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1 Introduction to Machine Learning

Machine learning is a set of tools that, broadly speaking, allow us to “teach” computers how to
perform tasks by providing examples of how they should be done. For example, suppose we wish
to write a program to distinguish between valid email messages and unwanted spam. We could try
to write a set of simple rules, for example, flagging messagesthat contain certain features (such
as the word “viagra” or obviously-fake headers). However, writing rules to accurately distinguish
which text is valid can actually be quite difficult to do well,resulting either in many missed spam
messages, or, worse, many lost emails. Worse, the spammers will actively adjust the way they
send spam in order to trick these strategies (e.g., writing “vi@gr@”). Writing effective rules —
and keeping them up-to-date — quickly becomes an insurmountable task. Fortunately, machine
learning has provided a solution. Modern spam filters are “learned” from examples: we provide the
learning algorithm with example emails which we have manually labeled as “ham” (valid email)
or “spam” (unwanted email), and the algorithms learn to distinguish between them automatically.

Machine learning is a diverse and exciting field, and there are multiple ways of defining it:

1. The Artifical Intelligence View. Learning is central to human knowledge and intelligence,
and, likewise, it is also essential for building intelligent machines. Years of effort in AI
has shown that trying to build intelligent computers by programming all the rules cannot be
done; automatic learning is crucial. For example, we humansare not born with the ability
to understand language — we learn it — and it makes sense to tryto have computers learn
language instead of trying to program it all it.

2. The Software Engineering View. Machine learning allows us to program computers by
example, which can be easier than writing code the traditional way.

3. The Stats View.Machine learning is the marriage of computer science and statistics: com-
putational techniques are applied to statistical problems. Machine learning has been applied
to a vast number of problems in many contexts, beyond the typical statistics problems. Ma-
chine learning is often designed with different considerations than statistics (e.g., speed is
often more important than accuracy).

Often, machine learning methods are broken into two phases:

1. Training: A model is learned from a collection oftraining data .

2. Application: The model is used to make decisions about some newtest data.

For example, in the spam filtering case, the training data constitutes email messages labeled as ham
or spam, and each new email message that we receive (and whichto classify) is test data. However,
there are other ways in which machine learning is used as well.

Copyright c© 2011 Aaron Hertzmann and David Fleet 1
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1.1 Types of Machine Learning

Some of the main types of machine learning are:

1. Supervised Learning, in which the training data is labeled with the correct answers, e.g.,
“spam” or “ham.” The two most common types of supervised learning areclassification
(where the outputs are discrete labels, as in spam filtering)andregression(where the outputs
are real-valued).

2. Unsupervised learning,in which we are given a collection of unlabeled data, which wewish
to analyze and discover patterns within. The two most important examples aredimension
reduction andclustering.

3. Reinforcement learning, in which an agent (e.g., a robot or controller) seeks to learnthe
optimal actions to take based the outcomes of past actions.

There are many other types of machine learning as well, for example:

1. Semi-supervised learning, in which only a subset of the training data is labeled

2. Time-series forecasting, such as in financial markets

3. Anomaly detectionsuch as used for fault-detection in factories and in surveillance

4. Active learning, in which obtaining data is expensive, and so an algorithm must determine
which training data to acquire

and many others.

1.2 A simple problem

Figure 1 shows a 1D regression problem. The goal is to fit a 1D curve to a few points. Which curve
is best to fit these points? There are infinitely many curves that fit the data, and, because the data
might be noisy, we might not even want to fit the data precisely. Hence, machine learning requires
that we make certain choices:

1. How do we parameterize the model we fit? For the example in Figure 1, how do we param-
eterize the curve; should we try to explain the data with a linear function, a quadratic, or a
sinusoidal curve?

2. What criteria (e.g., objective function) do we use to judgethe quality of the fit? For example,
when fitting a curve to noisy data, it is common to measure the quality of the fit in terms of
the squared error between the data we are given and the fitted curve. When minimizing the
squared error, the resulting fit is usually called a least-squares estimate.

