e e e 95

15.3.1 Learning e 96
15.3.2 Numericalissues e 97
15.3.3 TheFreeEnergy i i 8 9
15.3.4 Proofs e 99
15.3.5 Relationtd{-means 101
15.3.6 Degeneracy e e 011
15.4 Determining the number ofclusters 101

16 Hidden Markov Models 103
16.1 MarkovModels 103
16.2 HiddenMarkovModels 104
16.3 Viterbi Algorithm e e 106
16.4 The Forward-Backward Algorithm 107
16.5 EM: The Baum-Welch Algorithm 110

16.5.1 Numerical issues: renormalization 110
16.5.2 FreeEnergy 121
16.6 Most likely state sequences e 114

17 Support Vector Machines 115
17.1 Maximizingthemargin e e e 115
17.2 Slack Variables for Non-Separable Datasets 117
17.3 LossFunctions e 118
17.4 The Lagrangian and the Kernel Trick, 120
17.5 Choosing parameters e 121
17.6 Software e e 122

18 AdaBoost 123
18.1 DecCision StumpPS o o i e e e e 126
18.2 Why doesitwork? 126
18.3 Earlystopping 128

Copyright© 2011 Aaron Hertzmann and David Fleet ii

CSC411/CsC D11 Acknowledgements

Conventions and Notation

Scalars are written with lower-case italics, ezg.Column-vectors are written in bold, lower-case:
x, and matrices are written in bold uppercaBe:
The set of real numbers is representedfyV-dimensional Euclidean space is writt@d .

Aside:
Text in “aside” boxes provide extra background or inforroatthat you are not re
quired to know for this course.

Acknowledgements

Graham Taylor and James Martens assisted with prepardttbese notes.

Copyright(© 2011 Aaron Hertzmann and David Fleet \Y

CSC411/CsC D11 Introduction to Machine Learning

1 Introduction to Machine Learning

Machine learning is a set of tools that, broadly speakinignals to “teach” computers how to
perform tasks by providing examples of how they should beed&ior example, suppose we wish
to write a program to distinguish between valid email messamd unwanted spam. We could try
to write a set of simple rules, for example, flagging messagaiscontain certain features (such
as the word “viagra” or obviously-fake headers). Howevettimg rules to accurately distinguish
which text is valid can actually be quite difficult to do weksulting either in many missed spam
messages, or, worse, many lost emails. Worse, the spamnieestively adjust the way they
send spam in order to trick these strategies (e.g., writn@yr@”). Writing effective rules —
and keeping them up-to-date — quickly becomes an insurnablentask. Fortunately, machine
learning has provided a solution. Modern spam filters ar@fied” from examples: we provide the
learning algorithm with example emails which we have magdabeled as “ham” (valid email)
or “spam” (unwanted email), and the algorithms learn tamiggtish between them automatically.
Machine learning is a diverse and exciting field, and theeenaultiple ways of defining it:

1. The Atrtifical Intelligence View. Learning is central to human knowledge and intelligence,
and, likewise, it is also essential for building intelligenachines. Years of effort in Al
has shown that trying to build intelligent computers by pemgming all the rules cannot be
done; automatic learning is crucial. For example, we hunaaashot born with the ability
to understand language — we learn it — and it makes sense to hgve computers learn
language instead of trying to program it all it.

2. The Software Engineering View. Machine learning allows us to program computers by
example, which can be easier than writing code the traditiomy.

3. The Stats View. Machine learning is the marriage of computer science angtta: com-
putational techniques are applied to statistical problévtechine learning has been applied
to a vast number of problems in many contexts, beyond theayptatistics problems. Ma-
chine learning is often designed with different considerst than statistics (e.g., speed is
often more important than accuracy).

Often, machine learning methods are broken into two phases:
1. Training: A model is learned from a collection tfaining data.
2. Application: The model is used to make decisions about sometasidata

For example, in the spam filtering case, the training datatdoites email messages labeled as ham
or spam, and each new email message that we receive (andwitielssify) is test data. However,
there are other ways in which machine learning is used as well

Copyright(© 2011 Aaron Hertzmann and David Fleet 1

CSC411/CsC D11 Introduction to Machine Learning

1.1 Types of Machine Learning
Some of the main types of machine learning are:

1. Supervised Learning,in which the training data is labeled with the correct ansyerg.,
“spam” or “ham.” The two most common types of supervisedrigay areclassification
(where the outputs are discrete labels, as in spam filteaimdpegression(where the outputs
are real-valued).

2. Unsupervised learning,in which we are given a collection of unlabeled data, whichwish
to analyze and discover patterns within. The two most ingrdréxamples ardimension
reduction andclustering.

3. Reinforcement learning, in which an agent (e.g., a robot or controller) seeks to I¢laen
optimal actions to take based the outcomes of past actions.

There are many other types of machine learning as well, famgte:
1. Semi-supervised learningin which only a subset of the training data is labeled
2. Time-series forecastingsuch as in financial markets
3. Anomaly detectionsuch as used for fault-detection in factories and in suarek
4

. Active learning, in which obtaining data is expensive, and so an algorithretrdatermine
which training data to acquire

and many others.

1.2 A simple problem

Figure 1 shows a 1D regression problem. The goal is to fit a Xizedo a few points. Which curve

is best to fit these points? There are infinitely many curvasfihthe data, and, because the data
might be noisy, we might not even want to fit the data precidégnce, machine learning requires
that we make certain choices:

1. How do we parameterize the model we fit? For the examplegar€il, how do we param-
eterize the curve; should we try to explain the data with edimfunction, a quadratic, or a
sinusoidal curve?

2. What criteria (e.g., objective function) do we use to juttgeequality of the fit? For example,
when fitting a curve to noisy data, it is common to measure ttaity of the fit in terms of
the squared error between the data we are given and the fitteel. &Vhen minimizing the
squared error, the resulting fit is usually called a leasases estimate.

Copyright(© 2011 Aaron Hertzmann and David Fleet 2

CSC411/CsC D11 Introduction to Machine Learning

3. Some types of models and some model parameters can bexypenysa/e to optimize well.
How long are we willing to wait for a solution, or can we use @apmations (or hand-
tuning) instead?

4. Ideally we want to find a model that will provide useful pitbns in future situations. That
is, although we might learn a model framaining datg we ultimately care about how well
it works on futuretest data When a model fits training data well, but performs poorly on
test data, we say that the model lna®rfitthe training data; i.e., the model has fit properties
of the input that are not particularly relevant to the taskatd (e.g., Figures 1 (top row and
bottom left)). Such properties are refered tonasse When this happens we say that the
model does nogieneralizewell to the test data. Rather it produces predictions on tbe te
data that are much less accurate than you might have hopei/éor the fit to the training
data.

Machine learning provides a wide selection of options byowhio answer these questions,
along with the vast experience of the community as to whiclthods tend to be successful on
a particular class of data-set. Some more advanced methodsle ways of automating some
of these choices, such as automatically selecting betwiéemative models, and there is some
beautiful theory that assists in gaining a deeper undetstgrof learning. In practice, there is no
single “silver bullet” for all learning. Using machine le@ang in practice requires that you make
use of your own prior knowledge and experimentation to sphablems. But with the tools of
machine learning, you can do amazing things!

Copyright(© 2011 Aaron Hertzmann and David Fleet 3

CSC411/CsC D11 Introduction to Machine Learning

15 15

Figure 1: A simple regression problem. The blue circles asasurements (the training data), and
the red curves are possible fits to the data. There is no oglet ‘answer;” the solution we prefer
depends on the problem. Ideally we want to find a model thatigees good predictions for new
inputs (i.e., locations on the-axis for which we had no training data). We will often prefenple,
smooth models like that in the lower right.

Copyright(© 2011 Aaron Hertzmann and David Fleet 4

CSC411/CsC D11 Linear Regression

2 Linear Regression

In regression, our goal is to learn a mapping from one rellechspace to another. Linear re-
gression is the simplest form of regression: it is easy teuwstdnd, often quite effective, and very
efficient to learn and use.

2.1 The 1D case

We will start by considering linear regression in just 1 dnsien. Here, our goal is to learn a
mappingy = f(z), wherezx andy are both real-valued scalars (i.e.c R,y € R). We will take
f to be an linear function of the form:

y=wr+b (1)

wherew is aweightandb is abias These two scalars are the parameters of the model, which
we would like to learn from training data. n particular, westvito estimates andb from the N
training pairs{(x;,y;)}*.,. Then, once we have values ferandb, we can compute the for a
newz.

Given 2 data points (i.e., N=2), we can exactly solve for thenown slopew and offseth.
(How would you formulate this solution?) Unfortunatelyistapproach is extremely sensitive to
noise in the training data measurements, so you cannotlyisuet the resulting model. Instead,
we can find much better models when the two parameters areatst from larger data sets.
When N > 2 we will not be able to find unique parameter values for whijch- wz; + b for all
1, since we have many more constraints than parameters. Bh@becan hope for is to find the
parameters that minimize the residual errors, ie (wx; + b).

The most commonly-used way to estimate the parametersleasy-squares regressiome
define an energy function (a.k.a. objective function):

N

E(w,b) = Z(Zh — (wx; +b))? (2)

i=1

To estimatew andb, we solve for thev andb that minimize this objective function. This can be
done by setting the derivatives to zero and solving.

dE

G = Y) ©

Solving forb gives us the estimate:
b Zz Yi Ez Li (4)

wT (5)

Copyright(© 2011 Aaron Hertzmann and David Fleet 5

CSC411/CsC D11 Linear Regression

091

0.8

0.7f °
o ol
06f 3
> 0.5F // o
5
0.4} y//
o_—
[
03t o
//

0.2

0.1f

I I I I I I I I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: An example of linear regression: the red line iofitie blue data points.

where we defing andy as the averages of thes andy’s, respectively. This equation for still
depends o, but we can nevertheless substitute it back into the enemggtibn:

B(w,b) = > (5 = §) — wlw; - 7))’ (6)
Then:
= Y () - wln —) — D)

Solving 22 = 0 then gives:

. zz@z - gj)(xL - j)
v > (i — 7)? ®

The valuesv* andb* are the least-squares estimates for the parameters oh#dae liegression.

2.2 Multidimensional inputs

Now, suppose we wish to learn a mapping fréidimensional inputs to scalar outputsic R”?,
y € R. Now, we will learn a vector of weights, so that the mapping will bé:

D

f(x):WTx+b:ijxj+b . 9

j=1

1Above we used subscripts to index the training set, while e are using the subscript to index the elements of
the input and weight vectors. In what follows the contextidtianake it clear what the index denotes.

Copyright(© 2011 Aaron Hertzmann and David Fleet 6

CSC411/CsC D11 Linear Regression

For convenience, we can fold the biasito the weights, if we augment the inputs with an addi-
tional 1. In other words, if we define

w1 T
w—| |, x=] " (10)
Wwp D
b 1
then the mapping can be written:
flx) =w'x. (11)
Given N training input-output pairs, the least-squares objedtivetion is then:
N
E(W) =Y (y - w'%)’ (12)
i=1
If we stack the outputs in a vector and the inputs in a mathientwe can also write this as:
E(w) = |ly — Xw|[? (13)
where
Y1 xlT 1
y=1 : |, X=] : (14)
Yn xy 1
and|| - || is the usual Euclidean norm, i.ély||> = >_,vZ. (You should verify for yourself that

Equations 12 and 13 are equivalent).
Equation 13 is known as a linear least-squares problem, amde solved by methods from
linear algebra. We can rewrite the objective function as:

BE(w) = (y - Xw)"(y - Xw) (15)
wIXTXw — 2y"Xw + yTy (16)
We can optimize this by setting all values @ /dw; = 0 and solving the resulting system of

equations (we will cover this in more detail later in Chapterld the meantime, if this is unclear,
start by reviewing your linear algebra and vector calcullife solution is given by:

w' = (XTX)'XTy a7)

(You may wish to verify for yourself that this reduces to thdusion for the 1D case in Section
2.1; however, this takes quite a lot of linear algebra andtle cleverness). The matriX* =
(XTX)~'XT is called thepseudoinversef X, and so the solution can also be written:

W =Xty (18)

Copyright(© 2011 Aaron Hertzmann and David Fleet 7

CSC411/CsC D11 Linear Regression

In MATLAB, one can directly solve the system of equations gdime slash operator:
W =X\y (19)

There are some subtle differences between these two wagd/oigthe system of equations. We
will not concern ourselves with these here except to sayl tiemommend using the slash operator
rather than the pseudoinverse.

2.3 Multidimensional outputs

In the most general case, both the inputs and outputs may hielimensional. For example, with
D-dimensional inputs, anf -dimensional outputg € R%, a linear mapping from input to output
can be written as

y = W'k (20)
whereW e R(P+*DxK |tis convenient to expres®d’ in terms of its column vectors, i.e.,
W=[w...wgl=| 00 0 VK (21)
by ... bk

In this way we can then express the mapping from the isqotthe;j,, element ofy asy; = w; x.
Now, given)N training samples, denoted;, y: ¥, anatural energy function to minimize in order
to estimatéW is just the squared residual error over all training samatekall output dimensions,
ie.,

N K
E(W) =D (4 — W %) (22)
i=1 j=1
There are several ways to convenientgctorizethis energy function. One way is to express
E solely as a sum over output dimensions. That isyldte the/N-dimensional vector comprising
the j** component of each output training vector, 3. = [Y1.5> Y255 o> yn ;T Then we can write

B(W) = lly; = X, (23)

whereX? = (X1 X5 ... xy|. With a little thought you can see that this really amountssto
distinct estimation problems, the solutions for which aveg byw; = X*y’.
Another common convention is to stack up everything into &imaquation, i.e.,

E(W) =Y - XW|[% (24)

whereY = [y} ...y%], and|| - || denotes the Frobenius norifY ||% = >~ . Y7,. You should
verify that Equations (23) and (24) are equivalent repriedéms of the energy function in Equa-
tion (22). Finally, the solution is again provided by the yd@inverse:

W* = XY (25)
or, in MATLAB, W* = X\ Y.

Copyright(© 2011 Aaron Hertzmann and David Fleet 8

CSC411/CsC D11 Nonlinear Regression

3 Nonlinear Regression

Sometimes linear models are not sufficient to capture tHevedd phenomena, and thus nonlinear
models are necessary. In regression, all such models w#i tiee same basic form, i.e.,

y = f(x) (26)

In linear regression, we hayéx) = Wx + b; the parameterSV andb must be fit to data.

What nonlinear function do we choose? In principiéx) could be anything: it could involve
linear functions, sines and cosines, summations, and sdHomever, the form we choose will
make a big difference on the effectiveness of the regressianore general model will require
more data to fit, and different models are more appropriatalifterent problems. Ideally, the
form of the model would be matched exactly to the underlyihgmomenon. If we're modeling a
linear process, we'd use a linear regression; if we were tiragla physical process, we could, in
principle, modelf (x) by the equations of physics.

In many situations, we do not know much about the underlyiatyme of the process being
modeled, or else modeling it precisely is too difficult. Iresle cases, we typically turn to a few
models in machine learning that are widely-used and qufectfe for many problems. These
methods include basis function regression (including Rd8esis Functions), Artificial Neural
Networks, and:-Nearest Neighbors.

There is one other important choice to be made, namely, tbeelf objective function for
learning, or, equivalently, the underlying noise modelthis section we extend the LS estimators
introduced in the previous chapter to include one or momagen encourage smoothness in the
estimated models. It is hoped that smoother models will teralerfit the training data less and
therefore generalize somewhat better.

3.1 Basis function regression

A common choice for the functiofi(x) is a basis function representatfon
y=flo)=> wbi(x) (27)
k

for the 1D case. The functiorig(z) are called basis functions. Often it will be convenient to
express this model in vector form, for which we defingr) = [by(z),..., by (2)]F andw =
[wy, ..., wy]t whereM is the number of basis functions. We can then rewrite the irasle

y=f(z) =b(x)'w (28)

Two common choices of basis functions aaynomials andRadial Basis Functions (RBF)
A simple, common basis for polynomials are thenomials i.e.,

bo(r) =1, bi(x) =2, by(zx)=2a> by(x)=2" .. (29)

2In the machine learning and statistics literature, thepeesentations are often referred to as linear regression,
since they are linear functions of the “featurég{x)

Copyright(© 2011 Aaron Hertzmann and David Fleet 9

CSC411/CsC D11 Nonlinear Regression

Polynomial basis functions Radial Basis Functions
T T

15F

w % R o

-0.5F

Figure 3: The first three basis functions of a polynomial esnd Radial Basis Functions

With a monomial basis, the regression model has the form

flz) = Z wyx® (30)

Radial Basis Functions, and the resulting regression modeajiaen by

be(e) = e 2t (31)
f@) =Y we wt (32)

wherec,, is thecenter (i.e., the location) of the basis function anéldetermines thevidth of the
basis function. Both of these are parameters of the modeirthat be determined somehow.

In practice there are many other possible choices for bastdibns, including sinusoidal func-
tions, and other types of polynomials. Also, basis fundifsom different families, such as mono-
mials and RBFs, can be combined. We might, for example, fornmse b&ing the first few poly-
nomials and a collection of RBFs. In general we ideally wantioose a family of basis functions
such that we get a good fit to the data with a small basis setatdlte number of weights to be
estimated is not too large.

To fit these models, we can again use least-squares regredsianinimizing the sum of
squared residual error between model predictions anddimérig data outputs:

E(w) =) (yi— f(z:)* =) (?Jz - Zwkbk($)> (33)

To minimize this function with respect @, we note that this objective function has the same form
as that for linear regression in the previous chapter, extbapthe inputs are now thg(z) values.

Copyright(© 2011 Aaron Hertzmann and David Fleet 10

CSC411/CsC D11 Nonlinear Regression

In particular, £ is still quadratic in the weights, and hence the weights can be estimated the
same way. That is, we can rewrite the objective function itrix&ector form to produce

E(w) = |ly — Bw][* (34)

where||-|| denotes the Euclidean norm, and the elements of the ntabe given byB, ; = b;(z;)
(for row i and columry). In Matlab the least-squares estimate can be computed asB\ y.

Picking the other parameters. The positions of the centers and the widths of the RBF basis
functions cannot be solved directly for in closed form. Sonveed some other criteria to select
them. If we optimize these parameters for the squared;ghen we will end up with one basis
center at each data point, and with tiny width that exactlthigtdata. This is a problem as such a
model will not usually provide good predictions for inputber than those in the training set.

The following heuristics instead are commonly used to deitee these parameters without
overfitting the training data. To pick the basis centers:

1. Place the centers uniformly spaced in the region comgittie data. This is quite simple,
but can lead to empty regions with basis functions, and valehan impractical number of
data points in higher-dimensinal input spaces.

2. Place one center at each data point. This is used more sfte it limits the number of
centers needed, although it can also be expensive if the @uohldata points is large.

3. Cluster the data, and use one center for each cluster. \Meowdr clustering methods later
in the course.

To pick the width parameter:
1. Manually try different values of the width and pick the bieg trial-and-error.

2. Use the average squared distances (or median distangesyhboring centers, scaled by a
constant, to be the width. This approach also allows you ¢éadifferent widths for different
basis functions, and it allows the basis functions to beegpaon-uniformly.

In later chapters we will discuss other methods for deteimgithese and other parameters of
models.

3.2 Overfitting and Regularization

Directly minimizing squared-error can lead to an effectezhbverfitting, wherein we fit the train-
ing data extremely well (i.e., with low error), yet we obta@model that produces very poor pre-
dictions on future test data whenever the test inputs diften the training inputs (Figure 4(b)).
Overfitting can be understood in many ways, all of which amgati@ns on the same underlying
pathology:

Copyright®© 2011 Aaron Hertzmann and David Fleet 11

CSC411/CsC D11 Nonlinear Regression

1. The problem is insufficiently constrained: for exampieye have ten measurements and ten
model parameters, then we can often obtain a perfect fit tdate

2. Fitting noise: overfitting can occur when the model is savgadul that it can fit the data and
also the random noise in the data.

3. Discarding uncertainty: the posterior probability dizition of the unknowns is insuffi-
ciently peaked to pick a single estimate. (We will explainaivthis means in more detail
later.)

There are two important solutions to the overfitting prohlewhding prior knowledge and handling
uncertainty. The latter one we will discuss later in the seur

In many cases, there is some sort of prior knowledge we cardge. A very common as-
sumption is that the underlying function is likely to bmooth for example, having small deriva-
tives. Smoothness distinguishes the examples in FigurehkreTis also a practical reason to
prefer smoothness, in that assuming smoothness reduces cooaplexity: it is easier to estimate
smooth models from small datasets. In the extreme, if we makgrior assumptions about the
nature of the fit then it is impossible to learn and generaltzdl; smoothness assumptions are one
way of constraining the space of models so that we have ang didparning from small datasets.

One way to add smoothness is to parameterize the model in atsmay (e.g., making the
width parameter for RBFs larger; using only low-order polymarbasis functions), but this limits
the expressiveness of the model. In particular, when we luds@nd lots of data, we would like
the data to be able to “overrule” the smoothness assumptidith large widths, it is impossible
to get highly-curved models no matter what the data says.

Instead, we can adegularization: an extra term to the learning objective function that mjiefe
smooth models. For example, for RBF regression with scalgubsitand with many other types
of basis functions or multi-dimensional outputs, this cardbne with an objective function of the
form:

E(w)=|ly-Bw|’+ Aw|f? (35)
———— N——

dataterm smoothness term

This objective function has two terms. The first term, catlegl data term, measures the model fit
to the training data. The second term, often called the shmest term, penalizes non-smoothness
(rapid changes irf(z)). This particular smoothness terfiw||) is calledweight decay because it
tends to make the weights smalffeweight decay implicitly leads to smoothness with RBF basis
functions because the basis functions themselves are Bpsmtapid changes in the slope of
(i.e., high curvature) can only be created in RBFs by addingsaidracting basis functions with
large weights. (Ideally, we might directly penalize smoass, e.g., using an objective term that
directly penalizes the integral of the squared curvaturg(gf, but this is usually impractical.)

3Estimation with this objective function is sometimes calRidge Regression in Statistics.

Copyright(© 2011 Aaron Hertzmann and David Fleet 12

CSC411/CsC D11 Nonlinear Regression

This regularized least-squaresobjective function is still quadratic with respectwoand can
be optimized in closed-form. To see this, we can rewrite fodews:

Ew) = (y—-Bw)(y —Bw)+\w'w (36)
= w/'B"Bw —2w'By + \w'w +y'y (37)
= w/(B'B+A)w—-2w'By +y'y (38)

To minimize £ (w), as above, we solve the normal equati®&(w) = 0 (i.e.,0F /0w; = 0 for
all 7). This yields the following regularized LS estimate for

w* = (B'B+) 'By (39)

3.3 Artificial Neural Networks

Another choice of basis function is the sigmoid functionigt8oid” literally means “s-shaped.”
The most common choice of sigmoid is:

g(a) = (40)

Sigmoids can be combined to create a model calledrdificial Neural Network (ANN) . For
regression with multi-dimensional inputsc R%, and multidimensional outpugs € R**:

y=fx) = wlyg (Z wi) ay + b§2>> +bW (41)
j k

This equation describes a process whereby a linear regrestboweightsw(2) is applied tox.
The output of this regressor is then put through the nontilsggmoid function, the outputs of
which act as features to another linear regressor. Thus that thenner weightsv® are distinct
parameters from theuter Weightwv](.l). As usual, it is easiest to interpret this model in the 1D
case, i.e.,

y=F@) =3 wg (wPe+52) + b0 (42)
J

Figure 5(left) shows plots af(wx) for different values ofv, and Figure 5(right) showg x+b)
for different values ob. As can be seen from the figures, the sigmoid function act®mpless
like a step function for large values af, and more like a linear ramp for small valueswaf The
biasb shifts the function left or right. Hence, the neural netwisrla linear combination of shifted
(smoothed) step functions, linear ramps, and the bias term.

To learn an artificial neural network, we can again write ail@gzed squared-error objective
function:

E(w,b) = |ly = fF()I]* + Al wl[* (43)

Copyright(© 2011 Aaron Hertzmann and David Fleet 13

CSC411/CsC D11 Nonlinear Regression

15 15
O training data points
— original curve
—— estimated curve
A o
1 po 0 [\/&
1 Q. (| [\
oon f 3% f @/ .| ‘ L
\
X | ik 4 P g
/] [\ osf [/ | fo 2/ 1P\
fo / N A
osF o AN\ I !
|
‘;/ \ o B? R |
& \ 4% &
/ S /
o B Q 75 C{
\
-05 / \
X | o]
|
s ¢ \ 2 \
05 ' Ll oy &/ 4
Q ? O training data points
/ \ / ~ original curve
mj 1 —— estimated curve
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
15 15 T T
o [e]
o] o
1 ooo © o 1 oo © -0
o o o/ = /O
o o 0 SN / Oy O
o o _© o,/ O / [eN
05 o O;,/ N osk / o o o
/ \ o/ b\ o Z \ 9 °\
o o]
; \< /) /
o o
0 R) \ 0 Q i \
\ o & o o
o [o o\ o
Q o jal
3 o] \p o/ \
-05 B -05[/ §
\\ / o \ o
_ © \ /o
o} Q
5 OO \& }Z{D
-1 She} ? g:;r; s::sepmms 1 -1 Q4 O training data points 1
— original curve
o —— estimated curve o __ estimated curve
15 I I I I I I I I I 15 I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 4: Least-squares curve fitting of an RBF. (a) Point datee(circles) was taken from a sine
curve, and a curve was fit to the points by a least-squareshié.hbrizontal axis ig;, the vertical
axis isy, and the red curve is the estimatg@k). In this case, the fit is essentially perfect. The
curve representation is a sum of Gaussian basis functid)O\erfitting. Random noise was
added to the data points, and the curve was fit again. The exaetly fits the data points, which
does not reproduce the original curve (a green, dashedvarg)well. (c)Underfitting. Adding

a smoothness term makes the resulting curve too smoothhidrcase, weight decay was used,
along with reducing the number of basis functions). (d) Reduthe strength of the smoothness
term yields a better fit.

Copyright®© 2011 Aaron Hertzmann and David Fleet 14

CSC411/CsC D11 Nonlinear Regression

09

9(x-4)
—a [
g(x+4)

0.8

0.7

0.6

0.4

0.3

0.2

0.1

Figure 5:Left: Sigmoidsg(wz) = 1/(1+e~*) for various values ofv, ranging from linear ramps
to smooth steps to nearly hard stefight: Sigmoidsg(z + b) = 1/(1 + e~*~%) with different
shiftsb.

wherew comprises the weights at both levels for alNote that we regularize by applying weight
decay to the weights (both inner and outer), but not the bjasace only the weights affect the
smoothness of the resulting function (why?).