Copyright c© 2011 Aaron Hertzmann and David Fleet 2
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3. Some types of models and some model parameters can be very expensive to optimize well.
How long are we willing to wait for a solution, or can we use approximations (or hand-
tuning) instead?

4. Ideally we want to find a model that will provide useful predictions in future situations. That
is, although we might learn a model fromtraining data, we ultimately care about how well
it works on futuretest data. When a model fits training data well, but performs poorly on
test data, we say that the model hasoverfitthe training data; i.e., the model has fit properties
of the input that are not particularly relevant to the task athand (e.g., Figures 1 (top row and
bottom left)). Such properties are refered to asnoise. When this happens we say that the
model does notgeneralizewell to the test data. Rather it produces predictions on the test
data that are much less accurate than you might have hoped forgiven the fit to the training
data.

Machine learning provides a wide selection of options by which to answer these questions,
along with the vast experience of the community as to which methods tend to be successful on
a particular class of data-set. Some more advanced methods provide ways of automating some
of these choices, such as automatically selecting between alternative models, and there is some
beautiful theory that assists in gaining a deeper understanding of learning. In practice, there is no
single “silver bullet” for all learning. Using machine learning in practice requires that you make
use of your own prior knowledge and experimentation to solveproblems. But with the tools of
machine learning, you can do amazing things!

Copyright c© 2011 Aaron Hertzmann and David Fleet 3
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Figure 1: A simple regression problem. The blue circles are measurements (the training data), and
the red curves are possible fits to the data. There is no one “right answer;” the solution we prefer
depends on the problem. Ideally we want to find a model that provides good predictions for new
inputs (i.e., locations on thex-axis for which we had no training data). We will often prefersimple,
smooth models like that in the lower right.
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2 Linear Regression

In regression, our goal is to learn a mapping from one real-valued space to another. Linear re-
gression is the simplest form of regression: it is easy to understand, often quite effective, and very
efficient to learn and use.

2.1 The 1D case

We will start by considering linear regression in just 1 dimension. Here, our goal is to learn a
mappingy = f(x), wherex andy are both real-valued scalars (i.e.,x ∈ R, y ∈ R). We will take
f to be an linear function of the form:

y = wx+ b (1)

wherew is a weightandb is a bias. These two scalars are the parameters of the model, which
we would like to learn from training data. n particular, we wish to estimatew andb from theN
training pairs{(xi, yi)}Ni=1. Then, once we have values forw andb, we can compute they for a
newx.

Given 2 data points (i.e., N=2), we can exactly solve for the unknown slopew and offsetb.
(How would you formulate this solution?) Unfortunately, this approach is extremely sensitive to
noise in the training data measurements, so you cannot usually trust the resulting model. Instead,
we can find much better models when the two parameters are estimated from larger data sets.
WhenN > 2 we will not be able to find unique parameter values for whichyi = wxi + b for all
i, since we have many more constraints than parameters. The best we can hope for is to find the
parameters that minimize the residual errors, i.e.,yi − (wxi + b).

The most commonly-used way to estimate the parameters is byleast-squares regression. We
define an energy function (a.k.a. objective function):

E(w, b) =
N∑

i=1

(yi − (wxi + b))2 (2)

To estimatew andb, we solve for thew andb that minimize this objective function. This can be
done by setting the derivatives to zero and solving.

dE

db
= −2

∑

i

(yi − (wxi + b)) = 0 (3)

Solving forb gives us the estimate:

b∗ =

∑

i yi
N
− w

∑

i xi

N
(4)

= ȳ − wx̄ (5)
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Figure 2: An example of linear regression: the red line is fit to the blue data points.

where we definēx andȳ as the averages of thex’s andy’s, respectively. This equation forb∗ still
depends onw, but we can nevertheless substitute it back into the energy function:

E(w, b) =
∑

i

((yi − ȳ)− w(xi − x̄))2 (6)

Then:

dE

dw
= −2

∑

i

((yi − ȳ)− w(xi − x̄))(xi − x̄) (7)

Solving dE
dw

= 0 then gives:

w∗ =

∑

i(yi − ȳ)(xi − x̄)
∑

i(xi − x̄)2
(8)

The valuesw∗ andb∗ are the least-squares estimates for the parameters of the linear regression.