Unfortuntely, this objective function cannot be optimizactlosed-form, and numerical opti-
mization procedures must be used. We will study one suchaodetiradient descent, in the next
chapter.

3.4 K-Nearest Neighbors

At heart, many learning procedures — especially when owr fxmowledge is weak — amount
to smoothing the training data. RBF fitting is an example of.tkiewever, many of these fitting
procedures require making a number of decisions, such dsdagons of the basis functions, and
can be sensitive to these choices. This raises the questionnot cut out the middleman, and
smooth the data directly? This is the idea behifxdNearest Neighborsregression.

The idea is simple. We first select a paramétemhich is the only parameter to the algorithm.
Then, for a new inpuk, we find the K nearest neighbors ® in the training set, based on their
Euclidean distancgx — x;||2. Then, our new output is simply an average of the training outputs

Copyright®© 2011 Aaron Hertzmann and David Fleet 15

CSC411/CsC D11 Nonlinear Regression

for those nearest neigbors. This can be expressed as:

y=r 3 v (44)
)

iENK(X

where the selVi (x) contains the indicies of th& training points closest ta. Alternatively, we
might take a weighted average of thenearest neighbors to give more influence to training points
close tox than to those further away:

y = 2ienicto W)Y L w(x;) = e IximxlF/2e? (45)
ZieNK (x) w(x;)

whereo? is an additional parameter to the algorithm. The paraméteando control the degree
of smoothing performed by the algorithm. In the extreme cdgd€ = 1, the algorithm produces
a piecewise-constant function.

K-nearest neighbors is simple and easy to implement; it doesjuire us to muck about at
all with different choices of basis functions or regulatiaas. However, it doesn’t compress the
data at all: we have to keep around the entire training setdardo use it, which could be very
expensive, and we must search the whole data set to maketwadi (The cost of searching
can be mitigated with spatial data-structures designesgdarching, such dsd-trees and locality-
sensitive hashing. We will not cover these methods here).

Copyright(© 2011 Aaron Hertzmann and David Fleet 16

CSC411/CSCD11 Quadratics

4 Quadratics

The objective functions used in linear least-squares aguaaazed least-squares are multidimen-

sional quadratics. We now analyze multidimensional quardurther. We will see many more

uses of quadratics further in the course, particularly wdtegding with Gaussian distributions.
The general form of a one-dimensional quadratic is given by:

f(z) = wor® + wiz + wy (46)
This can also be written in a slightly different way (calledrsdard form):
flx) =alz —0)* +c (47)

wherea = wq,b = —w1/(2ws),c = wy — wi/4w,. These two forms are equivalent, and it is
easy to go back and forth between them (e.g., givgnc, what arewg, wi, w»?). In the latter
form, it is easy to visualize the shape of the curve: it is albawth minimum (or maximum) at
b, and the “width” of the bowl is determined by the magnitude:pthe sign ofa tells us which
direction the bowl pointsq positive means a convex bowl negative means a concave bowl), and
c tells us how high or low the bowl goes (at= b). We will now generalize these intuitions for
higher-dimensional quadratics.

The general form for a 2D quadratic function is:

f(xy,22) = w1,1$% + w1212 + w2,2x§ + w1y + WeTo + Wy (48)

and, for an/V-D quadratic, it is:

f(z1,..xn) = Z Wy ;L5 + Z w;T; + Wy (49)

1<i<N,1<j<N 1<i<N

UV, L)

Note that there are three sets of terms: the quadratic térins; (z;;), the linear termsy_ w;z;)
and the constant ternuy).

Dealing with these summations is rather cumbersome. Weigantify things by using matrix-
vector notation. Lek be anN-dimensional column vector, writtea = [z1, ...zx]”. Then we can
write a quadratic as:

f(x) =x"Ax+b'x +c (50)
where
Wyl ... Wi
A= |, (51)
WN WN,N
b = [wi,..,wy]" (52)
c = wp (53)

Copyright®© 2011 Aaron Hertzmann and David Fleet 17

CSC411/CSCD11 Quadratics

You should verify for yourself that these different forme aquivalent: by multiplying out all the
elements off (x), either in the 2D case or, using summations, the geriéral D case.

For many manipulations we will want to do later, it is helpfai A to be symmetric, i.e., to
havew, ; = w;,. In fact, it should be clear that these off-diagonal entaiesredundant. So, if we
are a given a quadratic for which is asymmetric, we can symmetrize it as:

1 -

f(x) :XT(E(A—FAT))X—F]Z)TX—FC:XTAX+bTX—|—C (54)
and useA = $(A + AT) instead. You should confirm for yourself that this is equeévilto the
original quadratic.

As before, we can convert the quadratic to a form that leadketrer interpretation:

fx)=(x—p'Alx—p)+d (55)

whereu = —%A*lb, d = ¢ — " Ap, assuming thafA ! exists. Note the similarity here to the
1-D case. As before, this function is a bowl-shapéVirdimensions, with curvature specified by
the matrixA, and with a single stationary poipt.* However, fully understanding the shape of
f(x) is a bit more subtle and interesting.

4.1 Optimizing a quadratic

Suppose we wish to find the stationary points (minima or makiofi a quadratic
f(x)=x"Ax +b'x+c. (56)

The stationary points occur where all partial derivatives zero, i.e.0f/0z; = 0 for all i. The
gradient of a function is the vector comprising the parteihtives of the function, i.e.,

Vf=[0f/0x1,0f)0xs,...,0f ON]T . (57)

At stationary points it must therefore be true thaf = [0,...,0]7. Let us assume thak is
symmetric (if it is not, then we can symmetrize it as aboveju&iion 56 is a very common form
of cost function (e.g. the log probability of a Gaussian asmtelater see), and so the form of its
gradient is important to examine.

Due to the linearity of the differentiation operator, we d¢aok at each of the three terms of
Eq.56 separately. The last (constant) term does not deperdaad so we can ignore it because
its derivative is zero. Let us examine the first term. If wetevout the individual terms within the

4A stationary point means a setting-ofvhere the gradient is zero.

Copyright(© 2011 Aaron Hertzmann and David Fleet 18

CSC411/CSCD11 Quadratics

vectors/matrices, we get:

ay ... aiy T
(x1...2N) oo : (58)
aNi ... aNn Ty
= (z1a11 + T2a91 + . .. + TyaN1T1Q12 + Toloe + . . . (59)
T
..+ xia N + Toaoy + ... F TyaNN) : (60)
TN
=Ty + 2120091 + . .. + T1TNANT + T1T2A12 + T5A2 + ...+ TnTrans + ... (61)
...mlxNa1N+x2wNa2N+...+x?VaNN (62)
:Zaijxixj (63)
ij

The i'" element of the gradient correspondsit/dz;. So in the expression above, for the
terms in the gradient corresponding to eaghwe only need to consider the terms involviag
(others will have derivative zero), namely

.Z'IQCL” —|— Z ZL’Z'[EJ‘ (CLij + aji) (64)
J#
The gradient then has a very simple form:

0 (XTAX)

We can write a single expression for all of theusing matrix/vector form:

oxT Ax
0x

You should multiply this out for yourself to see that thisresponds to the individual terms above.
If we assume thaA is symmetric, then we have

—(A+A")x. (66)

= 2Ax. (67)

This is also a very helpful rule that you should remember. fidw term in the cost functiom?x,
has an even simpler gradient. Note that this is simply a dmdysst, and the result is a scalar:

bTX = blel + bg[EQ + ...+ le’N. (68)

Copyright(© 2011 Aaron Hertzmann and David Fleet 19

CSC411/CSCD11 Quadratics

Only one term corresponds to eachand sodf/dx; = b;. We can again express this in ma-

trix/vector form:
0 (bTx)
ox

This is another helpful rule that you will encounter agaihwé use both of the expressions we
have just derived, and set the gradient of the cost functi@eto, we get:

of(x)
0x

The optimum is given by the solution to this system of equetifcallednormal equationks

—b. (69)

=2Ax+b=10,...,0]" (70)

1
x=—3A"'b (71)

In the case of scalar, this reduces ta: = —b/2a. For linear regression with multi-dimensional
inputs above (see Equation 18} = XX7T andb = —2Xy?”. As an exercise, convince yourself
that this is true.

Copyright(© 2011 Aaron Hertzmann and David Fleet 20

CSC411/CsC D11 Basic Probability Theory

5 Basic Probability Theory

Probability theory addresses the following fundamenta&stjon: how do we reasonReasoning
is central to many areas of human endeavor, including phplog (what is the best way to make
decisions?), cognitive science (how does the mind work®jicaal intelligence (how do we build
reasoning machines?), and science (how do we test and gethelories based on experimental
data?). In nearly all real-world situations, our data andwiedge about the world is incomplete,
indirect, and noisy; hence, uncertainty must be a fundaahgirt of our decision-making pro-
cess. Bayesian reasoning provides a formal and consistgntong@asoning in the presence of
uncertainty; probabilistic inference is an embodimentahmon sense reasoning.

The approach we focus on hereBayesian Bayesian probability theory is distinguished by
defining probabilities adegrees-of-belief This is in contrast té-requentist statistics where the
probability of an event is defined as its frequency in thetliafian infinite number of repeated
trials.

5.1 Classical logic

Perhaps the most famous attempt to describe a formal sy$terasoning is classical logic, origi-
nally developed by Aristotle. In classical logic, we havengostatements that may be true or false,
and we have a set of rules which allow us to determine the tufalsity of new statements. For
example, suppose we introduce two statements, nainaad B:

A = "“My car was stolen”
B = “My car is not in the parking spot where | remember leaving it”

Moreover, let us assert the ruld“implies B”, which we will write asA — B. Then, ifA is
known to be true, we may deduce logically tiatmust also be true (if my car is stolen then it
won'’t be in the parking spot where | left it). Alternatively,l find my car where | left it (‘B is
false,” writtenB), then | may infer that it was not stoleA] by the contrapositivd — A.

Classical logic provides a model of how humans might reasath @aamodel of how we might
build an “intelligent” computer. Unfortunately, clasdidagic has a significant shortcoming: it
assumes that all knowledge is absolute. Logic requiresabdtnow some facts about the world
with absolute certainty, and then, we may deduce only thexsts fvhich must follow with absolute
certainty.

In the real world, there are almost no facts that we know wiitbotute certainty — most of
what we know about the world we acquire indirectly, throughfive senses, or from dialogue with
other people. One can therefore conclude that most of wh&ahawe about the world isincertain.
(Finding something that we know with certainty has occugederations of philosophers.)

For example, suppose | discover that my car is not where | mdvee leaving it B). Does
this mean that it was stolen? No, there are many other exjid&isa— maybe | have forgotten
where | left it or maybe it was towed. However, the knowled§idBomakesA more plausible
— even though | do not know it to be stolen, it becomes mordylikescenario than before. The

Copyright(© 2011 Aaron Hertzmann and David Fleet 21

CSC411/CsC D11 Basic Probability Theory

actual degree of plausibility depends on other contextfarination — did | park it in a safe
neighborhood?, did | park it in a handicapped zone?, etc.

Predicting the weather is another task that requires réagomith uncertain information.
While we can make some predictions with great confidence Yeegcan reliably predict that it
will not snow in June, north of the equator), we are often dawéh much more difficult questions
(will' it rain today?) which we must infer from unreliable soes of information (e.g., the weather
report, clouds in the sky, yesterday’s weather, etc.). énehd, we usually cannot determine for
certain whether it will rain, but we do get a degree of cettaupon which to base decisions and
decide whether or not to carry an umbrella.

Another important example of uncertain reasoning occumnglier you meet someone new —
at this time, you immediately make hundreds of inferencessfty unconscious) about who this
person is and what their emotions and goals are. You make ttessions based on the person’s
appearance, the way they are dressed, their facial expnsssheir actions, the context in which
you meet, and what you have learned from previous experitbeother people. Of course, you
have no conclusive basis for forming opinions (e.g., thenpadler you meet on the street may
be a method actor preparing for a role). However, we need tbleto make judgements about
other people based on incomplete information; otherwisenal interpersonal interaction would
be impossible (e.g., how do you reakyowthat everyone isn’t out to get you?).

What we need is a way of discussing not just true or false s&t&nbut statements that have
varying levels of certainty. In addition, we would like to &ble to use our beliefs to reason about
the world and interpret it. As we gain new information, oulidéfs should change to reflect our
greater knowledge. For example, for any two propositidAnandB (that may be true or false), if
A — B, then strong belief i\ should increase our belief iB. Moreover, strong belief if8 may
sometimes increase our beliefAnas well.

5.2 Basic definitions and rules

The rules of probability theory provide a system for reasgmith uncertainty. There are a number
of justifications for the use of probability theory to repaslogic (such as Cox’s Axioms) that
show, for certain particular definitions of common-senssoaing, that probability theory is the
only system that is consistent with common-sense reasomggwill not cover these here (see,
for example, Wikipedia for discussion of the Cox Axioms).

The basic rules of probability theory are as follows.

e The probability of a statemem — denotedP(A) — is a real number between 0 and
1, inclusive. P(A) = 1 indicates absolute certainty that is true, P(A) = 0 indicates
absolute certainty tha\ is false, and values between 0 and 1 correspond to varyingeeg
of certainty.

e Thejoint probability of two statement#\ andB — denotedP (A, B) — is the probability
that both statements are true. (i.e., the probability thatdtatementA A B” is true).
(Clearly,P(A,B) = P(B,A).)

Copyright(© 2011 Aaron Hertzmann and David Fleet 22

CSC411/CsC D11 Basic Probability Theory

e The conditional probability of A given B — denotedP(A|B) — is the probability that
we would assign tA being true,if we knewB to be true. The conditional probability is
defined as?(A|B) = P(A,B)/P(B).

e The Product Rule:
P(A,B) = P(A|B)P(B) (72)

In other words, the probability th&t andB are both true is given by the probability tHatis

true, multiplied by the probability we would assignAoif we knewB to be true. Similarly,
P(A,B) = P(B|A)P(A). This rule follows directly from the definition of conditiah
probability.

e The Sum Rule:

P(A) + P(A) =1 (73)

In other words, the probability of a statement being true tredprobability that it is false
must sum to 1. In other words, our certainty tiatis true is in inverse proportion to our
certainty that it is not true. A consequence: given a set dbally-exclusive statements;,
exactly one of which must be true, we have

> PA) =1 (74)

e All of the above rules can be made conditional on addition&drimation. For example,
given an additional stateme@Y, we can write the Sum Rule as:

> P(AC) =1 (75)
and the Product Rule as
P(A,B|C) = P(A|B,C)P(B|C) (76)

From these rules, we further derive many more expressiamsate probabilities. For example,
one important operation is calledarginalization:

P(B)=> P(A;B) (77)

if A, are mutually-exclusive statements, of which exactly onstrbe true. In the simplest case
— where the statememt may be true or false — we can derive:

P(B) = P(A,B) + P(A,B) (78)

Copyright(© 2011 Aaron Hertzmann and David Fleet 23

CSC411/CsC D11 Basic Probability Theory

The derivation of this formula is straightforward, using thasic rules of probability theory:

P(A)+P(A) = 1, Sum rule (79)

P(A|B)+ P(A|IB) = 1, Conditioning (80)
P(A|B)P(B) + P(A|B)P(B) = P(B), Algebra (81)
P(A,B)+ P(A,B) = P(B), Product rule (82)

Marginalization gives us a useful way to compute the prdighif a statemenB that is inter-
twined with many other uncertain statements.

Another useful concept is the notionioflependence Two statements are independent if and
onlyif P(A,B) = P(A)P(B). If A andB are independent, then it follows th&{A |B) = P(A)

(by combining the Product Rule with the defintion of indeperad. Intuitively, this means that,
whether or noB is true tells you nothing about whethAris true.

In the rest of these notes, | will always use probabilitiest@tements about variables. For
example, suppose we have a variablnat indicates whether there are one, two, or three people
in a room (i.e., the only possibilities ate= 1, x = 2, x = 3). Then, by the sum rule, we can
derive P(x = 1) + P(x = 2) + P(z = 3) = 1. Probabilities can also describe the range of a real
variable. For example?(y < 5) is the probability that the variablgis less than 5. (We'll discuss
continuous random variables and probability densitiesanentletail in the next chapter.)

To summarize:

The basic rules of probability theory:

e P(A) €0...1]

e Product rule: P(A,B) = P(A|B)P(B)

e Sumrule: P(A)+ P(A) =1

e Two statement@\ andB areindependentiff: P(A,B) = P(A)P(B)

e Marginalizing: P(B) =) . P(A;,B)

¢ Any basic rule can be made conditional on additional infdrama

For example, it follows from the product rule thatA, B|C) = P(A|B, C)P(B|C)

Once we have these rules — and a suitable model — we can dernverobability that we
want. With some experience, you should be able to derive asiyetl probability (e.gL(A|C))
given a basic model.

5.3 Discrete random variables

It is convenient to describe systems in terms of variables. eixkample, to describe the weather,
we might define a discrete variabke that can take on two valuasnny or rainy, and then try to
determineP(w = sunny), i.e., the probability that it will be sunny todaRiscrete distributions
describe these types of probabilities.

As a concrete example, let’s flip a coin. Lebe a variable that indicates the result of the flip:
¢ = heads if the coin lands on its head, ard= tails otherwise. In this chapter and the rest of

Copyright(© 2011 Aaron Hertzmann and David Fleet 24

CSC411/CsC D11 Basic Probability Theory

these notes, | will use probabilities specifically to refewvalues of variables, e.gb(c = heads)
is the probability that the coin lands heads.

What is the probability that the coin lands heads? This pritibahould be some real number
0,0 < # < 1. For most coins, we would say= .5. What does this number mean? The number
is a representation of our belief about the possible valties Bome examples:

0 =0 we are absolutely certain the coin will land tails

6 =1/3 we believe that tails is twice as likely as heads

0 =1/2 we believe heads and tails are equally likely
=1 we are absolutely certain the coin will land heads

Formally, we denote the probability of the coin coming updsasP(c = heads), SO P(c =
heads) = 6. In general, we denote the probability of a specific ewsnanht as P(event). By the
Sum Rule, we knowP(c = heads) + P(c = tails) = 1, and thusP(c = tails) = 1 — 6.

Once we flip the coin and observe the result, then we can by gree that we know the value
of c; there is no practical need to model the uncertainty in theesarement. However, suppose
we do not observe the coin flip, but instead hear about it frdnead, who may be forgetful or
untrustworthy. Lef be a variable indicating how the friend claims the coin lahde.f = heads
means the friend says that the coin came up heads. Suppdsetitesays the coin landed heads
— do we believe him, and, if so, with how much certainty? As Wallssee, probabilistic reasoning
obtains quantitative values that, qualitatively, matalnscommon sense very effectively.

Suppose we know something about our friend’s behaviour. &erepresent our beliefs with
the following probabilities, for example?(f = heads|c = heads) represents our belief that the
friend says “heads” when the the coin landed heads. Becaa$reehd can only say one thing, we
can apply the Sum Rule to get:

P(f = heads|c = heads) + P(f = tails|c = heads) = 1 (83)
P(f = heads|c = tails) + P(f = tails|c = tails) = 1 (84)
If our friend always tells the truth, then we knof(f = heads|c = heads) = 1 and P(f =

tails|c = heads) = 0. If our friendusuallylies, then, for example, we might ha#®f = heads|c =
heads) = .3.

5.4 Binomial and Multinomial distributions

A binomial distribution is the distribution over the numlezgrpositive outcomes for a yes/no (bi-
nary) experiment, where on each trial the probability of sifpee outcome i® € [0, 1]. For exam-
ple, forn tosses of a coin for which the probability of heads on a sitrigéis p, the distribution
over the number of heads we might observe is a binomial bigtan. The binomial distribution
over the number of positive outcomes, denatédgivenn trials, each having a positive outcome
with probabilityp is given by

P =)= () s -)

Copyright(© 2011 Aaron Hertzmann and David Fleet 25

CSC411/CsC D11 Basic Probability Theory

fork=0,1,...,n, where

n n!
= 86
(k) El'(n — k)! (86)
A multinomial distribution is a natural extension of the @mial distribution to an experiment
with £ mutually exclusive outcomes, having probabilitigs for ;7 = 1,...,k. Of course, to be

valid probabilities) | p; = 1. For example, rolling a die can yield one of six values, eaih w
probability 1/6 (assuming the die is fair). Givertrials, the multinomial distribution specifies the
distribution over the number of each of the possible outrEvenn trials, k possible outcomes

with probabilitiesp;, the distribution over the event that outcogheccursz; times (and of course

> x; = n), is the multinomial distribution given by

n!
— — — T 22 T
P(X1—xl,Xg—xg,...,Xk—xk)—$1!x2!‘”%!pl Py ... Dy (87)

5.5 Mathematical expectation

Suppose each outcomghas an associated real valuec R. Then the expected value ofis:
Elz] =) P(ri)u;. (88)
The expected value gf(z) is given by

E[f(x)] = P(ri)f(z:) . (89)

Copyright(© 2011 Aaron Hertzmann and David Fleet 26

CSC411/CsC D11 Probability Density Functions (PDFs)

6 Probability Density Functions (PDFs)

In many cases, we wish to handle data that can be representedeal-valued random variable,
or a real-valued vectat = [z, 7, ..., 7,,|7. Most of the intuitions from discrete variables transfer
directly to the continuous case, although there are sontéeties.

We describe the probabilities of a real-valued scalar t#ia with a Probability Density
Function (PDF), writterp(x). Any real-valued functiop(z) that satisfies:

p(z) > 0 for all = (90)
/ p(z)der = 1 (91)

is a valid PDF. | will use the convention of upper-cd3éor discrete probabilities, and lower-case
p for PDFs.
With the PDF we can specify the probability that the randomade = falls within a given
range: i
Plrg<z<mz)= / p(z)dx (92)
xo
This can be visualized by plotting the curyér). Then, to determine the probability thatfalls
within a range, we compute the area under the curve for thgera

The PDF can be thought of as the infinite limit of a discretéridhistion, i.e., a discrete dis-
tribution with an infinite number of possible outcomes. Speally, suppose we create a discrete
distribution with N possible outcomes, each corresponding to a range on thausdler line.
Then, suppose we increasetowards infinity, so that each outcome shrinks to a singlemesn-
ber; a PDF is defined as the limiting case of this discreteiligton.

There is an important subtlety here: a probability denstypat a probability per se. For
one thing, there is no requirement thdt:) < 1. Moreover, the probability that attains any
one specific value out of the infinite set of possible valueahgays zero, e.gP(x = 5) =
f55p(x)dx = 0 for any PDFp(z). People (myself included) are sometimes sloppy in refgrrin
to p(z) as a probability, but it is not a probability — rather, it isw@nttion that can be used in
computing probabilities.

Joint distributions are defined in a natural way. For twoalalésx andy, the joint PDFp(z, y)
defines the probability that:, y) lies in a given domairD:

P((x,y) € D) = / p(z,y)dzdy (93)
(z,y)€D
For example, the probability that a 2D coordinétey) lies in the domairf0 <z < 1,0 <y < 1)
IS focuc1 Jocy<1 P(: y)dady. The PDF over a vector may also be written as a joint PDF of its
variables. For example, for a 2D-vector= [z, y|?, the PDFp(a) is equivalent to the PDF{(z, y).
Conditional distributions are defined as well:z|A) is the PDF over, if the statemenA is
true. This statement may be an expression on a continuous,\&lg. ¥ = 5.” As a short-hand,

Copyright(© 2011 Aaron Hertzmann and David Fleet 27

CSC411/CsC D11 Probability Density Functions (PDFs)

we can writep(z|y), which provides a PDF for for every value ofy. (It must be the case that
[p(z|y)dx = 1, sincep(z|y) is a PDF over values af.)

In general, for all of the rules for manipulating discretstdbutions there are analogous rules
for continuous distributions:

Probability rules for PDFs:

e p(x) >0, forall z

o [p(x)dz =1

o P(xg <z <) = [p(x)dx

e Sumrule: [7 p(z)dz =1

e Product rule: p(z,y) = p(z|y)p(y) = p(y|z)p(x).

e Marginalization: p(y) = [~ p(z,y)dx

¢ \We can also add conditional information, exQy|z) p(z,y|
e Independence:Variablesr andy are independent |fp(:c) =p(x

)()

6.1 Mathematical expectation, mean, and variance

Some very brief definitions of ways to describe a PDF:
Given a functionf (x) of an unknown variable&, theexpected valueof the function with repect
to a PDFp(x) is defined as:

Eyolf(x)] = / F()p(x)dx (94)

Intuitively, this is the value that we roughly “expectto have.
The mearu of a distributionp(x) is the expected value of:

p=Ewlx) = [xpxjax (95)
The variance of a scalar variahtas the expected squared deviation from the mean:
Byl =) = [0~ wPpla)is (96)

The variance of a distribution tells us how uncertain, orésyg-out” the distribution is. For a very
narrow distribution®,) [(z — x)?] will be small.
Thecovarianceof a vectorx is a matrix:

E = cov(x) = Eywl(x - i~)" =[x pix—wpaax (@0)

By inspection, we can see that the diagonal entries of therieme matrix are the variances of
the individual entries of the vector:

i = Var(xn-) = Ep(x)[(lﬁi - Mi)z] (98)

Copyright(© 2011 Aaron Hertzmann and David Fleet 28

CSC411/CsC D11 Probability Density Functions (PDFs)

The off-diagonal terms are covariances:

Yij = cov(wm, ;) = By (i —) (x5 —)] (99)

between variables, andz;. If the covariance is a large positive number, then we expett be
larger tharu,; whenz; is larger than;. If the covariance is zero and we know no other information,
then knowingz; > ; does not tell us whether or not it is likely that > ;.

One goal of statistics is to infer properties of distribngo In the simplest case, tisample
mean of a collection of N data pointsx;.y Is just their averagex = % > ;Xi. Thesample
covarianceof a set of data points isy; >_.(x; — X)(x; — X)”. The covariance of the data points
tells us how “spread-out” the data points are.

6.2 Uniform distributions

The simplest PDF is thaniform distribution . Intuitively, this distribution states that all values
within a given rangexz,, x,| are equally likely. Formally, the uniform distribution oinet interval
[.Z'(), .fl?l] is:

L ifry<z<m
plr) = { 0 otherwise (100)
It is easy to see that this is a valid PDF (becapse > 0 and [p(z)dz = 1).
We can also write this distribution with this alternativetateon:

x|zg, 1 ~ U(xo, 1) (101)

Equations 100 and 101 are equivalent. The latter simply: says distributed uniformly in the
ranger, andxy, and it is impossible that lies outside of that range.
The mean of a uniform distributidi (¢, z1) is (1 + x¢)/2. The variance i$x; — x)?/12.

6.3 Gaussian distributions

Arguably the single most important PDF is tNermal (a.k.a.,Gaussian probability distribution
function (PDF). Among the reasons for its popularity are thig theoretically elegant, and arises
naturally in a number of situations. It is the distributitvat maximizes entropy, and it is also tied
to the Central Limit Theorem: the distribution of a randomiaile which is the sum of a number
of random variables approaches the Gaussian distribusidhad number tends to infinity (Figure
6).

Perhaps most importantly, it is the analytical propertiethe Gaussian that make it so ubiqui-
tous. Gaussians are easy to manipulate, and their form samagrstood, that we often assume
guantities are Gaussian distributed, even though theyarérorder to turn an intractable model,
or problem, into something that is easier to work with.

Copyright(© 2011 Aaron Hertzmann and David Fleet 29

CSC411/CsC D11 Probability Density Functions (PDFs)

3 3 3
2 2 2
1 1 1
0 0 0
0 0.5 0 0.5 10 0.5 1

Figure 6: Histogram plots of the mean &F uniformly distributed numbers for various values of
N. The effect of the Central Limit Theorem is seen:Nagcreases, the distribution becomes more
Gaussian(Figure fromPattern Recognition and Machine Learniby Chris Bishop.)

The simplest case is a Gaussian PDF over a scalar valnevhich case the PDF is:

1 1
paln?) = exp (o) (102)
(The notationexp(a) is the same as”). The Gaussian has two parameters, the meaand
the variances®. The mean specifies the center of the distribution, and thianee tells us how
“spread-out” the PDF is.

The PDF forD-dimensional vectok, the elements of which are jointly distributed with a the
Gaussian denity function, is given by

1
p(x|p,X) = N

wherep is the mean vector, ari is the D x D covariance matrix, and!| denotes the determinant
of matrix A. An important special case is when the Gaussian is isotiopiationally invariant).
In this case the covariance matrix can be writteitas o*I wherel is the identity matrix. This is
called a spherical or isotropic covariance matrix. In tlase; the PDF reduces to:

exp (—(x — p)'E7 (x — p)/2) (103)

1 1
2 o . o 2
il = s exp(sl uH)- (104)

The Gaussian distribution is used frequently enough thist uiseful to denote its PDF in a
simple way. We will define a functio@' to be the Gaussian density function, i.e.,

G(x;p, X) exp (—(x —)27 (x — p)/2) (105)

1
Vv (2m)P[E]
When formulating problems and manipulating PDFs this fuimzl notation will be useful. When
we want to specify that a random vector has a Gaussian PBFénnmon to use the notation:

x|p, X~ N(p, X) (106)

Copyright(© 2011 Aaron Hertzmann and David Fleet 30

CSC411/CsC D11 Probability Density Functions (PDFs)

Equations 103 and 106 essentially say the same thing. BquBd6 says that is Gaussian, and
Equation 103 specifies (evaluates) the density for an irput

The covariance matrix of a Gaussian must be symmetric and positive definite — this is
equivalent to requiring thg®| > 0. Otherwise, the formula does not correspond to a valid PDF,
since Equation 103 is no longer real-valueif < 0.

6.3.1 Diagonalization

A useful way to understand a Gaussian is to diagonalize thereent. The exponent of the Gaus-
sian is quadratic, and so its shape is essentially ellipti€arough diagonalization we find the
major axes of the ellipse, and the variance of the distrdpusilong those axes. Seeing the Gaus-
sian this way often makes it easier to interpret the distioiou

As a reminder, the eigendecomposition of a real-valued sytmenmatrix X yields a set of
orthonormal vectors; and scalars,; such that

Equivalently, if we combine the eigenvalues and eigenvedtdo matricedJ = [uy, ..., uy] and
A = diag(Ay, ...Ay), then we have
YU =UA (108)

SinceU is orthonormal:
> = UAU? (109)

The inverse of is straightforward, sinc® is orthonormal, and hendé ! = U7
== (UAUT) ' = UuATUT (110)

(If any of these steps are not familiar to you, you shouldesiryour memory of them.)
Now, consider the negative log of the Gaussian (i.e., themapt); i.e., let

Fx) = S(x—)= (x —) (112)

Substituting in the diagonalization gives:

1 _
fx) = Sx—p) UATU (x - p) (112)
= 1sz (113)
2
where))
z = diag()\, 2,..., \y°) U (x —) (114)

This new functionf(z) = z”z/2 =), 22/2 is a quadratic, with new variables Given variables
x, we can convert them to therepresentation by applying Eq. 114, and, if all eigenvalues

Copyright(© 2011 Aaron Hertzmann and David Fleet 31

CSC411/CsC D11 Probability Density Functions (PDFs)

A Uz
\/vlh

Y2

]

U1

A2
A2

>

x

Figure 7: The red curve shows the elliptical surface of camsgprobability density for a Gaussian
in a two-dimensional space on which the densityxis(—1/2) of its value atx = p. The major
axes of the ellipse are defined by the eigenveaipis the covariance matrix, with corresponding
eigenvalues\;. (Figure fromPattern Recognition and Machine Learnibyg Chris Bishop.(Notey; and

yo in the figure should read, andzs.)

nonzero, we can convert back by inverting Eq. 114. Hence,amengite our Gaussian in this new
coordinate system as

1 1 2 1 1 2
Zaeee (g) =Tl g oo (-57) (o)

It is easy to see that for the quadratic formfdk), its level sets (i.e., the surfacész) = ¢ for
constant) are hyperspheres. Equivalently, it is clear frohd thatz is a Gaussian random vector
with an isotropic covariance, so the different elements afe uncorrelated. In other words, the
value of this transformation is that we have decomposed tiggnal N-D quadratic with many
interactions between the variables into a much simpler S8anscomposed af independent vari-
ables. This convenient geometrical form can be seen in EiguFor example, if we consider an
individual z; variable in isolation (i.e., consider a slice of the funotif(z)), that slice will look
like a 1D bowl.

We can also understand the local curvaturefoivith a slightly different diagonalization.
Specifically, letv = U (x — u). Then,

flwy = tviav =Ly (116)
==V V== —

2 2 £)
If we plot a cross-section of this function, then we have a bwltshape with variance given by
A;. In other words, the eigenvalues tell us variance of the &ansn different dimensions.

>The normalizing x| disappears due to the nature of change-of-variables in REtfish we won't discuss here.

Copyright(© 2011 Aaron Hertzmann and David Fleet 32

CSC411/CsC D11 Probability Density Functions (PDFs)

1 10
Tp
x, = 0.7
0.5 5
P(@a, 1)
0 0
0 0.5 T, 1 0 0.5 o 1

Figure 8: Left: The contours of a Gaussian distributign,, z;,) over two variables. Right: The
marginal distributiorp(z,) (blue curve) and the conditional distributipt, |z;) for 2, = 0.7 (red
curve).(Figure fromPattern Recognition and Machine Learnibyg Chris Bishop.)

6.3.2 Conditional Gaussian distribution

In the case of the multivariate Gaussian where the randoiablas have been partitioned into two
setsx, andx;, the conditional distribution of one set conditioned on dtieer is Gaussian. The
marginal distribution of either set is also Gaussian. Whenimdating these expressions, it is
easier to express the covariance matrix in inverse form,”psegision” matrix,A = ¥~!. Given
thatx is a Gaussian random vector, with mgamand covarianc&:, we can express, u, > andA

all in block matrix form:

Xa Ha Eaa 2ab Aaa Azzb
= = Y= A= 117
* (Xb>’ H (Mb)’ (Eba Ebb)’ (Aba Ay)7 (117)

Then one can show straightforwardly that the marginal PFsHe componentg, andx, are
also Gaussian, i.e.,
Xa N(u’aa Eaa) 5 Xp ™~ N(l'l‘ba Ebb)- (118)

With a little more work one can also show that the conditiagiatributions are Gaussian. For
example, the conditional distribution &f, givenx, satisfies

XalXy ~ N (Bapps Az) (119)

wherep,, = pa— A, Aap (x5 —). Note thatA_ ! is not simplyX,,. Figure 8 shows the marginal
and conditional distributions applied to a two-dimensiddaussian.

Finally, another important property of Gaussian functighat the product of two Gaussian
functions is another Gaussian function (although no longemalized to be a proper density func-
tion):

G(X7 M E2) G(X7 o, 22) X G(X7 1-1’72)7 (120)

Copyright(© 2011 Aaron Hertzmann and David Fleet 33

CSC411/CsC D11 Probability Density Functions (PDFs)

where

po=3 (57w + 35 pa) (121)
Y=ot +) (122)

Note that the linear transformation of a Gaussian randonahi& is also Gaussian. For exam-
ple, if we apply a transformation such that = Ax wherex ~ N(x|u,Y), we havey ~
N(y|Ap, ALAT).

Copyright(© 2011 Aaron Hertzmann and David Fleet 34

CSC411/CSCD11 Estimation

7 Estimation

We now consider the problem of determining unknown parareeaiethe world based on mea-

surements. The general problem is onendérence which describes the probabilities of these
unknown parameters. Given a model, these probabilitiedbeaterived using Bayes’ Rule. The
simplest use of these probabilities is to perfastimation, in which we attempt to come up with

single “best” estimates of the unknown parameters.

7.1 Learning a binomial distribution

For a simple example, we return to coin-flipping. We flip a citimes, with the result of theth
flip denoted by a variable;: “c; = heads” means that the-th flip came up heads. The probability
that the coin lands heads on any given trial is given by a patart. We have no prior knowledge
as to the value off, and so our prior distribution ofiis uniform® In other words, we describ#
as coming from a uniform distribution from 0 to 1, @) = 1; we believe that all values ¢fare
equally likely if we have not seen any data. We further asstiraethe individual coin flips are
independent, i.eP(ci.n|0) = []; p(ci|f). (The notation ¢,.5” indicates the set of observations
{c1,...,cn}.) We can summarize this model as follows:

Model: Coin-Flipping
0 ~ U(0,1)
P(c =heads) = 6 (123)
Pleinlt) = TLip(cilf)

Suppose we wish to learn about a coin by flipping it 1000 tim&d @bserving the results
c1.1000, Where the coin landed heads0 times? What is our belief aboét given this data? We
now need to solve fop(f|cy.1000), i.€., Our belief aboud after seeing the 1000 coin flips. To do
this, we apply the basic rules of probability theory, begigrwith the Product Rule:

P(c1:1000,8) = P(cr.1000/0) p(0) = p(f]ci:1000) P(Cr:1000) (124)
Solving for the desired quantity gives:

P(Cmooo\e)p(@)

p(0]ci:1000) P(cron0) (125)
The numerator may be written using
P(craoml0) p(0) = [P(cil) = 07°(1 —)10~ (126)

SWe would usually expect a coin to be fair, i.e., the priorritisttion for § is peaked ned. 5.

Copyright(© 2011 Aaron Hertzmann and David Fleet 35

CSC411/CSCD11 Estimation

Figure 9: Posterior probability of from two different experiments: one with a single coin flip
(landing heads), and 1000 coin flips (750 of which land headsje that the latter distribution is
much more peaked.

The denominator may be solved for by the marginalizatioe:rul

1 1
P(C1:1000) = / P(Clzlooo,e)de = / 0750(1 — 9)1000_750d0 = Z (127)
0 0

whereZ is a constant (evaluating it requires more advanced matht sunot necessary for our
purposes). Hence, the final probability distribution is:

p(e‘clzmoo) _ 9750(1 o 9)1000—750/2 (128)

which is plotted in Figure 9. This form gives a probabilitysalibution overd that expresses our
belief about after we've flipped the coin 1000 times.

Suppose we just take the peak of this distribution; from tfaply, it can be seen that the peak
is atd = .75. This makes sense: if a coin lands heads 75% of the time, teanould probably
estimate that it will land heads 75% of the time of the futukéore generally, suppose the coin
lands headg$/ times out ofN flips; we can compute the peak of the distribution as follows:

arg mgaxp(9|CLN) = H/N (129)

(Deriving this is a good exercise to do on your own; hint: miize the negative log qf(6|c;.x)).

Copyright(© 2011 Aaron Hertzmann and David Fleet 36

CSC411/CSCD11 Estimation

7.2 Bayes' Rule

In general, given that we have a model of the world descrilyesbme unknown variables, and we
observe some data; our goal is to determine the model frordatee (In coin-flip example, the
model consisted of the likelihood of the coin landing heag] the prior ove#, while the data
consisted of the results @f coin flips.) We describe the probability modelggatajmodel) — if
we knewmodel, then this model will tell us what data we expect. Furthemnare must have some
prior beliefs as to whathodel is (p(model)), even if these beliefs are completely non-committal
(e.g., a uniform distribution). Given the data, what do wewraboutmodel?

Applying the product rule as before gives:

p(data, model) = p(data|jmodel)p(model) = p(model|data)p(data) (130)

Solving for the desired distribution, gives a seemingly@erbut powerful result, known widely
asBayes’ Rule:

Bayes’ Rule:
p(model|data) = &

data|model)p(model)
p(data)

The different terms in Bayes’ Rule are used so often that tHdyagsk names:

likelinood ~ prior
——N
P(data|model) p(model)

del|dat 131
p(model|data) (data) (131)
posterior N
evidence

e Thelikelihood distribution describes the likelihood dhta given model — it reflects our
assumptions about how the dataas generated.

e The prior distribution describes our assumptions abeuidel before observing the data
data.

e Theposterior distribution describes our knowledge afodel, incorporating both the data
and the prior.

e Theevidenceis useful in model selection, and will be discussed latereHigs only role is
to normalize the posterior PDF.

7.3 Parameter estimation

Quite often, we are interested in finding a single estimatd®fvalue of an unknown parameter,
even if this means discarding all uncertainty. This is ch#etimation: determining the values

Copyright(© 2011 Aaron Hertzmann and David Fleet 37

CSC411/CSCD11 Estimation

of some unknown variables from observed data. In this clhapte outline the problem, and
describe some of the main ways to do this, including MaximuRoAteriori (MAP), and Maximum
Likelihood (ML). Estimation is the most common form of learg — given some data from the
world, we wish to “learn” how the world behaves, which we widiscribe in terms of a set of
unknown variables.

Strictly speaking, parameter estimation is not justifiedBayesian probability theory, and
can lead to a number of problems, such as overfitting and neitsg results in extreme cases.
Nonetheless, it is widely used in many problems.

7.3.1 MAP, ML, and Bayes’ Estimates

We can now define the MAP learning rule: choose the parametee¥ that maximizes the
posterior, i.e.,

0 = arg meaxp(eﬂ?) (132)
= argmax P(D|0)p(0) (133)

Note that we don’t need to be able to evaluate the evidenoe igP) for MAP learning, since
there are n@ terms in it.

Very often, we will assume that we have no prior assumptidegiathe value o, which we
express as aniform prior : p(#) is a uniform distribution over some suitably large rangethis
case, the(0) term can also be ignored from MAP learning, and we are lett witly maximizing
the likelihood. Hence, thBlaximum Likelihood (ML) learning principle (i.e., estimator) is

On1, = arg max P(D]6) (134)

It often turns out that it is more convenient to minimize tlegative-log of the objective func-
tion. Because* In” is a monotonic decreasing function, we can pose MAP estimats:

Oriap = arg max P(D|0)p(0) (135)
= arg mein —In (P(D]0)p(0)) (136)
= arg mein —In P(D|#) — Inp(6) (137)

We can see that the objective conveniently breaks into agearésponding to the likelihood
and a part corresponding to the prior.

One problem with this approach is that all model uncertaiatignored. We are choosing
to put all our faith in the most probable model. This somesirhas surprising and undesirable
consequences. For example, in the coin tossing exampleatbowne were to flip a coin just once
and see a head, then the estimator in Eqn. (129) would tellaighe probability of the outcome
being heads is 1. Sometimes a more suitable estimator isxjppected value of the posterior
distribution, rather than its maximum. This is called Begyes’ estimate

Copyright(© 2011 Aaron Hertzmann and David Fleet 38

CSC411/CSCD11 Estimation

In the coin tossing case above, you can show that the expeateel ofd, under the posterior
provides an estimate of the probability that is biased tawl#2. That is:

! H+1
/0 p(9|c1:N)9d9 = N——|—2 (138)

You can see that this value is always somewhat biased towardolit converges to the MAP
estimate asV increases. Interestingly, even when there are is no datéseder, in which case
the MAP estimate is undefined, the Bayes’ estimate is sim@y 1/

7.4 Learning Gaussians

We now consider the problem of learning a Gaussian distdbdtom N training samples. .
Maximum likelihood learning of the parametgisand: entails maximizing the likelihood:

p(Xun|p, X) (139)

We assume here that the data points come from a GaussianrtWerfassume that they are drawn
independently. We can therefore write the joint likelihaer the entire set of data as the produce
of the likelihoods for each individual datum, i.e.,

p(xinlp, 2) = Hp(xlzzvlu,) (140)

1 Tyl

where M is the dimensionallty of the dat:ai. It is somewhat more convenient to minimize the
negative log-likelihood:

L(H’vz) = —h’lp(XLN‘[L, 2) (142)
= =2 Imp(xl,3) (143)
_ (xi—p)"S7'(x,—p) N NM

Solving for p and X by settingdL /op = 0 anddL /0% = 0 (subject to the constraint that is
symmetric) gives the maximum likelihood estimdtes

. 1
W= 5% (145)

* 1 * *
> = N;@—u)(xi—uf (146)

"Warning: the calculation for the optimal covariance maimiolves Lagrange multipliers and is not easy.

Copyright(© 2011 Aaron Hertzmann and David Fleet 39

CSC411/CSCD11 Estimation

The ML estimates make intuitive sense; we estimate the Gaussnean to be the sample mean
of the data, and the Gaussian’s covariance to be the samydeiaace of the data. Maximum

likelihood estimates usually make sense intuitively. Tikisery helpful when debugging your

math — you can sometimes find bugs in derivations simply beethe ML estimates do not look

right.

7.5 MAP nonlinear regression

Let us revisit the nonlinear regression model from Sectidn But now admitting that there exists
noise in measurements and modelling errors. We’'ll now whieemodel as

y =w!'b(x)+n (147)
wheren is a Gaussian random variable, i.e.,
n~N(0,0%) . (148)

We add this random variable to the regression equation i) (figtrepresent the fact that most
models and most measurements involve some degree of eredrréfer to this error amoise

It is straightforward to show from basic probability thedhat Equation (147) implies that,
givenx andw, y is also Gaussian (i.e., has a Gaussian density), i.e.,

1 2 2
plylx,w) = Gy wib(x), %) = —— e (bl (149)

(G is defined in the previous chapter.) It follows that, for alection of NV independent training
points,(y1.n, x1.nv), the likelihood is given by

p(yin | W, X1n) = HG(yi; wlb(x;), 0?)
1 il . — w!b(x;))?
— —(27TO'2)N/2 exp <_ Zl (y = (%))) (150)

Furthermore, let us assume the following (weight decayjratistribution over the unknown
weightsw:

w ~ N(0,0l) . (151)
That is, forw € RY,
_ —w? /200 __ —wlw/2a
w) = | | e Wi = —————e¢ . 152
p(w) 11 V2ra (2ma)M/? ()

Copyright(© 2011 Aaron Hertzmann and David Fleet 40

CSC411/CSCD11 Estimation

Now, to estimate the model parameters (ive), let's consider the posterior distribution over
w conditioned on oufV training pairs,(x;, ;). Based on the formulation above, assuming inde-
pendent training samples, it follows that

P(Wlyow, Xin) = p(ylzzv!;\&/ilvzz'v}'{)i(v\’)v|xw) (153)
_ (Lpyilw,xi)) p(w) (154)
p(y1:n[x1N) '

Note thatp(w|x;.n) = p(w), since we can assume thaalone provides no information abowt
In MAP estimation, we want to find the parametershat maximize their posterior probability:

*

w' = arg mvaxp(w|y1:N,x1:N) (155)

= argmin — In p(W|y1.n, X1.3) (156)

The negative log-posterior is:

Lw) = —Inp(wly.n,X1.x) (157)
— (Z 2%‘Z(yi — wa(xi))Q) + gln(ZWUQ) (158)
Folwl? + 5 In2ma) + Inplyvbei) (159

Now, we can discard terms that do not dependwrsince they are irrelevant for optimization:

L(w) = (Z ! (yi—WTb(Xi))2> +%||w||2+constants (160)

202

2

Furthermore, we can multiply by a constant, without chaggiinere the optima are, so let us

multiply the whole expression bys2. Then, if we define\ = o%/«a, we have the exact same

objective function as used in nonlinear regression withula@ggzation. Hence, nonlinear least-

squares with regularization is a form of MAP estimation, @ath be optimized the same way.

When the measurements are very reliable, themsmall and we give the regularizer less influence
on the estimate. But when the data are relatively noisy; solarger, then regularizer has more

influence.

Copyright© 2011 Aaron Hertzmann and David Fleet 41

CSC411/CcsC D11 Classification

8 Classification

In classification, we are trying to learn a map from an inpatcgpto some finite output space. In
the simplest case we simply detect whether or not the inmisbie property or not. For example,
we might want to determine whether or not an email is spam hatler an image contains a face.
A task in the health care field is to determine, given a set séoled symptoms, whether or not a
person has a disease. These detection tasksraagy classificatiorproblems.

In multi-class classificatiomproblems we are interested in determining to which of mldtip
categories the input belongs. For example, given a recordieg signal we might wish to rec-
ognize the identity of a speaker (perhaps from a set of paeptse voice properties are given in
advance). Another well studied example is optical charaetognition, the recognition of letters
or numbers from images of handwritten or printed characters

The inputx might be a vector of real numbers, or a discrete feature wedtothe case of
binary classification problems the outpytmight be an element of the sét-1, 1}, while for
a multi-dimensional classification problem wifli categories the output might be an integer in
{1,...,N}.

The general goal of classification is to leardecision boundaryoften specified as the level
set of a function, e.ga(x) = 0. The purpose of the decision boundary is to identity theores)i
of the input space that correspond to each class. For bitesgification the decision boundary is
the surface in the feature space that separates the tet$ inputwo classes; points for which
a(x) < 0 are deemed to be in one class, while points for whitk) > 0 are in the other. The
points on the decision boundarnyx) = 0, are those inputs for which the two classes are equally
probable.

In this chapter we introduce several basis methods for iflzetson. We focus mainly on
on binary classification problems for which the methods anmeceptually straightforward, easy
to implement, and often quite effective. In subsequent wrapve discuss some of the more
sophisticated methods that might be needed for more clggfigproblems.

8.1 Class Conditionals

One approach is to describe a “generative” model for eadsclBuppose we have two mutually-
exclusive classes; andC,. The prior probability of a data vector coming from cléssis P(C),
andP(Cy) = 1 — P(C,). Each class has a distribution for its dgtéx|C), andp(x|C5). In other
words, to sample from this model, we would first randomly cd®a class according #®(C}),
and then sample a data vectofrom that class.

Given labeled training datf(x;, ;) }, we can estimate the distribution for each class by maxi-
mum likelihood, and estimat2(C,) by computing the ratio of the number of elements of class 1
to the total number of elements.

Once we have trained the parameters of gemerativemodel, we perform classification by
comparing the posterior class probabillities:

P(Cy|x) > P(Cy|x) ? (161)

Copyright(© 2011 Aaron Hertzmann and David Fleet 42

CSC411/CcsC D11 Classification

That s, if the posterior probability @ is larger than the probability @5, then we might classify
the input as belonging to class 1. Equivalently, we can coebeeir ratio to 1:
P(Cy|x)
P(Cylx)

> 17 (162)

If this ratio is greater than 1 (i.€?(C}|x) > P(C,|x)) then we classifyk as belonging to class 1,
and class 2 otherwise.
The quantities?(C;|x) can by computed using Bayes’ Rule as:

P(Cx) = Z%jc) (163)
so that the ratio is:
p(x|Ch) P(C1) (164)

p(x|Cy) P(Cy)
Note that thep(x) terms cancel and so do not need to be computed. Also, notthtes com-

putations are typically done in the logarithmic domain as i often faster and more numerically
stable.

Gaussian Class Conditionals. As a concrete example, consider a generative model in wheh t
inputs associated with thé& class (fori = 1, 2) are modeled with a Gaussian distribution, i.e.,

p(x[Ci) = G(x; pi, 3i) - (165)

Also, let’'s assume that the prior class probabilities arsaéq
P(C;) == (166)

The values of:; and3Z; can be estimated by maximum likelihood on the individuassés in the
training data.
Given this models, you can show that the log of the posteaitto (164) is given by

1 1 1 1
a(x) = —5(x ~ p) B (x =) — g 2]+ 5 (x - p2) B5 " (x —) + 5 In|X| (167)
The sign of this function determines the clasxosince the ratio of posterior class probabilities
is greater tharl when this log is greater than zero. Singgx) is quadratic inx, the decision
boundary (i.e., the set of points satisfyimgk) = 0) is a conic section (e.g., a parabola, an ellipse,
a line, etc.). Furthermore, in the special case where= 3,, the decision boundary is linear
(why?).

Copyright(© 2011 Aaron Hertzmann and David Fleet 43

CSC411/CcsC D11 Classification

-20 T T T T -20

-15 % B -15+
— @ 0
-10 ?ﬁ@gg’i) B -10
B
5L /g@@op) &) A s

/g%&/ g 0 e 555
(O o X
L o Q5o _— X 4 L
OM AR °
Pt s
o R

5 5} X e 4 5

X x < —
3
10 o - B 10+
x
0 . %

151 x b 15

20 b 20

25 25
-15 -15

I I I I I I I I
-10 -5 0 5 10 -10 -5 0 5 10

Figure 10: GCC classification boundaries for two cases. Nwtethe decision boundary is linear
when both classes have the same covariance.
8.2 Logistic Regression
Noting thatp(x) can be written as (why?)

p(x) = p(x,C1) +p(x,Cs) = p(x|C1)P(Cy) + p(x|C2) P(Cy) , (168)
we can express the posterior class probability as
p(x[C1)P(Ch)

P(Ch]x) = . 169
P = SO P(Cr) + pxICIPICh) (169)
Dividing both the numerator and denominatorigx|C;)P(C,) we obtain:
1
P(Cix) = = (170)
= g(a(x)) (171)

wherea(x) = In % andg(a) is the sigmoid function. Note thgfa) is monotonic, so that
the probability of clas€’; grows as: grows and is preciseli' whena = 0. SinceP(C4|x) = %
represents equal probability for both classes, this is thentbary along which we wish to make
decisions about class membership.