2.2 Multidimensional inputs

Now, suppose we wish to learn a mapping fromD-dimensional inputs to scalar outputs:x ∈ R
D,

y ∈ R. Now, we will learn a vector of weightsw, so that the mapping will be:1

f(x) = wTx+ b =
D∑

j=1

wjxj + b . (9)

1Above we used subscripts to index the training set, while here we are using the subscript to index the elements of
the input and weight vectors. In what follows the context should make it clear what the index denotes.
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For convenience, we can fold the biasb into the weights, if we augment the inputs with an addi-
tional 1. In other words, if we define

w̃ =








w1
...

wD

b







, x̃ =








x1
...
xD

1








(10)

then the mapping can be written:
f(x) = w̃T x̃ . (11)

GivenN training input-output pairs, the least-squares objectivefunction is then:

E(w̃) =
N∑

i=1

(yi − w̃T x̃i)
2 (12)

If we stack the outputs in a vector and the inputs in a matrix, then we can also write this as:

E(w̃) = ||y − X̃w̃||2 (13)

where

y =






y1
...
yN




 , X̃ =






xT
1 1
...

xT
N 1




 (14)

and || · || is the usual Euclidean norm, i.e.,||v||2 =
∑

i v
2
i . (You should verify for yourself that

Equations 12 and 13 are equivalent).
Equation 13 is known as a linear least-squares problem, and can be solved by methods from

linear algebra. We can rewrite the objective function as:

E(w) = (y − X̃w̃)T (y − X̃w̃) (15)

= w̃T X̃T X̃w̃ − 2yT X̃w̃ + yTy (16)

We can optimize this by setting all values ofdE/dwi = 0 and solving the resulting system of
equations (we will cover this in more detail later in Chapter 4). In the meantime, if this is unclear,
start by reviewing your linear algebra and vector calculus). The solution is given by:

w∗ = (X̃T X̃)−1X̃Ty (17)

(You may wish to verify for yourself that this reduces to the solution for the 1D case in Section
2.1; however, this takes quite a lot of linear algebra and a little cleverness). The matrix̃X+ ≡
(X̃T X̃)−1X̃T is called thepseudoinverseof X̃, and so the solution can also be written:

w̃∗ = X̃+y (18)

Copyright c© 2011 Aaron Hertzmann and David Fleet 7
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In MATLAB, one can directly solve the system of equations using the slash operator:

w̃∗ = X̃\y (19)

There are some subtle differences between these two ways of solving the system of equations. We
will not concern ourselves with these here except to say thatI recommend using the slash operator
rather than the pseudoinverse.

2.3 Multidimensional outputs

In the most general case, both the inputs and outputs may be multidimensional. For example, with
D-dimensional inputs, andK-dimensional outputsy ∈ R

K , a linear mapping from input to output
can be written as

y = W̃T x̃ (20)

whereW̃ ∈ R
(D+1)×K . It is convenient to express̃W in terms of its column vectors, i.e.,

W̃ = [w̃1 . . . w̃K ] ≡
[
w1 . . . wK

b1 . . . bK

]

. (21)

In this way we can then express the mapping from the inputx̃ to thejth element ofy asyj = w̃T
j x.

Now, givenN training samples, denoted{x̃i,yi}Ni=1 a natural energy function to minimize in order
to estimateW̃ is just the squared residual error over all training samplesand all output dimensions,
i.e.,

E(W̃) =
N∑

i=1

K∑

j=1

(yi,j − w̃T
j x̃i)

2 . (22)

There are several ways to convenientlyvectorizethis energy function. One way is to express
E solely as a sum over output dimensions. That is, lety′

j be theN -dimensional vector comprising
thejth component of each output training vector, i.e.,y′

j = [y1,j , y2,j , ..., yN,j ]
T . Then we can write

E(W̃) =
K∑

j=1

||y′
j − X̃w̃j||2 (23)

whereX̃T = [x̃1 x̃2 . . . x̃N ]. With a little thought you can see that this really amounts toK
distinct estimation problems, the solutions for which are given byw̃∗

j = X̃+y′
j.

Another common convention is to stack up everything into a matrix equation, i.e.,

E(W̃) = ||Y − X̃W̃||2F (24)

whereY = [y′
1 . . .y′

K ], and|| · ||F denotes the Frobenius norm:||Y||2F =
∑

i,j Y
2
i,j. You should

verify that Equations (23) and (24) are equivalent representations of the energy function in Equa-
tion (22). Finally, the solution is again provided by the pseudoinverse:

W̃∗ = X̃+Y (25)

or, in MATLAB, W̃∗ = X̃\Y.
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3 Nonlinear Regression

Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear
models are necessary. In regression, all such models will have the same basic form, i.e.,

y = f(x) (26)

In linear regression, we havef(x) = Wx+ b; the parametersW andb must be fit to data.
What nonlinear function do we choose? In principle,f(x) could be anything: it could involve

linear functions, sines and cosines, summations, and so on.However, the form we choose will
make a big difference on the effectiveness of the regression: a more general model will require
more data to fit, and different models are more appropriate for different problems. Ideally, the
form of the model would be matched exactly to the underlying phenomenon. If we’re modeling a
linear process, we’d use a linear regression; if we were modeling a physical process, we could, in
principle, modelf(x) by the equations of physics.

In many situations, we do not know much about the underlying nature of the process being
modeled, or else modeling it precisely is too difficult. In these cases, we typically turn to a few
models in machine learning that are widely-used and quite effective for many problems. These
methods include basis function regression (including Radial Basis Functions), Artificial Neural
Networks, andk-Nearest Neighbors.

There is one other important choice to be made, namely, the choice of objective function for
learning, or, equivalently, the underlying noise model. Inthis section we extend the LS estimators
introduced in the previous chapter to include one or more terms to encourage smoothness in the
estimated models. It is hoped that smoother models will tendto overfit the training data less and
therefore generalize somewhat better.

3.1 Basis function regression

A common choice for the functionf(x) is a basis function representation2:

y = f(x) =
∑

k

wkbk(x) (27)

for the 1D case. The functionsbk(x) are called basis functions. Often it will be convenient to
express this model in vector form, for which we defineb(x) = [b1(x), . . . , bM(x)]T andw =
[w1, . . . , wM ]T whereM is the number of basis functions. We can then rewrite the model as

y = f(x) = b(x)Tw (28)

Two common choices of basis functions arepolynomialsandRadial Basis Functions (RBF).
A simple, common basis for polynomials are themonomials, i.e.,

b0(x) = 1, b1(x) = x, b2(x) = x2, b3(x) = x3, ... (29)

2In the machine learning and statistics literature, these representations are often referred to as linear regression,
since they are linear functions of the “features”bk(x)
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Figure 3: The first three basis functions of a polynomial basis, and Radial Basis Functions

With a monomial basis, the regression model has the form

f(x) =
∑

wkx
k , (30)

Radial Basis Functions, and the resulting regression model are given by

bk(x) = e−
(x−ck)2

2σ2 , (31)

f(x) =
∑

wke
− (x−ck)2

2σ2 , (32)

whereck is thecenter (i.e., the location) of the basis function andσ2 determines thewidth of the
basis function. Both of these are parameters of the model thatmust be determined somehow.

In practice there are many other possible choices for basis functions, including sinusoidal func-
tions, and other types of polynomials. Also, basis functions from different families, such as mono-
mials and RBFs, can be combined. We might, for example, form a basis using the first few poly-
nomials and a collection of RBFs. In general we ideally want to choose a family of basis functions
such that we get a good fit to the data with a small basis set so that the number of weights to be
estimated is not too large.