For the case of Gaussian class conditionals where both (aasdsave the same covarianae,

is a linear function ok. In this case the classification probability can be written a
1
1+ €_wa_b

or, if we augment the data vector with a 1 and the weight veaitbr b,

P(Ch]x) = = g(wix+ b), 172)

(173)

Copyright®© 2011 Aaron Hertzmann and David Fleet 44

CSC411/CcsC D11 Classification

At this point, we can forget about the generative model (éhg.Gaussian distributions) that we
started with, andise this as our entire model.In other words, rather than learning a distribution
over each class, we learn ortlye conditional probability of y given x. As a result, we have
fewer parameters to learn since the number of parametemistic regression is linear in the
dimension of the input vector, while learning a Gaussiaragawnce requires a quadratic number
of parameters. With fewer parameters we can learn models effactively with less data. On the
other hand, we cannot perform other tasks that we could Wélgenerative model (e.g., sampling
from the model; classify data with noisy or missing measeis).

We can learn logistic regression with maximum likelihood.pharticular, given datéx;, v; },
we minimize the negative log of:

p({xi yit|w,b) o p({yi}[{xi}, w,b)
= Hp(yi|X¢,W,b)

= |[P@ix) J] (11— P(Cilx)) (174)
1:y;=C1 1:y;=Ca2
In the first step above we have assumed that the input feaueaadependent of the weights in
the logistic regressor, i.ep({x;}) = p({x;}|w,b). So this term can be ignored in the likelihood
since it is constant with respect to the unknowns. In the mgstep we have assumed that the
input-output pairs are independent, so the joint likelith@othe product of the likelihoods for each
input-output pair.

The decision boundary for logistic regression is linear2i it is a line. To see this, recall
that the decision boundary is the set of poift&”;|x) = 1/2. Solving forx gives the points
wlx +b =0, whichis aline in 2D, or a hyperplane in higher dimensions.

Although this objective function cannot be optimized ins#d-form, it is convex, which means
that it has a single minimum. Therefore, we can optimize thwgradient descent (or any other
gradient-based search technique), which will be guardrtteénd the global minimum.

If the classes are linearly separable, this approach vaitl ke very large values of the weights
w, since as the magnitude af tends to infinity, the functiog(a(x)) behaves more and more like
a step function and thus assigns higher likelihood to tha.dBiis can be prevented by placing a
weight-decay prior orv: p(w) = G(w; 0,0?).

Multiclass classification. Logistic regression can also be applied to multiclass iflaason, i.e.,
where we wish to classify a data point as belonging to onf€ ofasses. In this case, the probability
of data vecto being in clasg is:

—WTX

[k3
K —WTX
k=1¢ F

You should be able to see that this is equivalent to the methedribed above in the two-class case.
Furthermore, itis straightforward to show that this is assigle choice of probabilityd < P(C;|x),
and), P(Cy|x) = 1 (verify these for yourself).

P(Cifx) = (175)

Copyright(© 2011 Aaron Hertzmann and David Fleet 45

CSC411/CcsC D11 Classification

Data and decision boundary

201

5P

10

—10F

151

—20k

o5l

-30 L L L L L L L)
-20 -15 -10 -5 0 5 10 15 20

Figure 11: Classification boundary for logistic regression.

8.3 Artificial Neural Networks

Logistic regression works for linearly separable datasetsmay not be sufficient for more com-
plex cases. We can generalize logistic regression by riegldle linear functionw”x + b with
any other function. If we replace it with a neural network, ges:

P(Cilx) =g (Z g (Z o + b§”> + b“) (176)
7 k

This representation is no longer connected to any partiahlaice of class-conditional model; it
is purely a model of the class probability given the measergm

8.4 K-Nearest Neighbors Classification

We can apply the KNN idea to classification as well. For clabels{—1, 1}, the classifier is:

Ynew = Sign Z Y; (177)
iENK(X)
where
. -1 2<0
sign(z) = { 1 230 (178)

Alternatively, we might take a weighted average of thenearest neighbors:

y = sign Z w(x)y: |, w(x) = e xixIP/2e (179)

iENK(X)

Copyright(© 2011 Aaron Hertzmann and David Fleet 46

CSC411/CcsC D11 Classification

-3 L L L L L \
-3 -2 -1 0 1 2 3

Figure 12: For two classes and planar inputs, the decisiomdery for a 1NN classififier (the
bold black curve) is a subset of the perpendicular bisedimegsegments (green) between pairs of
neighbouring points (obtained with a Voronoi tesselation)

wheres? is an additional parameter to the algorithm.

For KNN the decision boundary will be a collections of hydane patches that are perpendic-
ular bisectors of pairs of points drawn from the two clasgesillustrated in Figure 12, this is a set
of bisecting line segments for 2D inputs. Figure 12, showsple case but it is not hard to imag-
ine that the decision surfaces can get very complex, e.gpdint from class 1 lies somewhere in
the middle of the points from class 2. By increasing the nurebaearest neighbours (i.€5)) we
are effectively smoothing the decision boundary, hopegfiereby improving generalization.

8.5 Generative vs. Discriminative models

The classifiers described here illustrate a distinctiombeh two general types of models in ma-
chine learning:

1. Generative modelssuch as the GCC, describe the complete probability of theydata).

2. Discriminative models, such as LR, ANNs, and KNN, describe the conditional proligbil
of the output given the inpuf(y|x)

The same distinction occurs in regression and classifitati@., KNN is a discriminative method
that can be used for either classification or regression.

The distinction is clearest when comparing LR with GCC witlu@qcovariances, since they
are both linear classifiers, but the training algorithmsdifferent. This is because they have dif-
ferent goals; LR is optimized for classification performanahere as the GCC is a “complete”
model of the probability of the data that is then pressedsetwice for classification. As a conse-
guence, GCC may perform poorly with non-Gaussian data. CealgLR is not premised on any
particular form of distribution for the two class distribuis. On the other hand, LR camly be

Copyright®© 2011 Aaron Hertzmann and David Fleet 47

CSC411/CcsC D11 Classification

O class1
+ class2

decision boundary
5r o

-10+ i

-15F 4+

L L L L L
-15 -10 -5 0 5

Figure 13: In this example there are two classes, one withall $sotropic covariance, and one

with an anistropic covariance. One can clearly see that &éte are linearly separable (i.e., a line
exists that correctly separates the input training samplBgspite this, LS regression does not
separate the training data well. Rather, the LS regressiciside boundary produces 5 incorrectly
classified training points.

used for classification, whereas the GCC can be used for atbles,te.g., to sample newdata, to
classify noisy inputs or inputs with outliers, and so on.

The distinctions between generative and discriminativele®become more significant in
more complex problems. Generative models allow us to puerpaor knowledge into how we
build the model, but classification may often involve difftaptimization ofp(y|x); discriminative
methods are typically more efficient and generic, but ardérao specialize to particular problems.

8.6 Classification by LS Regression

One tempting way to perform classification is with leastesgs rgression. That is, we could treat
the class labelg € {—1, 1} as real numbers, and estimate the weights by minimizing

E(w)=> (4i—x/w)”, (180)

i

for labeled training datdx;, y;}. Given the optimal regression weights, one could then perfo
regression on subsequent test inputs and use the sign afitingt ®o determine the output class.

In simple cases this can perform well, but in general it walffiporm poorly. This is because the
objective function in linear regression measures the nicgtdrom the modeled class labels (which
can be any real number) to the true class labels, which mgyroeitde an accurate measure of how
well the model has classified the data. For example, a lireggiession model will tend to produce
predicted labels that lie outside the range of the clasdddbe “extreme” members of a given
class (e.g. 5 when the class label is 1), causing the erroe todasured as high even when the
classification (given, say, by the sign of the predictedllalecorrect. In such a case the decision

Copyright(© 2011 Aaron Hertzmann and David Fleet 48

CSC411/CcsC D11 Classification

boundary may be shifted towards such an extreme case, jaditereducing the number of correct
classifications made by the model. Figure 13 demonstraitewiith a simple example.

The problem arises from the fact that the constraintghat(—1, 1) is not built-in to the model
(the regression algorithm knows nothing about it), and set@smconsiderable representational
power trying to reproduce this effect. It is much better tddthis constraint into the model.

8.7 Nave Bayes

One problem with class conditional models, as describedegbmncerns the large number of
parameters required to learn the likelihood model, i.e distribution over the inputs conditioned
on the class. In Gaussian Class Conditional models, éimensional input vectors, we need
to estimate the class mean and class covariance matrix ¢br @dass. The mean will be &
dimensional vector, but the number of unknowns in the caveneé matrix grows quadratically
with d. That is, the covariance isdax d matrix (although because it is symmetric we do not need
to estimate alli’> elements).

Naive Bayes aims to simplify the estimation problem by assuntivag the different input
features (e.g., the different elements of the input vectimg conditionally independent. That is,
they are assumed to be independent when conditioned onake. cMathematically, for inputs
x € R?, we express this as

d
p(xIC) = [pilC) (181)

With this assumption, rather than estimating @r@imensional density, we instead estimété-
dimensional densities. This is important because each 1B$sEnN only has two parameters, its
mean and variance, both of which are scalars. So the mod&dasknowns. In the Gaussian
case, the N@e Bayes model effectively replaces the genérall covariance matrix by a diagonal
matrix. There ard entries along the diagonal of the covariance matrix;thentry is the variance
of z;|C'. This model is not as expressive but it is much easier to estim

8.7.1 Discrete Input Features

Up to now, we have looked at algorithms for real-valued ispMfe now consider the Wz Bayes
classification algorithm for discrete inputs. In discretd@e Bayes, the inputs are a discrete set
of “features”, and each input either has or doesn’t have ézafure. For example, in document
classification (including spam filtering), a feature mighbtthe presence or absence of a particular
word, and the feature vector for a document would be a listla€iwwords the document does or
doesn’t have.

Each data vector is described by a list of discrete feathygs= [F}, ..., F)p|. Each feature;
has a set of possible values that it can take; to keep thingslej we’ll assume that each feature
is binary: F; € {0,1}. In the case of document classification, each feature migiespond to
the presence of a particular word in the email (e.gEsif= 1, then the email contains the word

Copyright(© 2011 Aaron Hertzmann and David Fleet 49

CSC411/CcsC D11 Classification

“business”), or another attribute (e.d., = 1 might mean that the mail headers appear forged).
Similarly, a classifier to distinguish news stories betwsgorts and financial news might be based
on particular words and phrases such as “team,” “baselbaid|*mutual funds.”

To understand the complexity of discrete class conditior@alels in general (i.e., without using
the Ndve Bayes model), consider the distribution over 3 inputsclassC = 1, i.e.,P(Fi3|C =
1). (There will be another model far' = 0, but for our little thought experiment here we’ll just
consider the model fat’ = 1.) Using basic rules of probability, we find that

P<Fl3|C:1) — P(Fl‘C:17F27F3)P(F27F3’O:1)
= P(F|C=11FF)P(FC=1F)P(F;|C=1) (182)

Now, givenC' = 1 we know thatF; is either O or 1 (ie. it is a coin toss), and to model it we simply
want to know the probability’(F3 = 1 |C = 1). Of course the probability thdt; = 0 is simply

1 — P(F; =1|C = 1). In other words, with one parameter we can model the thirtbfaabove,
P(F3|C =1).

Now consider the second factét(F, |C' = 1, F3). In this case, becaude, depends orf;,
and there are two possible statesfaf there are two distributions we need to model, namely
P(F,|C=1,F;=0)andP(Fy|C =1, F3 = 1). Acordingly, we will need two parameters, one
for P(F, =1|C =1,F; = 0) and one forP(F, = 1| C = 1, F3 = 1). Using the same logic, to
modelP(F; | C = 1, Fy, F3) will require one model parameter for each possible settirig'a),
and of course there a®® such settings. Fob-dimensional binary inputs, there afg2°-1!)
parameters that one needs to learn. The number of paramedeiised grows prohibitively large
asD increases.

The Ndve Bayes model, by comparison, only havgparameters to be learned. The assump-
tion of Naive Bayes is that the feature vectors are all conditionattgpendent given the class. The
independence assumption is often verjveabut yet the algorithm often works well nonetheless.
This means that the likelihood of a feature vector for a paldir clasg is given by

P(F.p|C =j) = H P(F|C = j) (183)

whereC denotes a class € {1,2,...K}. The probabilities?(F;|C') are parameters of the model:

We must also define class priaf§C = j) = b,.
To classify a new feature vector using this model, we chobselass with maximum proba-
bility given the features. By Bayes’ Rule this is:

P(F1p|C = j)P(C =)

P(C = j|Fi.p) = P(Fi.p) (185)
_ ILPRIC =) PIC =) (186)

K P(Fup,C =0)
— (Hi:FFl @i [Lip—o(1 = ais)) by (187)

Zf:l (Hi:Fi:I ie Hi:Fi:0<1 - az}@)) be

Copyright(© 2011 Aaron Hertzmann and David Fleet 50

CSC411/CcsC D11 Classification

If we wish to find the class with maximum posterior probapjie need only compute the numer-
ator. The denominator in (187) is of course the same for afisgg. To compute the denominator
one simply divides the numerators for each class by their. sum

The above computation involves the product of many numiserse of which might be quite
small. This can lead to underflow. For example, if you takepttoelucta, a...ay, and alla; << 1,
then the computation may evaluate to zero in floating povgnehough the final computation
after normalization should not be zero. If this happens lialasses, then the denominator will be
zero, and you get a divide-by-zero error, even though, maditieally, the denominator cannot be
zero. To avoid these problems, it is safer to perform the edatns in the log-domain:

o = (Z nai; + Y In(l - @i,j)) +Inb; (188)

=1 i:F3;=0
v = ming; (189)
J
, exp(a; —
P(C =j|Fi.p) = play =) (190)

> cexplar —)
which, as you can see by inspection, is mathematically etgrv to the original form, but will not
evaluate to zero for at least one class.

8.7.2 Learning

For a collection ofV training vectorsF},, each with an associated class labg] we can learn the
parameters by maximizing the data likelihood (i.e., thebphnlity of the data given the model).
This is equivalent to estimating multinomial distributgfin the case of binary features, binomial
distributions), and reduces to simple counting of features

Suppose there ar¥, examples of each class, andexamples total. Then the prior estimate is
simply:

N,
by, = _Nk (191)
Similarly, if classk hasN; , examples wheré; = 1, then
N 1.
=1 192
az,kz Nk (9)

With large numbers of features and small datasets, it i$ylitkeat some features will never be
seen for a class, giving a class probability of zero for tkeatdre. We might wish to regularize, to
prevent this extreme model from occurring. We can modifyléaening rule as follows:

o NZ‘Jg + «
Nk + 2c0
for some small valuer. In the extreme case where there are no examples for whithréaas

seen for clasg, the probabilitya; , will be set to1/2, corresponding to no knowledge. As the
number of exampled/,, becomes large, the role afwill become smaller and smaller.

(193)

Qg

Copyright®© 2011 Aaron Hertzmann and David Fleet 51

CSC411/CcsC D11 Classification

In general, given in a multinomial distribution with a largeamber of classes and a small
training set, we might end up with estimates of prior prohigbb, being zero for some classes.
This might be undesirable for various reasons, or be instarsi with our prior beliefs. Again, to
avoid this situation, we can regularize the maximum liketiti estimator with our prior believe
that all classes should have a nonzero probability. In dsmgve can estimate the class prior

probabilities as
N+ 5
by = ——— 194
"T N+ KB (194)
for some small value ofi. When there are no observations whatsoever, all classesvae g
probability 1/ K. When there are observations the estimated probabilitikievbetweenN, /N

and1/K (converging taV, /N asN — o).

Derivation. Here we derive just the per-class probability assuming tl@sses, ignoring the
feature vectors; this case reduces to estimating a binafstibution. The full estimation can
easily be derived in the same way.

Suppose we observg€ examples of clas8, and)M examples of class, what isb,, the proba-
bility of observing clas9? Using maximum likelihood estimation, we maximize:

[[PcCi=k = (prﬁm>(npwﬁn> (195)

:C;=0 :Cy=1
by b (196)

Furthermore, in order for the class probabilities to be ahdibtribution, it is required thdk+b;, =
1, and that, > 0. In order to enforce the first constraint, we set= 1 — by:

[[PCi=k = by(1—b)" (197)

The log of this is:
L(by) = Nlnby + MIn(1 — by) (198)

To maximize, we compute the derivative and set it to zero:

dL N M

TR T .
Multiplying both sides by, (1 — by) and solving gives:
. N
b= N1 (200)

which, fortunately, is guaranteed to satisfy the constrgir> 0.

Copyright(© 2011 Aaron Hertzmann and David Fleet 52

CSC411/CcsC D11 Gradient Descent

9 Gradient Descent

There are many situations in which we wish to minimize an dije function with respect to a
parameter vector:
w" = argmin F(w) (201)

but no closed-form solution for the minimum exists. In maehlearning, this optimization is
normally a data-fitting objective function, but similar ptems arise throughout computer science,
numerical analysis, physics, finance, and many other fields.

The solution we will use in this course is callgthdient descent It works for any differen-
tiable energy function. However, it does not come with mangrgntees: it is only guaranteed to
find a local minima in the limit of infinite computation time.

Gradient descent is iterative. First, we obtain an initsireatew; of the unknown parameter
vector. How we obtain this vector depends on the problem;ampeoach is to randomly-sample
values for the parameters. Then, from this initial estimete note that the direction of steepest
descent from this point is to follow the negative gradient £ of the objective function evaluated
atw,. The gradient is defined as a vector of derivatives with reSjeeeach of the parameters:

dE
dwq

VE = : (202)
dE_
dw
The key point is that, if we follow the negative gradient diten in a small enough distancie
objective function is guaranteed to decreag€his can be shown by considering a Taylor-series
approximation to the objective function).
It is easiest to visualize this process by considefiligy) as a surface parameterizedwywe
are trying to finding the deepest pit in the surface. We do stakiyg small downhill steps in the
negative gradient direction.
The entire process, in its simplest form, can be summarigédi@ws:

pick initial valuew,
11
loop
Wiyl < W; —)\VE1“,v7
141+ 1
endloop

Note that this process depends on three choices: the imati@in, the termination conditions,
and the step-siz&. For the termination condition, one can run until a preseniper of steps has
elapsed, or monitor convergence, i.e., terminate when

|E(Wi1) — E(w;)| <€ (203)

Copyright(© 2011 Aaron Hertzmann and David Fleet 53

CSC411/CcsC D11 Gradient Descent

for some preselected constanor terminate when either condition is met.

The simplest way to determine the step-skzes to pick a single value in advance, and this
approach is often taken in practice. However, it is somewhegliable: if we choose step-size too
large, than the objective function might actually get wonsesome steps; if the step-size is too
small, then the algorithm will take a very long time to makg progress.

The solution is to uséne search namely, at each step, to search for a step-size that reduces
the objective function as much as possible. For examplenplsigradient search with line search
procedure is:

pick initial valuew,
11
loop
A + VE|y,
A1
A3
end while
Wiy < W; — AA
141+ 1
end loop

A more sophisticated approach is to reuse step-sizes befttezations:

pick initial valuew,
1+ 1
A1
loop
A+ VE|,
A 2A
A3
end while
Wiyl < W; — AA
11+ 1
end loop

Copyright© 2011 Aaron Hertzmann and David Fleet 54

CSC411/CcsC D11 Gradient Descent

There are many, many more advanced methods for numerigalieation. For unconstrained
optimization, | recommend the L-BFGS-B library, which is gale for download on the web. It
is written in Fortran, but there are wrappers for variouglaayes out there. This method will be
vastly superior to gradient descent for most problems.

9.1 Finite differences

The gradient of any function can be computed approximatgipumerical computations. This
is useful for debugging your gradient computations, andtumatons where it's too difficult or
tedious to implement the complete derivative. The numeapproximation follows directly from
the definition of derivative:
dE| _ E(w+h)— E(w)
dw|, "~ h
for some suitably small stepsize Computing this value for each element of the parameter vecto
gives you an approximate estimate of the grad\ént
Itis strongly recommend that you use this method to debuggerivative computations; many
errors can be detected this way! (This test is analogousetagk of “assertions”).

(204)

Aside:
The termbackpropagation is sometimes used to refer to an efficient algorithm for
computing derivatives for Artificial Neural Networks. Cosfogly, this term is alsp
used to refer to gradient descent (without line search) fdNA.

Copyright© 2011 Aaron Hertzmann and David Fleet 55

CSC411/CcsC D11 Cross Validation

10 Cross Validation

Suppose we must choose between two possible ways to fit sameHtav do we choose between
them? Simply measuring how well they fit they data would méwat e always try to fit the
data as closely as possible — the best method for fitting tkeeidasimply to memorize it in big
look-up table. However, fitting the data is no guaranteeweawill be able togeneralizeto new
measurements. As another example, consider the use ofgmighregression to model a function
given a set of data points. Higher-order polynomials willays fit the data as well or better than
a low-order polynomial; indeed, aN — 1 degree polynomial will fitV data points exactly (to
within numerical error). So just fitting the data as well asca® usually produces models with
many parameters, and they are not going to generalize tormmawsi in almost all cases of interest.

The general solution is to evaluate models by testing thera new data set (the “test set”),
distinct from the training set. This measures hpkedictive the model is: Is it useful in new
situations? More generally, we often wish to obtain emplrestimates of performance. This
can be useful for finding errors in implementation, compam@empeting models and learning
algorithms, and detecting over or under fitting in a learnedieh

10.1 Cross-Validation

The idea of empirical performance evaluation can also be tesédetermine model parameters that
might otherwise to hard to determine. Examples of such mpaleimeters include the constadnt
in the K-Nearest Neighbors approach or thparameter in the Radial Basis Function approach.

Hold-out Validation. In the simplest method, we first partition our data randomiy a “training
set” and a “validation set.” Lef be the unknown model parameter. We pick a set of range of
possible values fok (e.g., K = 1,...,5). For each possible value &f, we learn a model with
that K on the training set, and compute that model’s error on thielatibn set. For example, the
error on validation set might be just the squared-er}oy,||y; — f(x;)||*. We then pick theX
which has the smallest validation set error. The same idedeapplied if we have more model
parameters (e.g., thein KNN), however, we must try many possible combinationgoéndo to
find the best.

There is a significant problem with this approach: we use tiggsing data when fitting the
other model parameters, and so we will only get good resutigri initial training set is rather
large. If large amounts of data are expensive or impossibidtain this can be a serious problem.

N-Fold Cross Validation. We can use the data much more efficiently¥»fold cross-validation.

In this approach, we randomly partition the training dat® i sets of equal size and run the
learning algorithmV times. Each time, a different one of thé sets is deemed the test set, and
the model is trained on the remaining— 1 sets. The value ok is scored by averaging the error
across theV test errors. We can then pick the valuefotthat has the lowest score, and then learn
model parameters for this'.

Copyright(© 2011 Aaron Hertzmann and David Fleet 56

CSC411/CcsC D11 Cross Validation

A good choice forN is N = M — 1, whereM is the number of data points. This is called
Leave-one-out cross-validation

Issues with Cross Validation. Cross validation is a very simple and empirical way of conri
models. However, there are a number of issues to keep in mind:

e The method can be very time-consuming, since many training may be needed. For
models with more than a few parameters, cross validationbraago inefficient to be useful.

e Because a reduced dataset is used for training, there mustflogest training data so that
all relevant phenomena of the problem exist in both the imgidata and the test data.

e It is safest to use a random partition, to avoid the possittitiat there are unmodeled cor-
relations in the data. For example, if the data was colleotent a period of a week, it is
possible that data from the beginning of the week has a diitestructure than the data later
in the week.

e Because cross-validation finds a minimum of an objectivetfancover- and under-fitting
may still occur, although it is much less likely. For examplehe test set is very small, it
may prefer a model that fits the random pattern in the test data

Aside:
Testing machine learning algorithms is very much like tegtscientific theories:
scientific theories must be predictive, or, that is, falbiéa Scientific theories must
also describe plausible models of reality, whereas madeiaing methods need
only be useful for making decisions. However, statistioéiience and learning first
arose as theories of scientific hypothesis testing, andirech@sely related today.

One of the most famous examples is the case of planetary mdRioor to Newton
astronomers described the motion of the planets throughoosetabulation o
measurements — essentially, big lookup tables. Thesestaidee not especially
predictive, and needed to updated constantly. Newton'sitemns of motion

which could describe the motion of the planets with only a &wple equations
were vastly simpler and yet also more effective at predictitotion, and became the
accepted theories of motion.

However, there remained some anomolies. Two astronomeins, Gouch Adam
and Urbain Le Verier, thought that these discrepancies ighdue to a ne
as-yet-undiscovered planet. Using techniques similaraddem regression, but with
laborious hand-calculation, they independently deduded dosition, mass, and
orbit of the new planet. By observing in the predicted di@ts$i, astronomers were

Copyright© 2011 Aaron Hertzmann and David Fleet 57

CSC411/CcsC D11 Cross Validation

1A

indeed able to observe a new planet, which was later nametlihepThis providet
powerful validation for their models.

Incidentally, Adams was an undergraduate working alonenwhe began his
investigations.

Reference: http://en.wikipedia.org/wiki/Discoveny Neptune

Copyright(© 2011 Aaron Hertzmann and David Fleet 58

CSC411/CsC D11 Bayesian Methods

11 Bayesian Methods

So far, we have considered statistical methods which salsttgle “best” model given the data.
This approach can have problems, such as over-fitting wheze th not enough data to fully con-
strain the model fit. In contrast, in the “pure” Bayesian appig as much as possible we only com-
pute distributions over unknowns; we never maximize amghiFor example, consider a model
parameterized by some weight vector and some training dat® that comprises input-output
pairsz;,y;, fori = 1...N. The posterior probability distribution over the paramgteonditioned
on the data is, using Bayes’ rule, given by

p(D|w)p(w)
p(D)

The reason we want to fit the model in the first place is to allewounake predictions with future
test data. That is, given some future inptt,,, we want to use the model to predigt.,,. To
accomplish this task through estimation in previous chaptge used optimization to find ML or
MAP estimates o#v, e.g., by maximizing (205).