To fit these models, we can again use least-squares regression, by minimizing the sum of
squared residual error between model predictions and the training data outputs:

E(w) =
∑

i

(yi − f(xi))
2 =

∑

i

(

yi −
∑

k

wkbk(x)

)2

(33)

To minimize this function with respect tow, we note that this objective function has the same form
as that for linear regression in the previous chapter, except that the inputs are now thebk(x) values.
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In particular,E is still quadratic in the weightsw, and hence the weightsw can be estimated the
same way. That is, we can rewrite the objective function in matrix-vector form to produce

E(w) = ||y −Bw||2 (34)

where||·|| denotes the Euclidean norm, and the elements of the matrixB are given byBi,j = bj(xi)
(for row i and columnj). In Matlab the least-squares estimate can be computed asw∗ = B\y.

Picking the other parameters. The positions of the centers and the widths of the RBF basis
functions cannot be solved directly for in closed form. So weneed some other criteria to select
them. If we optimize these parameters for the squared-error, then we will end up with one basis
center at each data point, and with tiny width that exactly fitthe data. This is a problem as such a
model will not usually provide good predictions for inputs other than those in the training set.

The following heuristics instead are commonly used to determine these parameters without
overfitting the training data. To pick the basis centers:

1. Place the centers uniformly spaced in the region containing the data. This is quite simple,
but can lead to empty regions with basis functions, and will have an impractical number of
data points in higher-dimensinal input spaces.

2. Place one center at each data point. This is used more often, since it limits the number of
centers needed, although it can also be expensive if the number of data points is large.

3. Cluster the data, and use one center for each cluster. We will cover clustering methods later
in the course.

To pick the width parameter:

1. Manually try different values of the width and pick the best by trial-and-error.

2. Use the average squared distances (or median distances) to neighboring centers, scaled by a
constant, to be the width. This approach also allows you to use different widths for different
basis functions, and it allows the basis functions to be spaced non-uniformly.

In later chapters we will discuss other methods for determining these and other parameters of
models.

3.2 Overfitting and Regularization

Directly minimizing squared-error can lead to an effect calledoverfitting, wherein we fit the train-
ing data extremely well (i.e., with low error), yet we obtaina model that produces very poor pre-
dictions on future test data whenever the test inputs differfrom the training inputs (Figure 4(b)).
Overfitting can be understood in many ways, all of which are variations on the same underlying
pathology:
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1. The problem is insufficiently constrained: for example, if we have ten measurements and ten
model parameters, then we can often obtain a perfect fit to thedata.

2. Fitting noise: overfitting can occur when the model is so powerful that it can fit the data and
also the random noise in the data.

3. Discarding uncertainty: the posterior probability distribution of the unknowns is insuffi-
ciently peaked to pick a single estimate. (We will explain what this means in more detail
later.)

There are two important solutions to the overfitting problem: adding prior knowledge and handling
uncertainty. The latter one we will discuss later in the course.

In many cases, there is some sort of prior knowledge we can leverage. A very common as-
sumption is that the underlying function is likely to besmooth, for example, having small deriva-
tives. Smoothness distinguishes the examples in Figure 4. There is also a practical reason to
prefer smoothness, in that assuming smoothness reduces model complexity: it is easier to estimate
smooth models from small datasets. In the extreme, if we makeno prior assumptions about the
nature of the fit then it is impossible to learn and generalizeat all; smoothness assumptions are one
way of constraining the space of models so that we have any hope of learning from small datasets.

One way to add smoothness is to parameterize the model in a smooth way (e.g., making the
width parameter for RBFs larger; using only low-order polynomial basis functions), but this limits
the expressiveness of the model. In particular, when we havelots and lots of data, we would like
the data to be able to “overrule” the smoothness assumptions. With large widths, it is impossible
to get highly-curved models no matter what the data says.

Instead, we can addregularization: an extra term to the learning objective function that prefers
smooth models. For example, for RBF regression with scalar outputs, and with many other types
of basis functions or multi-dimensional outputs, this can be done with an objective function of the
form:

E(w) = ||y −Bw||2
︸ ︷︷ ︸

data term

+ λ||w||2
︸ ︷︷ ︸

smoothness term

(35)

This objective function has two terms. The first term, calledthe data term, measures the model fit
to the training data. The second term, often called the smoothness term, penalizes non-smoothness
(rapid changes inf(x)). This particular smoothness term (||w||) is calledweight decay, because it
tends to make the weights smaller.3 Weight decay implicitly leads to smoothness with RBF basis
functions because the basis functions themselves are smooth, so rapid changes in the slope off
(i.e., high curvature) can only be created in RBFs by adding andsubtracting basis functions with
large weights. (Ideally, we might directly penalize smoothness, e.g., using an objective term that
directly penalizes the integral of the squared curvature off(x), but this is usually impractical.)

3Estimation with this objective function is sometimes called Ridge Regression in Statistics.

Copyright c© 2011 Aaron Hertzmann and David Fleet 12



CSC 411 / CSC D11 Nonlinear Regression

This regularized least-squaresobjective function is still quadratic with respect tow and can
be optimized in closed-form. To see this, we can rewrite it asfollows:

E(w) = (y −Bw)T (y −Bw) + λwTw (36)

= wTBTBw − 2wTBTy + λwTw + yTy (37)

= wT (BTB+ λI)w − 2wTBTy + yTy (38)

To minimizeE(w), as above, we solve the normal equations∇E(w) = 0 (i.e.,∂E/∂wi = 0 for
all i). This yields the following regularized LS estimate forw:

w∗ = (BTB+ λI)−1BTy (39)

3.3 Artificial Neural Networks

Another choice of basis function is the sigmoid function. “Sigmoid” literally means “s-shaped.”
The most common choice of sigmoid is:

g(a) =
1

1 + e−a
(40)

Sigmoids can be combined to create a model called anArtificial Neural Network (ANN) . For
regression with multi-dimensional inputsx ∈ R

K
2 , and multidimensional outputsy ∈ R

K1 :

y = f(x) =
∑

j

w
(1)
j g

(
∑

k

w
(2)
k,j xk + b

(2)
j

)

+ b(1) (41)

This equation describes a process whereby a linear regressor with weightsw(2) is applied tox.
The output of this regressor is then put through the nonlinear Sigmoid function, the outputs of
which act as features to another linear regressor. Thus, note that theinner weightsw(2) are distinct
parameters from theouter weightsw(1)

j . As usual, it is easiest to interpret this model in the 1D
case, i.e.,

y = f(x) =
∑

j

w
(1)
j g

(

w
(2)
j x+ b

(2)
j

)

+ b(1) (42)

Figure 5(left) shows plots ofg(wx) for different values ofw, and Figure 5(right) showsg(x+b)
for different values ofb. As can be seen from the figures, the sigmoid function acts more or less
like a step function for large values ofw, and more like a linear ramp for small values ofw. The
biasb shifts the function left or right. Hence, the neural networkis a linear combination of shifted
(smoothed) step functions, linear ramps, and the bias term.

To learn an artificial neural network, we can again write a regularized squared-error objective
function:

E(w, b) = ||y − f(x)||2 + λ||w||2 (43)
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Figure 4: Least-squares curve fitting of an RBF. (a) Point data (blue circles) was taken from a sine
curve, and a curve was fit to the points by a least-squares fit. The horizontal axis isx, the vertical
axis isy, and the red curve is the estimatedf(x). In this case, the fit is essentially perfect. The
curve representation is a sum of Gaussian basis functions. (b) Overfitting . Random noise was
added to the data points, and the curve was fit again. The curveexactly fits the data points, which
does not reproduce the original curve (a green, dashed line)very well. (c)Underfitting . Adding
a smoothness term makes the resulting curve too smooth. (In this case, weight decay was used,
along with reducing the number of basis functions). (d) Reducing the strength of the smoothness
term yields a better fit.
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Figure 5:Left: Sigmoidsg(wx) = 1/(1+e−wx) for various values ofw, ranging from linear ramps
to smooth steps to nearly hard steps.Right: Sigmoidsg(x + b) = 1/(1 + e−x−b) with different
shiftsb.