In a Bayesian approach, rather than estimation a single laés¢ Yor w, we computer (or
approximate) the entire posterior distributipfw|D). Given the entire distribution, we can still
make predictions with the following integral:

p(w|D) = (205)

p(ynewu)?xnew) - /p(ynew>w‘p7$new)dw
[D3, Do) WD) (206)

The first step in this equality follows from the Sum Rule. Theasel follows from the Product
Rule. Additionally, the outputg,.,, and training datéD are independent conditioned en so
P(Ynew|W, D) = plynew|w). That is, givenw, we have all available information about making
predictions that we could possibly get from the trainingadat(according to the model). Finally,
givenD, it is safe to assume that,.,,, in itself, provides no information aboW. With these
assumptions we have the following expression for our ptextis:

p(ynew|D7xnew) - /p(ynew|wyxnew)p<w|p)dw (207)

In the case of discrete parametersthe integral becomes a summation.

The posterior distributiop(y,.., | D, T,ew) tells us everything there is to know about our beliefs
about the new valug,.,,. There are many things we can do with this distribution. B@neple,
we could pick the most likely prediction, i.ewg max, p(ynew|D, Tnew), OF We could compute the
variance of this distribution to get a sense of how much cenfi¢ we have in the prediction. We
could sample from this distribution in order to visualize ttange of models that are plausible for
this data.

Copyright(© 2011 Aaron Hertzmann and David Fleet 59

CSC411/CsC D11 Bayesian Methods

The integral in (207) is rarely easy to compute, often inv@\vintractable integrals or expo-
nentially large summations. Thus, Bayesian methods oftgmrenumerical approximations, such
as Monte Carlo sampling; MAP estimation can also be viewedagparoximation. However, in
a few cases, the Bayesian computations can be done exacityttasregression case discussed
below.

11.1 Bayesian Regression

Recall the statistical model used in basis-function regpass
y = b)'w+n, n~N(0,0? (208)

for a fixed set of basis functions(z) = [b,(z), ...by (2)]7.

To complete the model, we also need to define a “prior” distidm over the weightsv (de-
notedp(w)) which expresses what we believe abeytin absence of any training data. One might
be tempted to assign a constant density over all possiblght&eiThere are several problems with
this. First, the result cannot be a valid probability disition since no choice of the constant
will give the density a finite integral. We could, insteadpobke a uniform distribution with finite
bounds, however, this will make the resulting computatimese complex.

More importantly, a uniform prior is often inappropriateg wften find that smoother functions
are more likely in practice (at least for functions that weehany hope in learning), and so we
should employ a prior that prefers smooth functions. A caatprior that does so is a Gaussian
prior:

w ~ N(0,a ') (209)

which expresses a prior belief that smooth functions areertikely. This prior also has the ad-
ditional benefit that it will lead to tractable integralsdabn. Note that this prior depends on a
parametery; we will see later in this chapter how this “hyperparametai be determined auto-
matically as well.

As developed in previous chapters on regression, the daiénlbod function that follows from
the above model definition (with the input and output compasef the training dataset denoted

r1.y andyy.y) is
N

p(yrnlein, w) = | [plyle w) (210)

=1
and so the posterior is:

(I, Pyl w)) plw)

p(?/l:N’xl:N)

p(w|$l:Nay1:N) = (211)

Copyright(© 2011 Aaron Hertzmann and David Fleet 60

CSC411/CsC D11 Bayesian Methods

In the negative log-domain, using Equations (208) and (20@)model is given by:

—Inp(wlriy, yi.v) = —Zln(p(yi|»’l?iaw)>—hl(p(W))+1H(p(?/1:N’5€1:N))

1 2 @ 2
= 53 : (y; — f(z))* + §\|w\| + constants
As above in the regression notes, it is useful if we colleettthining outputs into a single vector,
i.e.,y = [y1,...,yn]T, and we collect the all basis functions evaluated at eachepirtputs into a

matrix B with elementsB, ; = b;(x;). In doing so we can simplify the log posterior as follows:

—Inp(Wlziy, y1.8) = %Hy — Bw|]? + %||w||2 + constants
= %‘Q(y —Bw)'(y - Bw) + %WTW + constants
= %WT(BTB/UQ + al)w — %yTBW/J2 - %WTBTy/O'Z + constants
= %(w —w)"K™!(w — W) + constants (212)
where
K = (B'B/o’>+al)” (213)
w = KBTy/o? (214)

(The last step of the derivation uses the methodsonfipleting the squarelt is easiest to verify
the last step by going backwards, that is by multiplying @ut— w)"K~*(w — w).)

The derivation above tells us that the posterior distrdoutbver the weight vector is a multi-
dimensional Gaussian with me&nand covariance matrik, i.e.,

p(W|z1.n, y1:v) = G(w; w, K) (215)

In other words, our belief abowt once we have seen the data is specified by a Gaussian density.
We believe thatv is the most probable value fer, but we have uncertainty about this estimate, as
determined by the covarian&€. The covariance expresses our uncertainty about theseptns.

If the covariance is very small, then we have a lot of confiegendhe MAP estimate. The nature

of the posterior distribution is illustrated visually ingeire 14. Note tha# is the MAP estimate

for regression, since it maximizes the posterior.

Prediction. For a new data point,,.,,, the predictive distribution foy,,.., is given by:

p(ynew|xnewap) = /p(ynew|xnew7D7W>p(W|D)dW

= N(ynew; b(xnew>TW7 02 + b(xnew)TKb(xnew))

Copyright(© 2011 Aaron Hertzmann and David Fleet 61

CSC411/CsC D11 Bayesian Methods

likelihood prior/posterior data space

—_—

-1 0w

—_—

-1 0w

-1
-1 0 g |

Figure 14: Iterative posterior computation for a linearresgion modely = wgx + w;. The top
row shows the prior distribution, and several fair samptemfthe prior distribution. The second
row shows the likelihood over after observing a single data point (i.e.,any pair), along with
the resulting posterior (the normalized product of thelilleeod and the prior), and then several fair
samples from the posterior. The third row shows the liklith@den a new observation is added to
the previous observation, followed by the correspondingtgrior and random samples from the
posterior. The final row shows the result of 20 observations.

Copyright(© 2011 Aaron Hertzmann and David Fleet 62

CSC411/CsC D11 Bayesian Methods

The predictive distribution may be viewed as a function freg, to a distribution over values of
Ynew- AN €xample of this for an RBF model is given in Figure 15.

This is the Bayesian way to do regression. To predict a newevaly, for an inputz,,..,,
we don't estimate a single model. Instead we average over all possible models, weighting the
different models according to their posterior probabhility

11.2 Hyperparameters

There are often implicit parameters in our model that we Hieked, such as the covariance con-
stants in linear regression, or the parameters that gowerprior distribution over the weights.
These are usually called “hyperparameters.” For exampldnad RBF model, the hyperparameters
constitute the parameters o2, and the parameters of the basis functions (e.g., the witltheo
basis functions). Thus far we have assumed that the hy@ergders were “known” (which means
that someone must set them by hand), or estimated by créidati@n (which has a number of pit-
falls, including long computation times, especially farga numbers of hyperparameters). Instead
of either of these approaches, we may apply the Bayesian agpio order to directly estimate
these values as well.

To find a MAP estimate for the parameter in the above linear regression example we compute

o = arg max Inp(a|r1.n, y1:n) (216)
wnere (o lzrn, 0)p(a)
N|T1N, a)pla
p(OZ|.I1:N, yl:N) - PAYLN LN P (217)
p(ylzN’xlsN)
and

p(y1:N|$1:N,Oé) = /p(y1:N>W|$1:Naa>dW

= /P(Z/l:N|961:N,W,Oé)p(w\oz)dw

- /(HM%I%M@)) p(w|a)dw

For RBF regression, this objective function can be computedased-form. However, depend-
ing on the form of the prior over the hyperparameters, it terohecessary to use some form of
numerical optimization, such as gradient descent.

11.3 Bayesian Model Selection

How do we choose which model to use? For example, we mightdikeitomatically choose the
form of the basis functions or the number of basis functi@ress-validation is one approach, but

Copyright(© 2011 Aaron Hertzmann and David Fleet 63

CSC411/CsC D11 Bayesian Methods

1 1t
t t
0 © 0
-1 -1
0 . 1 0 ., 1

Figure 15: Predictive distribution for an RBF model (with 9 isafsinctions), trained on noisy
sinusoidal data. The green curve is the true underlyingssiidal function. The blue circles are
data points. The red curve is the mean prediction as a funcidhe input. The pink region
represents 1 standard deviation. Note how this region lshidlose to where more data points are
observed(Figure fromPattern Recognition and Machine Learniby Chris Bishop.)

Copyright(© 2011 Aaron Hertzmann and David Fleet 64

CSC411/CsC D11 Bayesian Methods

it can be expensive, and, more importantly, inaccurate @lsamounts of data are available. In

general one intuition is that we want to choose simple moalads complex models to avoid over-

fitting,insofar as they provide equivalent fits to the dataloB®eve consider a Bayesian approach
to model selection which provides just such a bias to simpuidets.

The goal of model selection is to choose the best model framesset of candidate models
{M;}L£ | based on some observed d&a This may be done either with a maximum likelihood
approach (picking the model that assigns the largest li&elil to the data) or a MAP approach
(picking the model with the highest posterior probabilitif)we take a uniform prior over models
(i.e. p(M;) is a constant for all = 1...L) then these approaches can be seen to be equivalent since:

i P(DIMp(M,)

o< p(D|M;)

In practice a uniform prior over models may not be approgriatit the design of suitable priors
in these cases will depend significantly on one’s knowleddkeapplication domain. So here we
will assume a uniform prior over models and focuspg®|M,).

In some sense, whenever we estimate a parameter in a modeéwieiag model selection
where the family of models is indexed by the different valokthat parameter. However the term
“model selection” can also mean choosing the best model Bome set of parametric models
that are parameterized differently. A good example of thesiy be choosing the number of basis
functions to use in an RBF regression model. Another simplengl&is choosing the polynomial
degree for polynomial regression.

The key quantity for Bayesian model selectiorp{®| M), often called themarginal data
likelihood Given two modelsM; and M,, we will choose the modeM; whenp(D|M;) >
p(D|M;). To specify these quantities in more detail we need to takertbdel parameters into
account. Different models may have different numbers o&peters (e.g., polynomials of dif-
ferent degrees), or entirely different parameterizati@g., RBFs and neural networks). In what
follows, letw; be the vector of parameters for moded;. In the case of regression, for example,
w; might comprise the regression weights and hyper-parasigterthe weight on the regularizer.

The extent to which a model explains (or fits) the data depemdthe choice of the right
parameters. Using the sum rule and Bayes’ rule it follows vmenadte the marginal data likelihood
as

This tells us that the ideal model is one that assigns higir probabilityp(w;| M;) to every weight
vector that also yields a high value of the likelihopd|w;, M;) (i.e., to parameter vectors that
fit the data well). One can also recognize that the produdt@fdata likelihood and the prior in
the integrand is proportional to the posterior over the pe&tars that we previously maximized to
find MAP estimates of the model parametérs.

8This is the same quantity we compute when optimizing hymeaimeters (which is a type of model selection) and

Copyright(© 2011 Aaron Hertzmann and David Fleet 65

CSC411/CsC D11 Bayesian Methods

Typically, a “complex model” that assigns a significant ostr probability mass to complex
data will be able to assign significantly less mass to singdés than a simpler model would. This
is because the integral of the probability mass must sum tadlsa a complex model will have
less mass to spend on simpler data. Also, since a complexlmdbieequire higher-dimensional
parameterizations, mass must be spread over a higher-siomah space and hence more thinly.
This phenomenon is visualized in Figure 17.

As an aid to intuition to explain why this marginal data likelod helps us choose good models,
we consider a simple approximation to the marginal datdiiked p(D|M;) (depicted in Figure
16 for a scalar parameter). First, as is common in many problems of interest, the piuste
distribution over the model parameterswv;|D, M;) < p(D|w;, M;)p(w;|M;) to have a strong
peak at the MAP parameter estimaté’4”. Accordingly we can approximate the integral in
Equation (218) as the height of the peak, il€D|wMAP M,)p(wMAP| M), multiplied by its
W|dth Awg}ostem’or.

)

/p(D’WiaMi)p(Wi’Mi)dwi ~ p(D‘WlMAPaMi)P(WzMAP’Mi) Awbostereer

We then assume that the prior distribution over parameterg M;) is a relatively broad uniform
with width Aw!"™*”", sop(w;) ~ —=. This yields a further approximation:

prior *
Aw,

p(D|W£\/[AP, Mi)AWfosterior

/p(D|Wi;Mi)p(Wi|Mi)dWi ~

Awfrior
Taking the logarithm, this becomes
A posterior
Inp(DIwMA” M;) +In oW
AWfT’LOT

Intuitively, this approximation tells us that models witlder prior distributions on the param-
eters will tend to assign less likelihood to the data becthesgider prior captures a larger variety
of data (so the density is spread thinner over the data-sp&omilarly, models that have a very
narrow peak around their modes are generally less pretelsudause they assign a lower prob-
ability mass to the surrounding area (and so a slightly peetli setting of the parameters would
provide a poor fit to the data, suggesting that over-fitting) decurred). ‘

From another perspective, note that in most cases of integesan assume thatw?**“"" <
AwP"" . |.e., the posterior width will be less than the width of thimp The log ratio is maximal
when the prior and posterior widths are equal. For exampdengplex model with many parame-
ters, or a a very broad prior over the parameters will necigsasign a small probability to any
single value (including those under the posterior peak)infpker model will assign a higher prior

also corresponds to the denominatp(P)” in Bayes’ rule for finding the posterior probability of a paular setting
of the parameters/;. Note that above we generally wrqi€D) and notp(D|M;) because we were only considering
a single model, and so it was not necessary to condition on it.

Copyright(© 2011 Aaron Hertzmann and David Fleet 66

CSC411/CsC D11 Bayesian Methods

AU)posterior
+—>

S LA

WMAP w

Au}prior

Figure 16: A visualization of the width-based evidence agpnation. (Figure fromPattern Recog-
nition and Machine Learningy Chris Bishop.)

probability to the useful parameter values (ie those unueposterior peak). When the model is
too simple, then the likelihood term in the integrand willgmerticularly high and therefore lowers
the marginal data likelihood. So, as models become more leoriipe data likelihood increasingly

posterior

fits the data better. But as the models become more and mordesothp log ratioln AVAVT
acts as a penalty on unnecessarily complex models. '
By selecting a model that assigns the highest posterior prilgao the data we are automat-

ically balancing model complexity with the ability of the ohal to capture the data. This can be
seen as the mathematical realization of Occam’s Razor.

Model averaging. To be fully Bayesian, arguably, we shouldn’t select a singlest” model but
should instead combine estimates from all models accotditigeir respective posterior probabil-
ities:

P(Ynew| D Tnew) = Y PYnew| M, D, Tnews) p(M;|D) (219)

but this is often impractical and so we resort to model selaghstead.

Copyright(© 2011 Aaron Hertzmann and David Fleet 67

CSC411/CsC D11 Bayesian Methods

p(D) M,

Figure 17: The x-axis is data complexity from simplest to m@Emplex, and modeld1; are
indexed in order of increasing complexity. Note that in #mssmple)/, is the best model choice
for dataD, since it simultaneously is complex enough to assign mag¥,tbut not so complex
that it must spread its mass too thin{igigure fromPattern Recognition and Machine Learnihg Chris
Bishop.)

Copyright(© 2011 Aaron Hertzmann and David Fleet 68

CSC411/CcsC D11 Monte Carlo Methods

12 Monte Carlo Methods

Monte Carlo is an umbrella term referring to a set of numeteahniques for solving one or both
of these problems:

1. Approximating expected values that cannot be solvedosed-form
2. Sampling from distributions for which is a simple samglaigorithm is not available.

Recall that expectation of a functiafix) of a continuous variable with respect to a distribution
p(x) is defined as:

Bxolo0] = [px)o(x)dx (220)
Monte Carlo methods approximate this integral by drawihgamples fronp(x)
x; ~ p(x) (221)
and then approximating the integral by the weighted average
1 N
Eylo(x)] & > o(xi) (222)
i=1

Estimator properties. This estimate is unbiased:

Fyan) [% > ¢<xi>] = 2 Buald0)] = 3 VB 6(0)] = Bylo(x)] (223)

Furthermore, the variance of this estimate is inverselprtonal to the number of samples:

1 1 1 1
Varp(xl:N) [N Z ¢<X1)] - m Zvarp(x1:N)[¢(Xi)] - vaarp(Xi)[qb(xiﬂ - Nvarp(x) [¢(X)]

(224)
Hence, the more samples we get, the better our estimate ayilhtxthe limit, the estimator will
converge to the true value.

Dealing with unnormalized distributions. We often wish to compute the expected value of a
distribution for which evaluating the normalization caar#tis difficult. For example, the posterior
distribution over parametess given dataD is:

p(D[w)p(w)

p(wiD) = BT

(225)

Copyright(© 2011 Aaron Hertzmann and David Fleet 69

CSC411/CcsC D11 Monte Carlo Methods

The posterior mean and covarianse & FE[w| and E[(w — w)(w — w)T]) can be useful to
understand this posterior, i.e., what we believe the patemvalues are “on average,” and how
much uncertainty there is in the parameters. The numerbtgmd D) is typically easy to compute,
butp(D) entails an integral which is often intractable, and thustrbeshandled numerically.

Most generally, we can write the problem as computing theeetqal value with respect to a
distributionp(x) defined as

p(x) = lP*(X), 7 = /P*(x)dx (226)

Monte Carlo methods will allow us to handle distributionstagtform.

12.1 Sampling Gaussians

We begin with algorithms for sampling from a Gaussian distion.

For the simple 1-dimensional case,~ N (0, 1), there is well known algorithm called the
Box-Muller Method that is based on an approach called rejactampling. It is implemented in
Matlab in the commandandn.

For a general 1D Gaussian,~ A (u,0?), we sample a variable ~ N(0,1), and then set
x = oz + p. You should be able to show thathas the desired mean and variance.

For the multi-dimensional case, ~ AN(0,I), each element is independent and Gaussian:
z; ~ N(0,1) and so each element can be sampled wahdn.

To sample from a Gaussian with general mean vegtand variance matri¥X we first sample
z ~ N(0,1), and then sex = Lz + u, whereX = LLT. We can computd. from X by the
Cholesky Factorization @, which must be positive definite. Then we have

Elx]| =E[Lz+ p| =LE[z|+ p=p (227)

and
E[(z — p)(z — pn)'] = E[Lz(Lz)"] = LE[zz"|]L” =LL" = % (228)

12.2 Importance Sampling

In some situations, it may be difficult to sample from the deidistributionp(x); however, we
can sample from a similar distributiafix). Importance sampling is a technique that allows one to
approximate expectation with respecix) by sampling fromy(x). The only requirement oq
is that it have the same supportgas.e.,q is nonzero everywhere thats nonzero.

Importance sampling is based on the following equality:

B |00 = [X8 otxatix (229)
— (o (230)
- / >] (231)

Copyright(© 2011 Aaron Hertzmann and David Fleet 70

CSC411/CcsC D11 Monte Carlo Methods

In other words, we can compute the desired expectation bplgamvaluesx; from ¢(x), and then

computing
[% } Zp) 20) (232)

It often happens thatand/orq are known only up to multiplicative constants. That is,

p(x) = Zip*(x) (233)
i) = Q) (234)

whereP* andQ* are easy to evaluate but the constafysndZ, are not.
Then we have:

7P (%) Z P*(x)
E,xlo(x)] = Zr d(x)q(x)dr = LE { gbx} (235)
p() [P(X)] Lo (x)q(x) 7, 5 | o) (x)
and so it remains to approximagg. If we substitutep(x) = 1, the above formula states that
Zq [P*(x)]
—LE, s =1 236
Z, q(z) Q*(x) ()
and S0 = Fy[5-g]- Thus we have:
. Eqx) [S:E§§¢(X)]
() [A(%)] = e (237)
Eox) |:Q*(x)]
Hence, the importance sampling algorithm is:
1. SampleV valuesx; ~ q(x;)
2. Compute
Pr(x;)
w; = 238
O (x,) (238)
3. Estimate the expected value
> Wid(X;)
E SIES — e 2
o)) ~ =0 (239)

The importance sampling algorithm will only work well whe(x) is sufficiently similar to the
functionp(x)|¢(x)|. Put more concretely, the variance of the estimator growkesdissimilarity
between;(x) andp(x)|¢(x)| grows (and is minimized when they are equal). An alterndatvue
use the MCMC algorithm to draw samples directly frp(x), as described below.

Copyright(© 2011 Aaron Hertzmann and David Fleet 71

CSC411/CcsC D11 Monte Carlo Methods

Figure 18: Importance sampling may be used to sample relptoomplicated distributions like
this bimodalp(x) by instead sampling simpler distributions like this unirabg(x). Note that in

this example, sampling fromix) will produce many samples that will be given a very low weight
sinceq(x) has a lot of mass whergx) is near zero (in the center of the plot). On the other hand,
q(x) has ample mass around the two modeg(&fj and so it is a relatively good choice.dfx) had
very little mass around one of the mode$@t), the estimate given by importance sampling would
have a very high variance (unleggx)| was small enough there to compensate for the difference).
(Figure fromPattern Recognition and Machine Learnibg Chris Bishop.)

Copyright(© 2011 Aaron Hertzmann and David Fleet 72

CSC411/CcsC D11 Monte Carlo Methods

12.3 Markov Chain Monte Carlo (MCMC)

MCMC is a very general algorithm for sampling from any digftibn. For example, there is no
simple method for sampling modets from the posterior distribution except in specialized sase
(e.g., when the posterior is Gaussian).

MCMC is an iterative algorithm that, given a sampie ~ p(x), modifies that sample to
produce a new sample;,,; ~ p(x). This modification is done using a proposal distribution
q(x'|x), that, given ax, randomly selects a “mutation” t&. This proposal distribution may be
almost anything, and it is up to the user of the algorithm toade this distribution; a common
choice would be simply a Gaussian centereg:at(x'|x) = N (x'|x, o*I).

The entire algorithm is:
select initial pointx,
t+1
loop

Samplex’ ~ ¢(x'|x;)

P (x') q(x¢|x’)

& P o)

Sampleu ~ Uniform[0, 1]

if v < athen

X1 ¢ X
else
Xiy1 & Xy

end if

t+—t+1
end loop

Amazingly, it can be shown that, i, is a sample fromp(x), then every subsequext is also
a sample fronp(x), if they are considered in isolation. The samples are catedlto each other
via the Markov Chain, but the marginal distribution of anyiindual sample i®(x).

So far we assumed that, is a sample from the target distribution, but, of courseainiig
this first sample is itself difficult. Instead, we must pernfioa process calleldurn-in : we initialize
with any x;, and then discard the fir§t samples obtained by the algorithm; if we pick a large
enough value of’, we are guaranteed that the remaining samples are validessiinpm the target
distribution. However, there is no exact method for detamg a sufficientl’, and so heuristics
and/or experimentation must be used.

Copyright(© 2011 Aaron Hertzmann and David Fleet 73

CSC411/CcsC D11 Monte Carlo Methods

2.57

0 0.5 1 15 2 2.5 3
Figure 19: MCMC applied to a 2D elliptical Gaussian with a poysgl distribution consisting
of a circular Gaussian centered on the previous sample.nGirees indicate accepted proposals

while red lines indicate rejected ongBigure fromPattern Recognition and Machine Learnibg Chris
Bishop.)

Copyright®© 2011 Aaron Hertzmann and David Fleet 74

CSC411/CsC D11 Principal Components Analysis

13 Principal Components Analysis

We now discuss annsupervisedlearning algorithm, called Principal Components Analysis,
PCA. The method is unsupervised because we are learning angapphout any examples of
what the mapping looks like; all we see are the outputs, andave to estimate both the mapping
andthe inputs.

PCA is primarily a tool for dealing with high-dimensional datf our measurements are 17-
dimensional, or 30-dimensional, or 10,000-dimensionanipulating the data can be extremely
difficult. Quite often, the actual data can be described byalmtower-dimensional representation
that captures all of the structure of the data. PCA is perhapsimplest approach for finding such
a representation, and yet is it also very fast and effeateaylting in it being very widely used.

There are several ways in which PCA can help:

e Visualization: PCA provides a way to visualize the data, by projecting tha datvn to two
or three dimensions that you can plot, in order to get a bettiese of the data. Furthermore,
the principal component vectors sometimes provide insighto the nature of the data as
well.

e Preprocessing:Learning complex models of high-dimensional data is ofteryslow, and
also prone to overfitting — the number of parameters in a msdeually exponential in the
number of dimensions, meaning that very large data setequéred for higher-dimensional
models. This problem is generally calldee curse of dimensionality.PCA can be used to
first map the data to a low-dimensional representation bedpplying a more sophisticated
algorithm to it. With PCA one can alsahitenthe representation, which rebalances the
weights of the data to give better performance in some cases.

e Modeling: PCA learns a representation that is sometimes used as ae eifel, e.g., a
prior distribution for new data.

e Compression:PCA can be used to compress data, by replacing data with itdilm&nsional
representation.

13.1 The model and learning

In PCA, we assume we are givéhdata vectordy;}, where each vector iB-dimensionalyy; €
RP. Our goal is to replace these vectors with lower-dimensivectors{x; } with dimensionality
C, whereC < D. We assume that they are related by a linear transformation:
C
y=Wx+b=)» wz+b (240)
7=1
The matrixW can be viewed as a containing a set’obasis vectordV = [wy, ..., wq|. If we
also assume Gaussian noise in the measurements, this raddelsame as the linear regression
model studied earlier, but now thés are unknown in addition to the linear parameters.

Copyright(®© 2011 Aaron Hertzmann and David Fleet 75

CSC411/CsC D11 Principal Components Analysis

To learn the model, we solve the following constrained lsastares problem:

> llyi = (Wi + b)|* (242)

arg min
W7b7{xi}

subject toW’W =1 (242)

The constrainW?W = I requires that we obtain an orthonormal mappWg it is equivalent to
saying that

.. _ J 1l i=7J
W, W; = {0 i (243)

This constraint is required to resolve an ambiguity in theopmag: if we did not requiréW to
be orthonormal, then the objective function is undercamséd (why?). Note that an ambiguity
remains in the learning even with this constraint (whichQnéut this ambiguity is not very

important.
Thex coordinates are often calléakent coordinates.
The algorithm for minimizing this objective function is adlbws:

1. Letb =+ 3", y;
2. LetK = + > .(yi — b)(y: — b)”

3. LetVAVT = K be the eigenvector decompositionléf A is a diagonal matrix of eigen-
values A = diag(Ay,...Ap)). The matrixV contains the eigenvectord’ = [V;,...V]
and is orthonormaV’Vv = 1.

4. Assume that the eigenvalues are sorted from largest testn@; >)\, 1). If this is not the
case, sort them (and their corresponding eigenvectors).

5. LetW be a matrix of the firs€' eigenvectorsW = [Vy,...V¢|.
6. Letx; = W' (y, —b), for all i.

13.2 Reconstruction

Suppose we have learned a PCA model, and are given aypewalue; how do we estimate its
corresponding,..,? This can be done by minimizing

||ynew - (Wxnew + b)||2 (244)

This is a linear least-squares problem, and can be solvedstandard methods (in MATLAB,
implemented by the backslash operator). Howé¥ers orthonormal, and thus its transpose is the
pseudoinverse, so the solution is given simply by:

X, = WT (Ynew - b) (245)

new

Copyright(© 2011 Aaron Hertzmann and David Fleet 76

CSC411/CsC D11 Principal Components Analysis

13.3 Properties of PCA

Mean zero coefficients. One can show that the PCA coefficients that represent thertgediata,
i.e., {x;}¥,, are mean zero.

mean(x) = % Z xX; = % Z W (y; —b) (246)
L wr

= W (Z yi — Nb) (247)

=0 (248)

Variance maximization. PCA can also be defined in the following way; in fact, this is dhig-
inal definition of PCA, and the one that is often meant when [gedigcuss PCA. However, this
formulation is exactly equivalent to the one discussed abbvthis goal, we wish to find the first
principal componentv; to maximize the variance of the first coordinate of the data:

var () =N Zwll =N Z wi(y (249)

such that||w,||> = 1. Then, we wish to choose the second principal component ta teit
vector and orthogonal to the first component, while maxingzhe variance at,. The remaining
principle components are also defined in this recursive s@ayhat each component; is a unit
vector, orthogonal to all previous basis vectors.

Uncorrelated coefficients. It is straightforward to show that the covariance matrixted PCA
coefficients is the just the upper l&ftx C' submatrix ofA (i.e., the diagonal matrix containing the
C leading eigenvalues df.

cov(x) = — Z W7 (y; = b)) (WT (y; —b))T (250)
= %WT (Z(YZ —b)(y: — b)T> W (251)
= WKW (252)
= WIVAVTW (253)
_ A (254)

whereA is the diagonal matrix containing i leading eigenvalues iA. This simple derivation
also shows that the marginal variances of the PCA coefficemrtgjiven by the eigenvalues; i.e.,
var(z;) = Aj.

Copyright(© 2011 Aaron Hertzmann and David Fleet 77

CSC411/CsC D11 Principal Components Analysis

Out of Subspace Error. The total variance in the data is given by the sum of the eigiees

of the sample covariance matik. The variance captured by the PCA subspace representation is
the sum of the firs€' eigenvalues. The total amount of varianastin the representation is given

by the sum of the remaining eigenvalues. In fact, one can shatithe least-squares error in the
approximation to the original data provided by the optimdL} model parametersw*, {x;},
andb*, is given by

D
S llyi— (Wixp+b9)[7 = Y\ (255)

j=C+1

When learning a PCA model itis common to use the ratio of the t&arror and the total variance
in the training data (i.e., the sum of all eigenvalues). Oeeds to choosé’ to be large enough
that this ratio is small (often 0.1 or less).

13.4 Whitening

Whitening is a preprocess that replaces the data with a ruE®N that has zero-mean and unit
covariance, and is often useful as a data preprocessingGiegn measuremeni{s; }, we replace
them with{z;} given by

zi=A*W'(y;—b) = A *x; (256)

whereA is a diagonal matrix of the firgt' eigenvalues.
Then, the sample mean of this is equal to O:

X1>:A

_1
2

VI

mean(x) = 0 (257)

mean(z) = mean(A

To derive the sample covariance, we will first compute theadawce of the untruncated values:
1
z=A2VT(y —b):

1 1 1
cov(z) = NE:AfﬁvT(yi—b)(}’i—b)TVAf5 (258)
1 1 1
—) T _ L o T -3
= A2V (NZ@@ b)(y: — b))VA (259)
= A :2VTKVA 2 (260)
= A 2VIVAVIVA 2 (261)
=1 (262)

Sincez is just the firstC elements o#, z also has sample covariante

Copyright(© 2011 Aaron Hertzmann and David Fleet 78

CSC411/CsC D11 Principal Components Analysis

13.5 Modeling

PCA is sometimes used to model data likelihood, e.g., we cantws a form of a “prior”. For
example, suppose we have noisy measurements of gomkies and wish to estimate their true
values. If we parameterize the unknowrvalues by their corresponding values instead, then
we constrain the estimated values to lie in the low-dimemicubspace of the original data.
However, this approach implies a uniform prior oweralues, which may be inadequate, while
being intolerant to deviations from the subspace. A betipr@ach with an inherently probabilistic
model is described below.

13.6 Probabilistic PCA

Probabilistic PCA is a way to estimate a probability disttibo p(y); in fact, it is a form of
Gaussian distribution. In particular, we assume the fahaowprobability distribution:

x ~ N(0,1) (263)
y = Wx+b+n, n~N(0,0) (264)

wherex andn are assumed to be statistically independent. The modetisatythe low-dimensional
coordinatex (i.e., the underlying causes) come from a unit Gaussianllision, and they mea-
surements are a linear function of these low-dimensioardes, plus Gaussian noise. Note that we
do not require thatW be orthonormal anymore (in part because we now constraim#gnitude
of thex variables).

Since any linear transformation of a Gaussian variabls&fiGaussiany must also be Gaus-
sian. This distribution is:

py) = / p(x, y)dx = / Py R)p(x)dx = / G(y;Wx +b, 0’I) G(x;0, T)dx (265)

Evaluating this integral will give ug(y), however, there is a simpler way to solve for the Gaussian
distribution.

Since we know thay is Gaussian, all we need to do is derive its mean and covajaviach
can be done as follows (using the fact that mathematicalatapen is linear):

mean(y) = FEly]=E[Wx+ b+ n] (266)
— WEI[x]+b + E[n] (267)

= b (268)

cov(y) = Ely —b)(y —b)"] (269)
= E[(Wx+b+n—b)(Wx+b+n-b)] (270)

= E[(Wx+n)(Wx +n)’] (271)

= EWxx'W'] + E[Wxn"] + Elnx’ W'] + E[nn”] (272)

= WExx'|W! + WEx|E[n"] + En|E[x"|W” + ¢°1 (273)

= WWT' +4°1 (274)

Copyright(© 2011 Aaron Hertzmann and David Fleet 79

CSC411/CsC D11 Principal Components Analysis

Figure 20: Visualization of PPCA mapping for a 1D to 2D modelGAussian in 1D is mapped
to a line, and then blurred with 2D noisgigure fromPattern Recognition and Machine Learniby
Chris Bishop.)

Hence
y ~ N (b, WWT + 1) (275)

In other words, learning a PPCA model is equivalent to le@yaiparticular form of a Gaussian
distribution. This is illustrated in Figure 20. The PPCA mbidenot as general as learning a full
Gaussian model with & x D covariance matrix; however, it uses fewer numbers to repitdbe
Gaussian@'D + 1 versusD? /2 + D /2; why?). Because the representation is more compact, it can
be estimated from smaller datasets, and requires less meémstore the model.

These differences will be significant whénis large; e.g., ifD = 100, the full covariance
matrix would require5050 parameters and thus require hundreds of thousands of disis pm
estimate reliably. However, if the effective dimensiotyais, say, 2 or 3, then the PPCA represen-
tation will only have a few hundred parameters and many femeaisurements.

Learning. The PPCA model can be learned by Maximum Likelihood, i.e., nyimmzing:

N
L(W,b,0”) = —In][G(ys; b, WW" +0°T) (276)

i=1

1 N
= 3 > (yi —b) (WW" + 1) (y; — b) +) In(27)?|WWT + 0°1(277)

This can be optimized in closed form. The solution is veryilsinto the conventional PCA
case:

1. Letb =+ 3"y
2. LetK =+ Y .(yi—b)(y; —b)T

Copyright(© 2011 Aaron Hertzmann and David Fleet 80

CSC411/CsC D11 Principal Components Analysis

7.
8.

LetVAVT = K be the eigenvector decompositionkf A is a diagonal matrix of eigen-
values A = diag(\,...A\p)). The matrixV contains the eigenvectord/ = [Vy,...Vp]
and is orthonormav’Vv = 1.

Assume that the eigenvalues are sorted from largest thestn@; > A;.). If this is not the
case, sort them (and their corresponding eigenvectors).

. Leto? = 1%0 ZJDZCH Aj. In words, the estimated noise variance is equal to the geera

marginal data variance over all directions that are orthagjto theC' principal directions
(i.e., this is the average variance (per dimension) of the tihet is lost in the approximation
of the data in th& dimensional subspace).

. Let'V be the matrix comprising the firét eigenvectorsV = [V1,..V¢], and letA be the

diagonal matrix with the”' leading eigenvaluesh = [\, ... \¢].
W = V(A — ¢2I)2,
Letx; = W1 (y; —b), for all 4.

Note that this solution is similar to that in the conventibR&€A case with whitening, except that
(a) the noise variance is estimated, and (b) the noise iswedrfoom the variances of the remaining
eigenvalues.

An alternative optimization. In the above learning algorithm, we “marginalized ostiwhen
estimating PPCA. In other words, we maximized

p(y1n|W,b,0°%) = /p(yl:N,Xl;N‘W,b,Uz)dX1;N (278)
= / p(y1n|x1.8, W, b, 0?)p(x1.3)dX1.n (279)
— T1 [plydxic Wb o ot (280)
instead of maximizing
p(yin, x1.n|W,b,0?) = Hp(yi,xi|W,b,02) (281)
= Hp(Yi\XuWab,UQ)P(Xi) (282)

By integrating ouk, we are estimating fewer parameters and thus can get bstit@iages. Loosely
speaking, doing so might be viewed as being “more Bayesiangp8se we did instead try to

Copyright(© 2011 Aaron Hertzmann and David Fleet 81

CSC411/CsC D11 Principal Components Analysis

estimate thex’s together with the model parameters:

L<X1:N7W>b>a2) = _lnp(y1:N7X1:N’W7b>O—2) (283)
1 1
=D (@HY@' — (Wx; +b)|[]* + §\|XiH2)
ND
+=5-Ino? + NDIn2n (284)

Now, suppose we are optimizing this objective function, aedhave some estimates f&% and
x. We can always reduce the objective function by replacing

W < 2W (285)
X <+ x/2 (286)

By doing this replacement arbitrarily many times, we can géhitesimal values fox. This
indicates that the objective function is degenerate; usiwgl yield to very poor results.

Note that, however, this arises usitige same models before, but without marginalizing out
x. This illustrates a general principle: the more parameteusestimate (instead of marginalizing
out), the greater the danger of biased and/or degeneratigosisl.

Copyright(© 2011 Aaron Hertzmann and David Fleet 82

CSC411/CsC D11 Lagrange Multipliers

14 Lagrange Multipliers

The Method of Lagrange Multipliers is a powerful techniqoe ¢onstrained optimization. While
it has applications far beyond machine learning (it wasioally developed to solve physics equa-
tions), it is used for several key derivations in machineresy.

The problem set-up is as follows: we wish to find extrema,(neaxima or minima) of a
differentiable objective function

E(x) = E(x1,z3,...xp) (287)

If we have no constraints on the problem, then the extremadtions to the following system
of equations:
VE =0 (288)

which is equivalent to writing”> = 0 for all i. This equation says that there is no way to infinites-
imally perturbx to get a different value foE; the objective function is locally flat.
Now, however, our goal will be to find extrema subject to a Erognstraint:

g(x) =0 (289)

In other words, we want to find the extrema among the set oftpeithat satisfyg(x) = 0.

It is sometimes possible to reparameterize the problemderaio eliminate the constraints
(i.e., so that the new parameterization includes all péssiblutions tog(x) = 0), however, this
can be awkward in some cases, and impossible in others.

Given the constraing(x) = 0, we are no longer looking for a point where no perturbation in
any direction changeg'. Instead, we need to find a point at which perturbations thtédéfg the
constraints do not change. This can be expressed by the following condition:

VE+AVg = 0 (290)

for some arbitrary scalar value The expressioV E = —\g says that any perturbation tothat
changed’ also makes the constraint become violated. Hence, petitomisghat do not change
do not changé&” either. Hence, our goal is to find a powtthat satisfies this condition and also
g9(x) =0

In the Method of Lagrange Multipliers, we define a new objecfiunction, called thé.a-
grangian:

L(x,\) = E(x) + Ag(x) (291)

Now we will instead find the extrema df with respect to botkx and \. The key fact is that
extrema of the unconstrained objectivel are the extrema of the original constrained prob-

lem. So we have eliminated the nasty constraints by changing bfective function and also
introducing new unknowns.

Copyright(© 2011 Aaron Hertzmann and David Fleet 83

CSC411/CsC D11 Lagrange Multipliers

VE

Figure 21: The set of solutions §¢x) = 0 visualized as a curve. The gradidng is always normal
to the curve. At an extremal poiri, £’ points is parallel tdV g. (Figure fromPattern Recognition and
Machine Learnindoy Chris Bishop.)

To see why, let’s look at the extrema bf The extrema td. occur when

dL

i g(x) =0 (292)
L

d— = VE+AVg=0 (293)

dx

which are exactly the conditions given above. Using the &agian is just a convenient way of
combining these two constraints into one unconstraineidnogtion.

14.1 Examples

Minimizing on a circle. We begin with a simple geometric example. We have the foligwi
constrained optimization problem:

argming , v + vy (294)
subject tar? + 12 = 1 (295)

In other words, we want to find the point on a circle that mirziesiz + y; the problem is visualized
in Figure 22. HereF(z,y) = = + y andg(z, y) = 2* + y* — 1. The Lagrangian for this problem
is:

L(z,y,\) =x +y+ A2* +y* — 1) (296)

Copyright(© 2011 Aaron Hertzmann and David Fleet 84

CSC411/CsC D11 Lagrange Multipliers

15 -15

Figure 22: lllustration of the maximization on a circle pief. (Image from Wikipedia.)

Setting the gradient to zero gives this system of equations:

dL

— = 1422 =0 (297)
dx

dL

— = 142y =0 (298)
dy

dL y

aL 1= 299
o "ty 0 (299)

From the first two lines, we can see that= y. Substituting this into the constraint and solving

gives two solutions: = y = ﬂ:\/%. Substituting these two solutions into the objective, we that

the minimum is atr = y = —J%.

Estimating a multinomial distribution. In a multinomial distribution, we have an eventith
K possible discrete, disjoint outcomes, where

Ple =Fk) = (300)

For example, coin-flipping is a binomial distribution whe¥e= 2 ande = 1 might indicate that
the coin lands heads.
Suppose we observg events; the likelihood of the data is:

K

[1Plp) =] r" (301)
k

i=1

Copyright(© 2011 Aaron Hertzmann and David Fleet 85

CSC411/CsC D11 Lagrange Multipliers

whereN;, is the number of times that= k, i.e., the number of occurrences of the¢h event. To
estimate this distribution, we can minimize the negatigellelihood:

arg min — > . Nilnpy, (302)
subjectto >, pr = 1,p, > 0, for all k (303)

The constraints are required in order to ensure thap¥hérm a valid probability distribution.
One way to optimize this problem is to reparameterizepget 1 — Z,f:‘ll pr, Substitute in, and
then optimize the unconstrained problem in closed-form.|&\this method does work in this case,
it breaks the natural symmetry of the problem, resultingome messy calculations. Moreover,
this method often cannot be generalized to other problems.

The Lagrangian for this problem is:

L(p,A) = =) Nilnpg+ A <Zpk - 1> (304)
g p

Here we omit the constraint thaf > 0 and hope that this constraint will be satisfied by the
solution (it will). Setting the gradient to zero gives:

L N,
aL _ N +A=0 forall k (305)
dpy, Pk
dL
= = ; m—1=0 (306)

Multiplying dL/dp; = 0 by p, and summing ovek gives:

K
0==) Ne+A) ppe=-N+2\ (307)
k=1 k

since) , N, = N and), p, = 1. Hence, the optimak = N. Substituting this intelL /dp;, and

solving gives:

Pr = N
which is the familiar maximum-likelihood estimator for a liomial distribution.

(308)

Maximum variance PCA. Inthe original formulation of PCA, the goal is to find a low-démsional
projection of NV data pointsy
r=w!(y —b) (309)

Copyright(© 2011 Aaron Hertzmann and David Fleet 86

CSC411/CsC D11 Lagrange Multipliers

such that the variance of th€s is maximized, subject to the constraint thatw = 1. The
Lagrangian is:

L(w,b,\) = % | @i % _ a:i)Q + A(wiw —1) (310)

S DM CA IR wT<yi—b>)2+A<wTw—) (1)

= % ' w' <(yi—b)—% ' (yi—b)>>2+A(WTW—1) (312)

= Y W=) AT -) (313)

— W $) - 9 W A W - 1) (314)

= w' (% D yi=)i~ y)T> W A(W'w —1) (315)

wherey = 3. y,/N. SolvingdL/dw = 0 gives:

(% > i -)i y)T) W= w (316)

This is just the eigenvector equation: in other wordsmust be an eigenvector of the sample
covariance of thg’s, and A must be the corresponding eigenvalue. In order to determineh
one, we can substitute this equality into the Lagrangiareto g

L = widw+Aw!iw—1) (317)

= A (318)

sincew’w = 1. Since our goal is to maximize the variance, we choose theneagtorw which
has the largest eigenvalue

We have not yet selectda, but it is clear that the value of the objective function does

depend orb, so we might as well set it to be the mean of the data _, y;//N, which results in
thez’s having zero meany , z; /N = 0.

14.2 Least-Squares PCA in one-dimension

We now derive PCA for the case of a one-dimensional projectioterms of minimizing squared
error. Specifically, we are given a collection of data vesiqry, and wish to find a biab, a single

Copyright(© 2011 Aaron Hertzmann and David Fleet 87

CSC411/CsC D11 Lagrange Multipliers

unit vectorw, and one-dimensional coordinatesy, to minimize:

1 — . 2
arg min Z ly: — (wz; +b)]| (319)

subject tow’w = 1 (320)
The vectorw is called the first principal component. The Lagrangian is:

L(w,z1x,b,A) = D [y = (wai + b)||” + A([[w][* = 1) (321)
There are several sets of unknowns, and we derive their aptiatues each in turn.

Projections (z;). We first derive the projections:

dL
d.ﬁEi

Usingw’w = 1 and solving forz; gives:
;= w"(y;, ~b) (323)

Bias (b). We begin by differentiating:

B = 2 v (324)

Substituting in Equation 323 gives
dL

& = 2> (i~ (ww'(yi=b)+b)) (325)
= —2) yi+2ww') y;—2Nww'b + 2Nb (326)
= 2(I—ww’) Z yi +2(I—ww’')Nb =0 (327)

Dividing both sides b (I — ww’) N and rearranging terms gives:

1
b = NZ%‘ (328)

Copyright(© 2011 Aaron Hertzmann and David Fleet 88

CSC411/CsC D11 Lagrange Multipliers

Basis vector). To make things simpler, we will defing = (y; — b) as the mean-subtracted
data points, and the reconstructions are thes w’y,, and the objective function is:

L = Y g — wail P + A(w"w — 1) (329)
= Z 17: — ww!yi| > + AM(wiw — 1) (330)
= zz:(f’z‘ —ww'y,) (i —ww'y,) + Aw'w — 1) (331)
= i(ﬁ Yi— 2y, ww'y; + 3 wwl wwy;) + A(w'w — 1) (332)
= Z Iy — > (FTw) + AW w — 1) (333)
where we have usedT:zv =1. We Zthen differentiate and simplify:
% = -2 ;yiyfw + 22w =0 (334)

We can rearrange this to get:

(Zy@y?>w = Aw (335)

This is exactly the eigenvector equation, meaning thaeexarfor, occur whenw is an eigenvec-
tor of the matrix)_, y;y7, and\ is the corresponding eigenvalue. Multiplying both sides ¥,
we see this matrix has the same eigenvectors as the datéacmear

1 T A
Now we must determine which eigenvector to use. We rewritgaign 333 as:
L = Y ylyi-> wyglw+aw'w-1) (337)
= Z yiyi —w’ <Z Sfljff) w+ ANwiw —1) (338)
(339)
and substitute in Equation 335:

L = Z Viyi — Awlw + A(wiw — 1) (340)
= D Vv (341)

Copyright(© 2011 Aaron Hertzmann and David Fleet 89

CSC411/CsC D11 Lagrange Multipliers

again usingv’w = 1. We must pick the eigenvaluethat gives the smallest value &f Hence,
we pick the largest eigenvalue, and seto be the corresponding eigenvector.

14.3 Multiple constraints

When we wish to optimize with respect to multiple constrainigx)}, i.e.,

arg miny F(x) (342)
subject togy(x) =0fork = 1..K (343)
Extrema occur when:
VE+Y MVg = 0 (344)
k

where we have introduced Lagrange multipliers\,. The constraints can be combined into a
single Lagrangian:

L(x, M) = B(x) +) Mga(x) (345)
k

14.4 Inequality constraints

The method can be extended to inequality constraints ofdire §(x) > 0. For a solution to be
valid and maximal, there two possible cases:

e The optimal solution is inside the constraint region, arehdeVE = 0 andg(x) > 0. In
this region, the constraint is “inactive,” meaning thatan be set to zero.

e The optimal solution lies on the boundayx) = 0. In this case, the gradieRt £ must point
in the oppositedirection of the gradient of; otherwise, following the gradient af would
causeg to become positive while also modifying. Hence, we must have £ = —\V g for
A>0.

Note that, in both cases, we ha¥g(x) = 0. Hence, we can enforce that one of these cases is
found with the following optimization problem:

max E(x) + Ag(x) (346)
suchthat g¢(x)>0 (347)
A>0 (348)

Ag(x) =0 (349)

These are called the Karush-Kuhn-Tucker (KKT) conditiamsich generalize the Method of La-
grange Multipliers.

When minimizing, we wan¥ E to point in the same direction a8¢g when on the boundary,
and so we minimizéZ — \g instead ofE + \g.

Copyright(© 2011 Aaron Hertzmann and David Fleet 90

CSC411/CsC D11 Lagrange Multipliers

VE

X1

g(x) >0

Figure 23: lllustration of the condition for inequality cgiraints: the solution may lie on the
boundary of the constraint region, or in the interi@figure fromPattern Recognition and Machine
Learningby Chris Bishop.)

Copyright(© 2011 Aaron Hertzmann and David Fleet 91

CSC411/CSCD11 Clustering

15 Clustering

Clustering is arunsupervisedlearning problem in which our goal is to discover “clusteirsthe
data. A cluster is a collection of data that are similar in saumay.

Clustering is often used for several different problems.d&@mple, a market researcher might
want to identify distinct groups of the population with siami preferences and desires. When
working with documents you might want to find clusters of doeumts based on the occurrence
frequency of certain words. For example, this might allove ém discover financial documents,
legal documents, or email from friends. Working with imagdlections you might find clusters
of images which are images of people versus images of bgidi®ften when we are given large
amounts of complicated data we want to look for some undeglgtructure in the data, which
might reflect certaimatural kindswithin the training data. Clustering can also be used to cesgr
data, by replacing all of the elements in a cluster with alsingpresentative element.

15.1 K-means Clustering

We begin with a simple method callédd-means. GivenV input data vectorgy; }% ,, we wish to
label each vector as belonging to one/otlusters. This labeling will be done via a binary matrix
L, the elements of which are given by

(350)

L 1 if data point; belongs to clustey
S 0 otherwise

The clustering is mutually exclusive. Each data vectoan only be assigned to only cluster:
Zle L, ; = 1. Along the way, we will also be estimating a centgffor each cluster.
The full objective function for’-means clustering is:

E(c,L) =) Lijllyi — ¢l (351)
i.j

This objective function penalizes the distance betweeh data point and the center of the cluster
to which it is assigned. Hence, to minimize this error, we Wtarbring the cluster centers close to
the data it has been assigned, and we also want to assigntéhio ageearby centers.

This objective function cannot be optimized in closed-foend so an iterative method is re-
quired. It includes discrete variables (the lalde)sand so gradient-based methods aren’t directly
applicable. Instead, we use a strategy catledrdinate descentin which we alternate between
closed-form optimization of one set of variables holding tlther variables fixed. That is, we first
pick initial values, then we alternate between updatingdbels for the current centers, and then
updating the centers for the current labels.

Copyright(© 2011 Aaron Hertzmann and David Fleet 92

CSC411/CSCD11 Clustering

Here is theK-means algorithm:

pick initial values forL andc;.x
loop
/I Labeling update: sek < arg ming, F(c, L)
for each data pointdo
j « argmin; [|y; — ¢;|?

Li,j - 1
L,,=0foralla#j
end for

/I Centers update: set «+— arg min. F(c, L)

for each centej do
2 i Lijyi
¢ S
end for end loop

Each step of the optimization is guaranteed to lower theablygefunction until the algorithm
converges (you should be able to show that each step is dptirkh@avever, there is no guarantee
that the algorithm will find the global optimum and indeed ayreasily get trapped in a poor local
minima.

Initialization. The algorithm is sensitive to initialization, and poor ialization can sometimes
lead to very poor results. Here are a few strategies thatearséd to initialize the algorithm:

1. Random labeling. Initialize the labelingl. randomly, and then run the center-update step to
determine the initial centers. This approach is not reconted because the initial centers
will likely end up just being very close to the mean of the data

2. Random initial centers. We could try to place initial center locations randomly,.elyy
random sampling in the bounding box of the data. Howeves very likely that some of the
centers will fall into empty regions of the feature spacej wiill therefore be assigned no
data. Getting a good initialization this way can be difficult

3. Random data points as centersThis method works much better: use a random subset of
the data as the initial center locations.

4. K-medoids clustering This will be described below.

5. Multiple restarts. In multiple restarts, we ruk-means multiple times, each time with a
different random initialization (using one of the above huets). We then take the best clus-
tering out of all of the runs, based on the value of the objedtinction above in Equation
(351).

Copyright(© 2011 Aaron Hertzmann and David Fleet 93

CSC411/CSCD11 Clustering

451

40+

351

301

251

20

15

10

I I I I I I
-10 0 10 20 30 40

Figure 24: K-means applied to a dataset sampled from three Gaussiaiutisns. Each data
assigned to each cluster are drawn as circles with distwloucs. The cluster centers are shown
as red stars.

Another key question is how one chooses the number of ckjster, K. A common approach
is to fix K based on some prior knowledge or computational constrairie can also try different
values ofK’, adding another term to to the objective function to peratimdel complexity.

15.2 K-medoids Clustering

(The material in this section is not required for this course

K-medoids clustering is a variant &f-means with the additional constraint that the cluster
centers must be drawn from the data. The following algorjtbatied Farthest First Traversal, or
Hochbaum-Shmoys, is simple and effective:

Randomly select a data poipt as the first cluster centet; + y;
for j =2t0 K
Find the data point furthest from all existing centers:
i +— arg max; ming; ||y; — cl|?
Cj < Yi
end for
Label all remaining data points according to their nearesters (as ik-means)

This algorithm provides a quality guarantee: it gives atelusg that is no worse than twice
the error of the optimal clustering.

K-medoids clustering can also be improved by coordinateetgscThe labeling step is the
same as ink-means. However, the cluster updates must be done by lotde-$earch for each
candidate cluster center update.

Copyright(© 2011 Aaron Hertzmann and David Fleet 94

CSC411/CSCD11 Clustering

15.3 Mixtures of Gaussians

The Mixtures-of-Gaussians (MoG) model is a generalizatbA -means clustering. Whereas
means clustering works for clusters that are more or leserggaih, the MoG model can handle
oblong clusters and overlapping clusters. TKiemeans algorithm does an excellent job when
clusters are well separated, but not when the clustersaqveloG algorithms compute a “soft,”
probabilistic clustering which allows the algorithm to teethandle overlapping clusters. Finally,
the MoG model is probabilistic, and so it can be used to leavbability distributions from data.

The MoG model consists di” Gaussian distributions, each with their own means and covar
ances{(u;, K;)}. Each Gaussian also has an associated (prior) probabjilispch thad _; a; = 1.
That is, the probabilities; will represent the fraction of the data that are assignedrtgé¢nerated
by) the different Gaussian components. As a shorthand, Wewvie all the model parameters
with a single variable, i.e = {a;.x, 111.x, Ki.x }. When used for clustering, the idea is that each
Gaussian component in the mixture should correspond togéesutuster.

The complete probabilistic model comprises the prior pbiliees of each Gaussian compo-
nent, and Gaussian likelihood over the data (or feature)esfua each component:

P(L=3jl) = a; (352)
p(yl0, L=3) = G(y; 1;,K;) (353)

To sample a single data point from this (generative) modelfivgt randomly select a Gaussian
component according to their prior probabilitiés; }, and then we randomly sample from the
corresponding Gaussian component. The likelihood of alesidgta point can be derived by the
product rule and the sum rule as follows:

K
p(yl0) = > ply, L =l6) (354)

j=1
K

= > plylL =24,0) P(L = jl6) (355)
j=1
K 1 , '

= D4y H O (356)
=1 (27T) |KJ|

whereD is the dimension of data vectors. This model can be intezdras a linear combination
(or blend) of Gaussians: we get a multimodal distributioratiging together unimodal Gaussians.
Interestingly, the MoG model is similar to the Gaussian Glasaditional model that we used for
classification; the difference is that the class labels mallonger be included in the training set.

In general, the approach of building models by mixtures iseggeneral and can be used for
many other types of distributions as well, for example, waldduild a mixture of Student-
distributions, or a mixture of a Gaussian and a uniform, andrs

Copyright(© 2011 Aaron Hertzmann and David Fleet 95

CSC411/CSCD11 Clustering

%

-10 -5 0 5 10 15 20 25 30 35 40 80 100 120 140 160 180 200

Figure 25: Mixture of Gaussians model applied to a datasetmgeed from three Gaussians. The
resulting~y is visualized on the right. The data points are shown as edlaircles. The color
is determined by the cluster with the highest posteriorgassent probabilityy;;. One standard
deviation ellipses are shown for each Gaussian. Note teddltle points are well isolated and there
is little ambiguity in their assignments. The other two disitions overlap, and one can see how
the orientation and eccentricity of the covariance stmgc{the ellipses) influence the assignment
probabilities.

15.3.1 Learning

Given a data set;.y, where each data point is assumed to be drawn independentiytiie model,
we learn the model parametefis by minimizing the negative log-likelihood of the data:

L(0) = —Inp(y.n|0) (357)
= _Zhlp(}’i’e) (358)

Note that this is a constrained optimization, since we mequi > 0 and} _; a; = 1. Furthermore,
K; must be symmetric, positive-definite matrix to be a covaamatrix. Unfortunately, this
optimization cannot be performed in closed-form.

One approach is to use gradient descent to optimization &yigmt descent. There are a few
issues associated with doing so. First, some care is retjai@/oid numerical issues, as discussed
below. Second, this learning is a constrained optimizatiue to constraints on the values of the
a’s. One solution is to project onto the constraints duringrojzation: at each gradient descent
step (and inside the line search loop), we clamp all negatiaues to zero and renormalize the
a’s so that they sum to one. Another option is to reparamete¢hie problem to be unconstrained.
Specifically, we define new variablgs, and define the’s as functions of thess, e.g.,

el
a;(B) = SK o (359)

Copyright(© 2011 Aaron Hertzmann and David Fleet 96

CSC411/CSCD11 Clustering

This definition ensures that, for any choice of {f& theas will satisfy the constraints. We sub-
stitute this expression into the model definition and theimaipe for thess instead of thes with
gradient descent. Similarly, we can enforce the conssantthe covariance matrix by reparame-
terization; this is normally done using a upper-triangutatrix U such thatk = U7'U.

An alternative to gradient descent is tBgpectation-Maximization algorithm, or EM. EM
is a quite general algorithm for “hidden variable” problemrsthis case, the labels are “hid-
den” (or “unobserved”). In EM, we define a probabilistic labg variable~, ;. The variable
7i,; corresponds to the probability that data paicame from clustey: +; ; is meant to estimate
P(L = jly;). In EM, we optimize bott¥ and~ together. The algorithm alternates between the
“E-step” which updates thes, and the “M-step” which updates the model parameiers

pick initial values fory and6
loop
E-step:
for each data pointdo
Yij < P(L=jlyi,0)
end for
M-step:
for each clustey do
aj ¢ =
i e
K, « > %,J(yi:i/;]i?j(yz 1)

T

end for
end loop

Note that the E-step is the same as classification in the GauStass-Conditional model.
The EM algorithm is a local optimization algorithm, and se tlesults will depend on initial-
ization. Initialization strategies similar to those used K -means above can be used.

15.3.2 Numerical issues

Exponentiating very small negative numbers can often leashtlerflow when implemented in
floating-point arithmetic, e.gg=* will give zero for largeA4, andIne=4 will give an error (or

- I nf) whereas it should returr A. These issues will often cause machine learning algoritoms
fail; MoG has several steps which are susceptible. Forélyahere are some simple tricks that
can be used.

1. Many computations can be performed directly in the log d@iom For example, it may be

Copyright(© 2011 Aaron Hertzmann and David Fleet 97

CSC411/CSCD11 Clustering

more stable to compute
ae (360)
as
eln a+b (361)

This avoids issues wheteis so small that® evaluates to zero in floating point, but® is
much greater than zero.

2. When computing an expression of the form:
e Bi

Zj e=hi

large values of3 could lead to the above expression being zero foy,alven though the

expression must sum to one. This may arise, for example, wbeputing they updates,
which have the above form. The solution is to make use of thetity:

e_ﬁj e_ﬂj""c
Soeh Y e e

for any value ofC'. We can choosé€’ to prevent underflow; a suitable choice&is= min; ;.

(362)

(363)

3. Underflow can also occur when evaluating
) e (364)

which can be fixed by using the identity
In Z e Pi = (ln Z e’BﬁC) - C (365)

15.3.3 The Free Energy

Amazingly, EM optimizes the log-likelihood, which doesgiten have & parameter. In order to
understand the EM algorithm and why it works, it is helpfuiitvoduce a quantity called thieee
Energy:

F(0,7) = —Z%jlnp i, L=310) + Y 7y (366)
2

= _Z%J /~LJ TK (— 1) (367)

+- Z%] (27)]K]—Z’ywlnaj (368)
ij

+Z’Yi,j In~; ; (369)

Copyright(© 2011 Aaron Hertzmann and David Fleet 98

CSC411/CSCD11 Clustering

The EM algorithm is a coordinate descent algorithm for ofing the free energy, subject
to the constraint tha} iYig =1 and the constraints om In other words, EM can be written
compactly as:

pick initial values fory andf
loop

E-step:

v « argmin, F(6,7)

M-step:

6 < arg ming F(6,)
end loop

However, the free energy is different from the negativellkghhood £(#) that we initially set
out to minimize. Fortunately, the free energy has the falhgymportant properties:

e When the value of is optimal, the Free Energy is equal to the negative logiked:
L(0) = min F(0,7) (370)
Y
We can use this fact to evaluate the negative log-likelingiotgply by running an E-step and

then computing the free energy. In fact, this is often mofieiefit than directly computing
the negative log-likelihood. The proof is given in the nexttson.

e The minima of the free energy are also minima of the negatigdikelihood:

rr%in L(0) = min F(0,~) (371)

0,y

This follows from the previous property. Hen@gtimizing the free energy is the same as
optimizing the negative log-likelihood.

e The Free Energy is an upper-bound on the negative log+tiket:
F(0.7) = L(9) (372)

for all values ofy. This observation gives a sanity check for debugging the é&eergy
computation.

The Free Energy also provides a very helpful tool for debogigany step of an implementation
that increases the free energy must be incorrect. The teem Energy arises from its original
definition in statistical physics.

15.3.4 Proofs

This content of this section is not required material fos ttourse and you may skip it. Here we
outline proofs for the key features of the free energy.

Copyright(© 2011 Aaron Hertzmann and David Fleet 99

CSC411/CSCD11 Clustering

EM updates. The steps of the EM algorithm may be derived by solvingmin., 7(6,~) and
arg ming F(6,~). In most cases, the derivations generalize familiar ongp, weighted least-
squares. The and~ parameters are multinomial distributions, and optim@atf them requires
Lagrange multipliers or reparameterization. One may igribe positivity constraint, as it turns
out to be automatically satisfied. The details will be skigbpere.

Equality after the E-step. The E-step computes the optimal value for
7" = argmin F(6,7) (373)
Y
which is given by:

Yoy = P(L = jlyi) (374)

Substituting this into the Free Energy gives:

oo p(yi, L =j)

F0.7) = ZP =Jly)n 5= (375)

- —ZP = jly:) Inp(y:) (376)

= —Z (lnp Yi ZP = jlyi) > (377)

N Zln p(y:) (378)

_) (379)

Hence,

L(0) = min F(0,7) (380)

Y

Bound. An important building block in proving that(0,~v) > £(0) is Jensen’s Inequality,
which applies sincén is a “concave” function and_; b; = 1,b; > 0

Iy bz, > > bjlnz;, or (381)
J

J

~—In) bz, < =) bjlna (382)
J

J

We will not prove this here.

Copyright(© 2011 Aaron Hertzmann and David Fleet 100

CSC411/CSCD11 Clustering

We can then derive the bound as follows, dropping the depeedend for brevity:

LO) = —Zanp yir L = j) (383)
- _ZmZW pyi: L = j) (384)
- YM _.])
< Z Ty I (385)
= f(ﬁ,v) (386)

15.3.5 Relation toK-means

It should be clear that th&-means algorithm is very closely related to EM. In fact, EMuees
to K-means if we make the following restrictions on the model:

e The class probabilities are equal: = +
e The Gaussians are spherical with identical varianggs= oI for all ;.

e The Gaussian variances are infinitesimal, i.e., we conglieralgorithm in the limit as
o> — 0. This causes the optimal values fotto be binary, since, if is the nearest class,
lim,2_,o P(L = jly;) = 1.

With these modifications, the Free Energy becomes equiviléhe K -means objective function,
up to constant values, and the EM algorithm becomes idémtidd-means.

15.3.6 Degeneracy

There is a degeneracy in the MoG objective function. Suppaseenter one Gaussian at one of
the data points, so thal, = y,;. The error for this data point will be zero, and by reducing th
variance of this Gaussian, we can always increase theHixedi of the data. In the limit as this

Gaussian’s variance goes to zero, the data likelihood goedinity. Hence, some effort may be

required to avoid this situation. This degeneracy can atsavmided by using a more Bayesian
form of the algorithm, e.g., marginalizing out the clustenters rather than estimating them.

15.4 Determining the number of clusters

Determining the value ok is a model selection problem: we want to determine the nikeslyl
value of K given the data. Cross validation is not appropriate hereesire do not have any super-
vision (e.g., correct labels from a subset of the data). Bagesodel selection can be employed,
e.g., by maximizing

K* = arg max P(Kly.n) = arg m[z(ix/p(K,9|y1:N)d9 (387)

Copyright®© 2011 Aaron Hertzmann and David Fleet 101

CSC411/CSCD11 Clustering

wheref are the model parameters. This evaluation is somewhat matially-involved. A very
coarse approximation to this computation is Bayesian In&ion Criterion (BIC).

Copyright(© 2011 Aaron Hertzmann and David Fleet 102

CSC411/CcsC D11 Hidden Markov Models

10000

8000

6000

4000

Frequency (Hz)

2000

0.3

0.15

(=]

Amplitude

-0.15

-0.3

0 0.2 0.4 0.6 0.8 1
Time (sec)

F4 er

bl

1h| ih

em |

| Bayes' | Theorem |

Figure 26: Examples of time-series data: speech and laeguag

16 Hidden Markov Models

Until now, we have exclusively dealt with data sets in whieltleindividual measurement is in-
dependent and identically distributed (1ID). That is, faotpointsy; andy, in our data set, we
havep(y,) = p(y2) andp(y1,y2) = p(y1)p(y2) (for a fixed model). Time-series data consist of
sequences of data that are not 1ID: they arise from a probasvaries over time, and modeling
the dynamics of this process is important.

16.1 Markov Models

Markov models are time series that have the Markov property:
P(s¢|St—1,8n-2, ..., 1) = P(s¢|s1-1) (388)

wheres, is the state of the system at timelntuitively, this property says the probability of a state
at timet is competely determined by the system state at the previmgsstep. More generally,
for any setA of indices less thahand set of indice#s greater thamn we have:

P(5t|{5i}i€AUB) = P(St|smax(A)7 Smin(B)) (389)

which follows from the Markov property.

Copyright(© 2011 Aaron Hertzmann and David Fleet 103

CSC411/CcsC D11 Hidden Markov Models

Another useful identity which also follows directly frometMarkov property is:

P(si—1, s1+1|5¢) = P(S1-1|5¢) P(St+1]5¢) (390)

Discrete Markov Models. A important example of Markov chains are discrete Markov eied
Each state;, can take on one of a discrete set of states, and the proladgilitansitioning from
one state to another is governed by a probability table fervthole sequence of states. More
concretely,s; € {1,..., K} for some finiteK and, for all timest, P(s; = j|s;-1 = i) = A;;
whereA is parameter of the model that is a fixed matrix of valid prolisds (so that4,; > 0 and
Zle A;; = 1). To fully characterize the model, we also require a distidn over states for the
first time-step:P(s; = 1) = a;.

16.2 Hidden Markov Models

A Hidden Markov model (HMM) models a time-series of obseiomd y,. as being determined
by a “hidden” discrete Markov chaig.;. In particular, the measurement is assumed to be
determined by an “emission” distribution that depends enrtidden state at time p(y,|s; =).
The Markov chain is called “hidden” because we do not meagutaut must reason about it
indirectly. Typically,s; encodes underlying structure of the time-series, whereeas torrespond
to the measurements that are actually observed. For exammglgeech modeling applications, the
measurementg might be the waveforms measured from a microphone, and ddaehistates might
be the corresponding word that the speaker is uttering.niguage modeling, the measurements
might be discrete words, and the hidden states their undgrparts of speech.

HMMs can be used for discrete or continuous data; in thisssuwwe will focus solely on the
continuous case, with Gaussian emission distributions.

The joint distribution over observed and hidden is:

p(sl:Ta}Il:T) = p(Y1;T|81:T)P(81:T) (391)
where
T
P(si.r) = P(s1) [] P(silsi-1) (392)
t=2
and
T
P(yvr|sir) = [[p(y:ls:) (393)
t=1
The Gaussian model says:
p(yielse = 1) = N(ye; ps,) (394)

for some mean and covariance paramege@snd>:;. In other words, each staidas its own Gaus-
sian with its own parameters. A complete HMM consists of tkWing parametersa, A, .4,

Copyright®© 2011 Aaron Hertzmann and David Fleet 104

CSC411/CcsC D11 Hidden Markov Models

S So S¢-1 St St 41
I}ﬁ Im Iytl Im Iytﬂ
Figure 27: lllustration of the variables in an HMM, and theanditional dependenciegFigure
from Pattern Recognition and Machine Learnibg Chris Bishop.)

11

Figure 28: The hidden states of an HMM correspond to a stathima. (Figure from Pattern
Recognition and Machine Learniriy Chris Bishop.)

Copyright®© 2011 Aaron Hertzmann and David Fleet 105

CSC411/CcsC D11 Hidden Markov Models

0.5t Q . 0.5t

0 : 0 ,
0 0.5 1 0 0.5 1

Figure 29: lllustration of sampling a sequence of dataggdirdm an HMM. (Figure fromPattern
Recognition and Machine Learniry Chris Bishop.)

andX;.x. As a short-hand, we will denote these parameters by a Vadab {a, A, p,.x, X1.x }-

Note that, ifA;; = a; for all ¢, then this model is equivalent to a Mixtures-of-Gaussiameho
with mixing proportions given by the;’s, since the distribution over states at any instant doés no
depend on the previous state.

In the remainder of this chapter, we will discuss algoritforscomputing with HMMS.

16.3 Viterbi Algorithm

We begin by considering the problem of computing the maé&thi sequence of states given a data
sety. and a known HMM model. That is, we wish to compute

ST:T = arg %ixp(slleeayl:T) (395)

The naive approach is to simply enumerate every possiltie stguence and choose the one that
maximizes the above conditional probability. Since theee /&’ possible state-sequences, this
approach is clearly infeasible for sequences of more thawateps.

Fortunately, we can take advantage of the Markov properpetéorm this computation much
more efficiently. The Viterbi algorithm is a dynamic progmamg approach to finding the most
likely sequence of states.r givend and a sequence of observatignsr.

We begin by defining the following quantity for each state aadh time-step:

61(i) = max p(s1.4-1, St = 1, y1:4) (396)

S1:t—1

Copyright(© 2011 Aaron Hertzmann and David Fleet 106

CSC411/CcsC D11 Hidden Markov Models

(Henceforth, we omif from these equations for brevity.) This quantity tells us likelihood that
the most-likely sequence up to timends at staté given the data up to time We will compute
this quantity recursively. The base case is simply:

01(i) = p(s1 =1, y1) = p(y1ls1 = i) P(s1 = 1) (397)
for all 7. The recursive case is:

(St(l) = ?Bta;}fp(SLt_l’ St = i? Y1:t)

= smanp(St = i’8t71 = j)p(yt|3t = i)P<51:t72, St-1 =17, YI:t71>
1:t—2,
= p()’t|5t = l) m]ax P(St = i|8t—1 = j) maXp<51;t—2, St—1 =17, Y1:t—1)
1

S1:t—2

= p(yelse = 1) max Ajidi—1(7)

Once we have computedfor all time-steps and all states, we can determine the fiase ®f
the most-likely sequence as:

sy = arg max P(sr =ily1.7) (398)
= argmax P<ST - i? Y1:T) (399)
= argmax dp(7) (400)

sincep(y;.r) does not depend on the state sequence. We can then backi@altts to determine
the states of each previous time-step, by finding which gtai@s used to compute each maximum
in the recursive step above. These states would normalljobedsduring the recursive process so
that they can be looked-up later.

16.4 The Forward-Backward Algorithm

We may be interested in computing quantities such(gs.z|0) or P(s;|yi.r,0); these distribu-
tions are useful for learning and analyzing models. Agdia,rtaive approach to computing these
guantities involves summing over all possible sequencégdien states, and thus is intractable to
compute. The Forward-Backward Algorithm allows us to coraghbese quantities in polynomial
time, using dynamic programming.

In the Forward Recursion, we compute:

(1) = p(y1, e = 0) (401)

The base case is:
ai1(?) = p(y1]s1 = 9)p(s1 = 1) (402)

Copyright®© 2011 Aaron Hertzmann and David Fleet 107

CSC411/CcsC D11 Hidden Markov Models

Figure 30: lllustration of they (i) values computed during the Forward Recursi¢figure from
Pattern Recognition and Machine Learnibyg Chris Bishop.)

and the recursive case is:

(i) = Zp(yllta S¢ =1,5-1=7]) (403)
= > pilse =) P(se = ilsi1 = §)p(Yri-1, 501 = 5) (404)
= p(yils: = i)ZAj,-ozt_l(j) (405)

Note that this is identical to the Viterbi algorithm, excéipat maximization ovey has been re-
placed by summation.
In the Backward Recursionwe compute:

Bi(i) = p(yisrr|se = 10) (406)
The base case is:
pr(i) =1 (407)
The recursive case is:
K
Bii) = > Aup(yesilsi = §)Bis () (408)
j=1

From these quantities, we can easily the following usefaijties.

Copyright(© 2011 Aaron Hertzmann and David Fleet 108

CSC411/CcsC D11 Hidden Markov Models

\p(Yt |5t 11 ,1)
B(st 41 ,2)

N p(yelst 1 ,2)
B(st 41 3)

EAIN p(Yt |8t +H ,3)

Figure 31: lllustration of the steps of the Forward Recursiod the Backward Recursi@higure
from Pattern Recognition and Machine Learnibyg Chris Bishop.)

The probability that the hidden sequence had statdimet is:

(i) = plst =ilyir) (409)
_ p(Yl:T|3t = Z‘)p(St = Z) (410)
p(yir)
_ p(ylztlst = i)p<yt+1:T’5t = i)p<3t = Z) (411)
' ' p(yir)
_ «®50) (412)
p(yl:T)

The normalizing constant — which is also the likelihood o #ntire sequence(y,.,) — can be
computed by the following formula:

p(yir) = Y p(si=1i,yur) (413)

= Z o (1) 54 (1) (414)

The result of this summation will be the same regardless altime-step: we choose to do the
summation over.
The probability that the hidden sequence transitioned fstaie: at timet to statej at time

Copyright(© 2011 Aaron Hertzmann and David Fleet 109

CSC411/CcsC D11 Hidden Markov Models

t+1is:
&(i,7) = P(s¢ =1,541 = Jlyur) (415)
_ (1) Aigp(Yes1|Se1 = J) Beg1(J) (416)
p(yl:T)

_ at(i)Aijp(Yt+1|St+1 = j)ﬁtﬂ(i) (417)

> 2 (D) Aip(Yiralser =) B ()

Note that the denominator gives an expressiompfer.r), which can be computed for any value
of t.

16.5 EM: The Baum-Welch Algorithm

Learning in HMMs is normally done by maximum likelihood, .i.eve wish to find the model
parameters such that:
0" = arg max p(y1.r|¢) (418)

As before, even evaluating this objective function recuik&’ steps, and methods like gradient
descent will be impractical. Instead, we can use the EM dlgar Note that, since an HMM
is a generalization of a Mixture-of-Gaussians, EM for HMM# We a generalization of EM for
MoGs. The EM algorithm applied to HMMs is also known as the Batelch Algorithm.

The algorithm alternates between the following two steps:

e The E-Step: The Forward-Backward Algorithm is performed, in order to are~ and§.

e The M-Step: The parameterg are updated as follows:

a; = (i) (419)
_ Zt7t<i)Yt

SR SN 420)

Sl -)y —)T

5 > (i) (421)

Az] — Zt €t<l7.])

e > i k) (422)

16.5.1 Numerical issues: renormalization

In practice, numerical issues are a problem for the strioighiird implementation of the Forward-
Backward Algorithm. Since the,’s involve joint probabilities over the entire sequence ap t
time ¢, they will be very small. In fact, asgrows, the values af; tend to shrink exponentially

Copyright© 2011 Aaron Hertzmann and David Fleet 110

CSC411/CcsC D11 Hidden Markov Models

towards 0. Thus the limit of machine precision will quicklg beached and the computed values
will underflow (evaluate to zero).
The solution is to compute a normalized terms in the Forvizadkward recursions:

. a; (1)

at(l) = m (423)
Bi(i) = <H cm> Bi(t) (424)
m=t+1

Specifically, we use; = p(y:|yi.—1). It can then be seen that, if we uéieandB in the M-step
instead ofa. and 3, thec; terms will cancel out (you can see this by substituting threnfdas for
~v and¢ into the M-step). We then must chooseo keep the scaling ok and 3 within machine
precision.

In the base case for the forward recursion, we set:

K
o = Zp(y1|31 =1)a; (425)
a1(i) = p(yifs1 = i)a; (426)

C1

(This may be implemented by first computing the numeratay,@nd then summing it to get).
The recursion for computing is

K
¢ = Zp(ytlstzi)ZAjidH(j) (427)

Zjl‘(zl Ajidt—l (])

a(1) = plyilsi =1i) . (428)
t
In the backward step, the base case is:
Br(i) =1 (429)
and the recursive case is
K N .
~ o Az S =
i) = > i1 Aijp(Yeal st = 7)Ber (4) (430)
Ctt1
using the same, values computed in the forward recursion.
The~ and¢ variables can then be computed as
(i) = auli)B(i) (431)
o G (i Sea1 = 1) Ai 3 '
&(i,) H()p(Yes1lser = 3)AyBiea(4) (432)

Ct+1

Copyright®© 2011 Aaron Hertzmann and David Fleet 111

CSC411/CcsC D11 Hidden Markov Models

It can be shown that, = p(y:|y1.—1). Hence, once the recursion is complete, we can compute
the data likelihood as

piyir) =[] e (433)

t
or, in the log-domain (which is more stable),

Inp(y1.7) Z In ¢ (434)

This quantity is decreased after ever EM-step until coremecg of EM.

16.5.2 Free Energy

EM can be viewed as optimizing the model paramefdogether with the distributios.
The Free Energy for a Hidden Markov Model is:

- _nyl YIna; — ZZ&Z]IHA” ZZ%) Inp(y|s: = i)

i,j t=1 i
+ZZ§H In&(7,) ZZ%) Iny,(i) (435)
i, t=1 7

where~ is defined as a function gfas:
i) = th(ia k) = th—l(/ﬂ,i) (436)
k k

Warning! Since we weren't able to find any formula for the free energy,derived it from
scratch (see below). In our tests, it didn’t precisely matehnegative log-likelihood. So there
might be a mistake here, although the free energy did dexeesasxpected.

Derivation. This material is very advanced and not required for the @utsis mainly here
because we couldn’t find it elsewhere.

As a short-hand, we define= s;.7 to be a variable representing an entire state sequence. The
likelihood of a data sequence is:

p(yir) ZP yur,8 (437)

where the summation is over all possible state sequences.
In EM, we're really optimizing/ and a distributiony(s) over the possible state sequences. The
variable¢ is just one way of representing this distribution by its niaads; the variabley are the

Copyright®© 2011 Aaron Hertzmann and David Fleet 112

CSC411/CcsC D11 Hidden Markov Models

marginals ok :
(i) = qlse=1) =) qls) (438)
s\{i}
&6,7) = qlsi=i,s1=35)= Y qls) (439)
s\{é.j}

We can also compute the full distribution frafrand-:

T-1
q(s) = H q(se11ls¢) (440)
_ H (i) (441)
()
T-1
— t=1 gt(lvj) (442)
Ht 2 'Vt(z)
The Free Energy is then:
F(0,q) = —Z) Inp(s, yir) +Z)Ing(s) (443)
= Fi(q)+F2() (444)
The first term can be decomposed as:
Filg) = —Z) Inp(s, yi.r) (445)

T
= Z (s1) HP (St41]s¢) Hp Yt|3t) (446)
t=1
- _Z)In P(s1) ZZ YIn P(sg41]8¢) ZZ) Inp(y|se) (447)
= —Z'yl lnP 81—Z th 1,7 IHP(3t+1:]|3t:Z)
it

- Z% (i) In p(yq| s = 1) (448)

it

Copyright(© 2011 Aaron Hertzmann and David Fleet 113

CSC411/CcsC D11 Hidden Markov Models

The second term can be simplified as:

Fy(q) = Zq(S) Ing(s) (449)
_ Ht 1 ft(l]) 450
zs:q(i Ht 2 ’Yt() ()

= ZZ) In & (i, 7) ZZCI) In 7 (4) (451)

= ZZ&’LJ In&(7,7) ZZ%) In vy, (4) (452)

i,j t=1 i t=2

16.6 Most likely state sequences

Suppose we wanted to computed the most likely statésr each time in a sequence. There are
two ways that we might do it: we could take thmst likely state sequence

ST:T = arg maXp(Slin’l:T) (453)
S1:T
or we could takehe sequence of most-likely states
s; = argmax p(s¢|y1.r) (454)
St

While these sequences may often be similar, they can be dliffers well. For example, it is
possible that the most likely states for two consecutiveetsteps do not have a valid transition
between them, i.e., §; = i ands; , = j, it is possible (though unlikely) that;; = 0. This
illustrates that these two ways to create sequences o siataver two different questions: what
sequence is jointly most likely? And, for each time-stepatil the most likely state just for that
time-step?

Copyright(© 2011 Aaron Hertzmann and David Fleet 114

CSC411/CsC D11 Support Vector Machines

17 Support Vector Machines

We now discuss an influential and effective classificatiqgopathm called Support Vector Ma-
chines (SVMs). In addition to their successes in many diaasion problems, SVMs are respon-
sible for introducing and/or popularizing several impatt@eas to machine learning, namekgy-
nel methodsmaximum margin methogdsonvex optimizatiorandsparsity/support vectordJnlike
the mostly-Bayesian treatment that we have given in thisssgu8VMs are based on some very
sophisticated Frequentist arguments (based on a theded @tructural Risk Minimization and
VC-Dimension) which we will not discuss here, although thare many close connections to
Bayesian formulations.

17.1 Maximizing the margin

Suppose we are giveN training vectors (x;, y;)}, wherex € R”,y € {—1,1}. We want to learn
a classifier

f(x) =wlo(x)+0b (455)

so that the classifier’s output for a news sign(f(x)).

Suppose that our training data are linearly-separablesifediture spacé(x), i.e., as illustrated
in Figure 32, the two classes of training exemplars are s$eiffity well separated in the feature
space that one can draw a hyperplane between them (e.ge m I#D, or plane in 3D). If they
are linearly separable then in almost all cases there withbay possible choices for the linear
decision boundary, each one of which will produce no clas#ithn errors on the training data.
Which one should we choose? If we place the boundary very ¢tbseme of the data, there
seems to be a greater danger that we will misclassify sonze especially when the training data
are alsmot certainy noisy.

This motivates the idea of placing the boundary to maximeanargin, that is, the distance
from the hyperplane to the closest data point in either cld$ss can be thought of having the
largest “margin for error” — if you are driving a fast car bet@n a scattered set of obstacles, it's
safest to find a path that stays as far from them as possible.

More precisely, in anaximum margin methodve want to optimize the following objective
function:

maxy, , min; dist(x;, w, b) (456)
such that, for alk, y;(w” ¢ (x;) +b) > 0 (457)

wheredist(x, w, b) is the Euclidean distance from the feature paifit) to the hyperplane defined
by w andb. With this objective function we are maximizing the distariom the decision bound-
ary wl ¢(x) + b = 0 to the nearest point The constraints force us to find a decision boundary
that classifies all training data correctly. That is, for thessifier a training point correctly and
w’¢(x;) + b should have the same sign, in which case their product mysosieve.

Copyright®© 2011 Aaron Hertzmann and David Fleet 115

CSC411/CsC D11 Support Vector Machines

margin

Figure 32: Left: the margin for a decision boundary is theéathise to the nearest data point. Right:
In SVMs, we find the boundary with maximum margiRigure fromPattern Recognition and Machine
Learningby Chris Bishop.)

It can be shown that the distance from a peift;) to a hyperplanev’ ¢(x) + b = 0 is given
by %#, or, sincey; tells us the sign of (x;), % This can be seen intuitively by
writing the hyperplane in the forrfi(x) = w’(¢(x;) — p), wherep is a point on the hyperplane
such thatw”p = b. The vector fromp(x;) to the hyperplane projected ontg/ ||w|| gives a vector
from the hyperplane to the the point; the length of this verstéhe desired distance.

Substituting this expression for the distance function the above objective function, we get:

MaXy, ; Min; yi(w(xi) +b) (458)

such that, for alk, y;(w” ¢ (x;) +b) > 0 (459)
Note that, because of the normalization|bwy|| in (458), the scale o is arbitrary in this objective
function. That is, if we were to multiplww andb by some real scalax, the factors ofx in the
numerator and denominator will cancel one another. Nowpasg that we choose the scale so
that thenearest pointo the hyperplanex;, satisfieg);(w” ¢(x;) + b) = 1. With this assumption
themin; in Eqn (458) becomes redundant and can be removed. Thus wewste the objective
function and the constraint as
masy,, b (460)
such that, for alk, y; (w7 o (x;) +b) > 1 (461)
Finally, as a last step, since maximiziig||w|| is the same as minimizingw||?/2, we can
re-express the optimization problem as
min, 3|[w|[? (462)

such that, for alk, y;(w?é(x;) +) > 1 (463)

Copyright®© 2011 Aaron Hertzmann and David Fleet 116

CSC411/CsC D11 Support Vector Machines

This objective function is @uadratic program, or QP, because the objective function and the
constraints are both quadratic in the unknowns. A QP hasghesgiobal minima, which can be
found efficiently with current optimization packages.

In order to understand this optimization problem, we carilsatghe constraints will be “active”
for only a few datapoints. That is, only a few datapoints Ww#l close to the margin, thereby
constraining the solution. These points are calledgheport vectors Small movements of
the other data points have no effect on the decision boundadged, the decision boundary is
determined only by the support vectors. Of course, movingtpdo within the margin of the
decision boundary will change which points are supportamctand thus change the decision
boundary. This is in constrast to the probabilistic methwdshave seen earlier in the course, in
which the positions of all data points affect the locationhe decision boundary.

17.2 Slack Variables for Non-Separable Datasets

Many datasets will not be linearly separable. As a resudtratwill be no way to satisfy all the
constraints in Egn. (463). One way to cope with such datasetstill learn useful classifiers is to
loosen some of the constraints by introducshack variables

Slack variables are introduced to allow certain consttaibe violated. That s, certain training
points will be allowed to be within the margin. We want the ragnof points within the margin
to be as small as possible, and of course we want their péoetat the margin to be as small as
possible. To this end, we introduce a slack varighlene for each datapoint (¢ is the Greek
letter xi, pronounced “ksi.”). The slack variable is inteaxdd into the optmization problem in two
ways. First, the slack variablg dictates the degree to which the constraint onithedatapoint
can be violated. Second, by adding the slack variable to nieegg function we are aiming to
simultaneously minimize the use of the slack variables.

Mathematically, the new optimization problem can be exgedsas

. 1 5
Wiy Z &+ A5 llwli (464)
such that, for alf, y;(w” p(x;) +b) > 1 — & and§; > 0 (465)

As discussed above, we aim to both maximize the margin andmze violation of the mar-
gin constraints. This objective function is still a QP, aldcan be optimized with a QP library.
However, it does have a much larger number of optimizatiotalsées, namely, oné must now
be optimized for each datapoint. In practice, SVMs are ntiynogtimized with special-purpose
optimization procedures designed specifically for SVMs.

Copyright®© 2011 Aaron Hertzmann and David Fleet 117

CSC411/CsC D11 Support Vector Machines

Figure 33: The slack variabl€s > 1 for misclassified points, an@ < &, < 1 for points close to
the decision boundaryFigure fromPattern Recognition and Machine Learnibyg Chris Bishop.}+

17.3 Loss Functions

In order to better understand the behavior of SVMs, and hey tompare to other methods, we
will analyze them in terms of theloss functions? In some cases, this loss function might come
from the problem being solved: for example, we might pay tatedollar amount if we incorrectly
classify a vector, and the penalty for a false positive mighvery different for the penalty for a
false negative. The rewards and losses due to correct andact classification depend on the
particular problem being optimized. Here, we will simplyeapt to minimize the total number of
classification errors, using a penalty is called @hE Loss:

Loostx) = { o berise (466)

(Note thaty f(x) > 0 is the same as requiring thatand f(x) have the same sign.) This loss
function says that we pay a penalty of 1 when we misclassifgvainput, and a penalty of zero if
we classify it correctly.

Ideally, we would choose the classifier to minimize the logsréhe new test data that we are
given; of course, we don’'t know the true labels, and insteadptimize the following surrogate
objective function over the training data:

B(w) =D L(xi,y:) + AR(W) (467)

9A loss function specifies a measure of the quality of a satutian optimization problem. It is the penalty
function that tell us how badly we want to penalize errors madels ability to fit the data. In probabilistic methods
it is typically the negative log likelihood or the negativaglposterior.

Copyright®© 2011 Aaron Hertzmann and David Fleet 118

CSC411/CsC D11 Support Vector Machines

> 2
=2 -1 0 1 2

Figure 34: Loss functions(z), for learning, forz = y f(x). Black: 0-1 loss. Red: LR loss.
Green: Quadratic losg{ — 1)?). Blue: Hinge loss.(Figure fromPattern Recognition and Machine
Learningby Chris Bishop.)

whereR(w) is a regularizer meant to prevent overfitting (and thus imgrmerformance on future
data). The basic assumption is that loss on the trainingheetld correspond to loss on the test
set. If we can get the classifier to have small loss on theitrgidata, while also being smooth,
then the loss we pay on new data ought to not be too big eithas dptimization framework is
equivalent to MAP estimation as discussed previolshyowever, here we are not at all concerned
with probabilities. We only care about whether the classgets the right answers or not.

Unfortunately, optimizing a classifier for the 0-1 loss isyvdifficult: it is not differentiable
everywhere, and, where it is differentiable, the gradisntaro everywhere. There are a set of
algorithms called Perceptron Learning which attempt tohds; tof these, the Voted Perceptron
algorithm is considered one of the best. However, theseadstare somewhat complex to analyze
and we will not discuss them further. Instead, we will usesotlbss functions that approximate
0-1 loss.

We can see that maximum likelihood logistic regression iswadent to optimization with the
following loss function:

Lig =In(1+4e %) (468)

which is the negative log-likelihood of a single data veciidris function is a poor approximation
to the 0-1 loss, and, if all we care about is getting the labght (and not the class probabilities),
then we ought to search for a better approximation.
SVMs minimize the slack variables, which, from the constigican be seen to give thenge
loss
[1=yfx) 1-yf(x)>0
Lohinge = { 0 otherwise (469)

OHowever, not all loss functions can be viewed as the negédiyeof a valid likelihood function, although all
negative-log likelihoods can be viewed as loss functiomsgfarning.

Copyright®© 2011 Aaron Hertzmann and David Fleet 119

CSC411/CsC D11 Support Vector Machines

This loss function is zero for points that are classified ectty (with distance to the decision
boundary at least 1); hence, it is insensitive to correcgsified points far from the boundary. It
increases linearly for misclassified points, not nearlywsldy as the LR loss.

17.4 The Lagrangian and the Kernel Trick

We now use the Lagrangian in order to transform the SVM problea way that will lead to a
powerful generalization. For simplicity here we assume tha dataset is linearly separable, and
so we drop the slack variables.

The Langrangian allows us to take the constrained optimizairoblem above in Eqn. (463)
and re-express it as an unconstrained problem. The Lagrafgi the SVM objective function in
Eqn. (463), with Lagrange multipliers > 0, is:

L(w, b, ary) — %HWW =S (3 (WP ki) +b) — 1) (470)

7

The minus sign with the secon term is used because we are nimgwith respect to the first
term, but maximizing the second.
Setting the derivative o% =0 and% = 0 gives the following constraints on the solution:

w o= Zaiyisb(xl-) (471)
>t = 0 (472)

Using (471) we can substitute fev in 470. Then simplifying the result, and making use of the
next constraint (471), one can derive what is often calledltral Lagrangian:

L(ay.n) = Z a; — % Z Z aiajyiyj¢(xi)T¢(Xj) (473)

While this objective function is actually more expensive ¥alaate than the primal Lagrangian
(i.e., 470), it does lead to the following modified form

1
L(ai.n) = Z i~ 5 Z Z a;a;y;y;k (X, X;) (474)
v

wherek(x;,x;) = ¢(x;)T¢(x;) is called akernel function. For example, if we used the basic
linear features, i.e¢(x) = x, thenk(x;,x;) = x! x;.

The advantage of the kernel function representation isitlfiges us from thinking about the
features directly; the classifier can be specified solelyerms of the kernel. Any kernel that

Copyright(© 2011 Aaron Hertzmann and David Fleet 120

CSC411/CsC D11 Support Vector Machines

satisfies a specific technical condittdis a valid kernel. For example, one of the most commonly-
used kernels is the “RBF kernel”:
k(x,z) = e X2l (475)

which corresponds to a vector of featurgsc) with infinite dimensionality! (Specifically, each
element ofp is a Gaussian basis function with vanishing variance).

Note that, just as most constraints in the Eq. (463) are rativ&l, the same will be true here.
That is, only some constraints will be active (ie the suppedtors), and for all other constraints,
a; = 0. Hence, once the model is learned, most of the training datebe discarded; only the
support vectors and theirvalues matter.

The one final thing we need to do is estimate the biag/e now know the values far; for
all support vectors (i.e., for data constraints that areswared active), and hence we knew
Accordingly, for all support vectors we know, by assumpiidiove, that

f(x)=wlo(x)+b=1. (476)

From this one can easily solve for

Applying the SVM to new data. For the kernel representation to be useful, we need to be able
to classify new data without needing to evaluate the weigftiss can be done as follows:

f(xnew> = WT¢(Xnew> +b (477)
- <Z azyz(b(XZ)) ¢(Xnew) +0 (478)
- Z aiyik(xia Xnew) + b (479)

)

Generalizing the kernel representation to non-separadibesdts (i.e., with slack variables) is
straightforward, but will not be covered in this course.

17.5 Choosing parameters
To determine an SVM classifier, one must select:

e The regularization weight
e The parameters to the kernel function

e The type of kernel function

These values are typically selected either by hand-tunirgass-validation.

HSpecifically, suppose one is givén input pointsx;.y, and forms a matri¥ such thatK; ; = k(x;,x;). This
matrix must be positive semidefinite (i.e., all eigenvalnes-negative) for all possible input sets foto be a valid
kernel.

Copyright®© 2011 Aaron Hertzmann and David Fleet 121

CSC411/CsC D11 Support Vector Machines

Figure 35: Nonlinear classification boundary learned ugegmel SVM (with an RBF kernel).
The circled points are the support vectors; curves are rgoces of the decision function (e.g., the
decision boundary (z) = 0, etc.) (Figure fromPattern Recognition and Machine Learnibyg Chris
Bishop.)

17.6 Software

Like many methods in machine learning there is freely at#al@oftware on the web. For SVM
classification and regression there is well-known softwignesloped by Thorsten Joachims, called
SVMlight, (URL: http://svnmight.joachins.org/).

Copyright(© 2011 Aaron Hertzmann and David Fleet 122

CSC411/CSCD11 AdaBoost

18 AdaBoost

Boosting is a general strategy for learning classifiers bylinimg simpler ones. The idea of
boosting is to take a “weak classifier” — that is, any classifiat will do at least slightly better
than chance — and use it to build a much better classifiegliydvoosting the performance of the
weak classification algorithm. This boosting is done by agarg the outputs of a collection of
weak classifiers. The most popular boosting algorithixdaBoost so-called because it is “adap-
tive.”!?2 AdaBoost is extremely simple to use and implement (far simjplan SVMs), and often
gives very effective results. There is tremendous flexibihi the choice of weak classifier as well.
Boosting is a specific example of a general class of learngayishms callecensemble methods,
which attempt to build better learning algorithms by conmgnmultiple simpler algorithms.

Suppose we are given training datex;, v;)}Y ,, wherex; € RX andy; € {-1,1}. And
suppose we are given a (potentially large) number of weadsitlars, denoted,,(x) € {—1,1},
and a0-1loss function/, defined as

I(fm(x),y) = { (1) :;;:g; ;Zy/ (480)

Then, the pseudocode of the AdaBoost algorithm is as follows:

for i from 1to N, w") =1
for m =1to M do

Fit weak classifiern to minimize the objective function:
_ 2 ™ (o (x0) i)

)

€
m S w

wherel(fon(x;) % 4i) = 1if fin(x;) # y: and0 otherwise
Q= In 17
for all 7 do

w§m+1) _ w§m)eam1(fm(xi)7éyi)

end for
end for

After learning, the final classifier is based on a linear corabon of the weak classifiers:

g(x) = sign (Z amfm(x)) (481)

Essentially, AdaBoost is a greedy algorithm that builds ugteohg classifier”, i.e.g(x), incre-
mentally, by optimizing the weights for, and adding, one kvelassifier at a time.

12AdaBoost was called adaptive because, unlike previougingasgorithms, it does not need to know error bounds
on the weak classifiers, nor does it need to know the numbédasdifiers in advance.

Copyright(© 2011 Aaron Hertzmann and David Fleet 123

CSC411/CSCD11 AdaBoost

2 2 s 2
o |Oo ° | °
@) 00@(b ° «Or .0
0 o J o © 0 O 0 . O
e X %&Oo S]
ooéo °®Os°“ °
B EERLROC S T IR
1o | °
-1 0 1 2 -1 0 1 2 -1 0 12
2 2 2 |
10 . : 1° . Dl" o
o . °
I |
0 d - 0 3 O 0 g O
o) O I S o__o_°__ (o) o
o ° | ° o
o Oa o
5 0 Q 5 .89 > OIGQ
|
-1 0 1 2 -1 0 1 2 -1 0 12

Figure 36: lllustration of the steps of AdaBoost. The decisioundary is shown in green for each
step, and the decision stump for each step shown as a daskedlie results are shown after 1, 2,
3, 6, 10, and 150 steps of AdaBoo@tigure fromPattern Recognition and Machine Learnibg Chris
Bishop.)

Copyright®© 2011 Aaron Hertzmann and David Fleet 124

CSC411/CSCD11 AdaBoost

15

0.5

Training data Classified data Loss on training set
i 0.8 ; ;

Exp loss
Binary loss

500

400

300

200

100

60

fx)=2a_f (x) Decision boundary

500f

(o2}

400}

100 200 300 400 500 100 200 300 400 500

Figure 37: 50 steps of AdaBoost used to learn a classifier veitistbn stumps.

Copyright© 2011 Aaron Hertzmann and David Fleet 125

CSC411/CSCD11 AdaBoost

18.1 Decision stumps

As an example of a weak classifier, we consider “decision g jmvhich are a trivial special case
of decision trees. A decision stump has the following form:

f(x) =s(zr > c) (482)

where the value in the parentheses is 1 if thn element of the vectaox is greater tham, and
-1 otherwise. The scalaris either -1 or 1 which allows one the classifier to respondhwitiss 1
whenz, < c. Accordingly, there are three parameters to a decisiongstum

eccR
e ke {l,..K}, whereK is the dimension ok, and
o sc{-1,1}

Because the number of possible parameter settings is ef{asimall, a decision stump is often
trained by brute force: discretize the real numbers fromstinallest to the largest value in the
training set, enumerate all possible classifiers, and pielohe with the lowest training error. One
can be more clever in the discretization: between each pdata points, only one classifier must
be tested (since any stump in this range will give the sameeyaMore sophisticated methods, for
example, based on binning the data, or building CDFs of the, dady also be possible.

18.2 Why does it work?

There are many different ways to analyze AdaBoost; none af tlene gives a full picture of why
AdaBoost works so well. AdaBoost was first invented based amdgztion of certain bounds on
training, and, since then, a number of new theoretical ptegsehave been discovered.

Loss function view. Here we discuss the loss function interpretation of AdaBodstvas shown
(decades after AdaBoost was first invented), AdaBoost candveed as greedy optimization of a
particular loss function. We definf(x) = 3>, o fm(x), and rewrite the classifier agx) =
sign(f(x)) (the factor of 1/2 has no effect on the classifier output). Batast can then be viewed
as optimizing theexponential loss:

Ly (x,y) = e~ (483)
so that the full learning objective function is

B =Y e S onsno (484)

which must be optimized with respect to the weightand the parameters of the weak classifiers.
The optimization process is greedy and sequential: we aeeveak classifier at a time, choosing it

Copyright(© 2011 Aaron Hertzmann and David Fleet 126

CSC411/CSCD11 AdaBoost

and itsa to be optimal with respect tf, and then never change it again. Note that the exponential
loss is an upper-bound on the 0-1 loss:

Lewy(%x,y) > Lo—1(%x,y) (485)

Hence, if exponential loss of zero is achieved, then the @s% Is zero as well, and all training
points are correctly classified.
Consider the weak classifigy, to be added at step. The entire objective function can be
written to separate out the contribution of this classifier:
E = 3 e TS a0 uanin) (486)
- Ze—%yi SIS g fi (%) o= gyicm fm(x) (487)
Since we are holding constant the first— 1 terms, we can replace them with a single constant
m—1 . .
wi™ = 72 250 /i) Note that these are the same weights computed by the recursed by
AdaBoost:wZ(m) o wgm—”e—%yiaijx). (There is a proportionality constant that can be ignored).
Hence, we have

Z wl(m) e %ymam fm (X) (488)

We can split this into two summations, one for data correcithgsified byf,,,, and one for those
misclassified:

E = Z w™e " 4 Z wi™e (489)
i fm (%) =Y i frn (%) Y
Rearranging terms, we have
E = Tm &m Zw I(fm(xi) # yi) =8 Zw (490)

Optimizing this with respect t¢;, is equivalent to optimizing _, wim I(fm(x:) # v:), which is
what AdaBoost does. The optimal value tgy, can be derived by solving% =0:

e = (e T Tl) £ - e Tl <0 o

Dividing both sides byzzo‘—(m we have

0 = ePente Tgu—e o (492)
e e, = e 3 (1—ep) (493)
O, U,
1
@, = In Em (495)
€m

Copyright®© 2011 Aaron Hertzmann and David Fleet 127

CSC411/CSCD11 AdaBoost

A

-2 -1 0 1 2

Figure 38: Loss functions for learning: Black: 0-1 loss. Blitinge Loss. Red: Logistic re-
gression. Green: Exponential log&igure fromPattern Recognition and Machine Learnibyg Chris
Bishop.)

Problems with the loss function view. The exponential loss is not a very good loss function to
use in general. For example, if we directly optimize the egial loss over all variables in the
classifier (e.g., with gradient descent), we will often getible performance. So the loss-function
interpretation of AdaBoost does not tell the whole story.

Margin view. One might expect that, when AdaBoost reaches zero trainirgyise, adding any
new weak classifiers would cause overfitting. In practice dpposite often occurs: continuing to
add weak classifiers actually improves test set performanogny situations. One explanation
comes from looking at the margins: adding classifiers temdgtrease the margin size. The formal
details of this will not be discussed here.

18.3 Early stopping

It is nonetheless possible to overfit with AdaBoost, by addoggmany classifiers. The solution
that is normally used practice is a procedure cadlady stopping. The idea is as follows. We
partition our data set into two pieces, a training set andsiet. The training set is used to train
the algorithm normally. However, at each step of the algarjtwe also compute the 0-1 binary
loss on the test set. During the course of the algorithm, xpermential loss on the training set is
guaranteed to decrease, and the 0-1 binary loss will géneledrease as well. The errors on the
testing set will also generally decrease in the first steghetlgorithm, however, at some point,
the testing error will begin to get noticeably worse. Whes timppens, we revert the classifier to
the form that gave the best test error, and discard any subseghanges (i.e., additional weak
classifiers).

The intuition for the algorithm is as follows. When we begian&ng, our initial classifier is

Copyright(© 2011 Aaron Hertzmann and David Fleet 128

CSC411/CSCD11 AdaBoost

extremely simple and smooth. During the learning processasd more and more complexity to
the model to improve the fit to the data. At some point, addohdjteonal complexity to the model

overfits: we are no longer modeling the decision boundary vsé o fit, but are fitting the noise

in the data instead. We use the test set to determine whefittngrbegins, and stop learning at
that point.

Early stopping can be used for most iterative learning dlgams. For example, suppose we use
gradient descent to learn a regression algorithm. If werb&gh weightsw = 0, we are beginning
with a very smooth curve. Each step of gradient descent vakerthe curve less smooth, as the
entries ofw get larger and larger; stopping early can prewerfrom getting too large (and thus
too non-smooth).

Early stopping is very simple and very general; howeves hauristic, as the final result one
gets will depend on the particulars in the optimization atfpon being used, and not just on the
objective function. However, AdaBoost’s procedure is suinogl anyway (once a weak classifier
is added, it is never updated).

An even more aggressive form of early stopping is to simplp $earning at a fixed number of
iterations, or by some other criteria unrelated to test et ée.g., when the result “looks good.”)
In fact, pracitioners often using early stopping to regakunintentionally, simply because they
halt the optimizer before it has converged, e.g., becawsedhvergence threshold is set too high,
or because they are too impatient to wait.

Copyright(© 2011 Aaron Hertzmann and David Fleet 129