wherew comprises the weights at both levels for allj. Note that we regularize by applying weight
decay to the weights (both inner and outer), but not the biases, since only the weights affect the
smoothness of the resulting function (why?).

Unfortuntely, this objective function cannot be optimizedin closed-form, and numerical opti-
mization procedures must be used. We will study one such method, gradient descent, in the next
chapter.

3.4 K-Nearest Neighbors

At heart, many learning procedures — especially when our prior knowledge is weak — amount
to smoothing the training data. RBF fitting is an example of this. However, many of these fitting
procedures require making a number of decisions, such as thelocations of the basis functions, and
can be sensitive to these choices. This raises the question:why not cut out the middleman, and
smooth the data directly? This is the idea behindK-Nearest Neighborsregression.

The idea is simple. We first select a parameterK, which is the only parameter to the algorithm.
Then, for a new inputx, we find theK nearest neighbors tox in the training set, based on their
Euclidean distance||x−xi||2. Then, our new outputy is simply an average of the training outputs
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for those nearest neigbors. This can be expressed as:

y =
1

K

∑

i∈NK(x)

yi (44)

where the setNK(x) contains the indicies of theK training points closest tox. Alternatively, we
might take a weighted average of theK-nearest neighbors to give more influence to training points
close tox than to those further away:

y =

∑

i∈NK(x)w(xi)yi
∑

i∈NK(x)w(xi)
, w(xi) = e−||xi−x||2/2σ2

(45)

whereσ2 is an additional parameter to the algorithm. The parametersK andσ control the degree
of smoothing performed by the algorithm. In the extreme caseof K = 1, the algorithm produces
a piecewise-constant function.

K-nearest neighbors is simple and easy to implement; it doesn’t require us to muck about at
all with different choices of basis functions or regularizations. However, it doesn’t compress the
data at all: we have to keep around the entire training set in order to use it, which could be very
expensive, and we must search the whole data set to make predictions. (The cost of searching
can be mitigated with spatial data-structures designed forsearching, such ask-d-trees and locality-
sensitive hashing. We will not cover these methods here).
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4 Quadratics

The objective functions used in linear least-squares and regularized least-squares are multidimen-
sional quadratics. We now analyze multidimensional quadratics further. We will see many more
uses of quadratics further in the course, particularly whendealing with Gaussian distributions.

The general form of a one-dimensional quadratic is given by:

f(x) = w2x
2 + w1x+ w0 (46)

This can also be written in a slightly different way (called standard form):

f(x) = a(x− b)2 + c (47)

wherea = w2, b = −w1/(2w2), c = w0 − w2
1/4w2. These two forms are equivalent, and it is

easy to go back and forth between them (e.g., givena, b, c, what arew0, w1, w2?). In the latter
form, it is easy to visualize the shape of the curve: it is a bowl, with minimum (or maximum) at
b, and the “width” of the bowl is determined by the magnitude ofa, the sign ofa tells us which
direction the bowl points (a positive means a convex bowl,a negative means a concave bowl), and
c tells us how high or low the bowl goes (atx = b). We will now generalize these intuitions for
higher-dimensional quadratics.

The general form for a 2D quadratic function is:

f(x1, x2) = w1,1x
2
1 + w1,2x1x2 + w2,2x

2
2 + w1x1 + w2x2 + w0 (48)

and, for anN -D quadratic, it is:

f(x1, ...xN ) =
∑

1≤i≤N,1≤j≤N

wi,jxixj +
∑

1≤i≤N

wixi + w0 (49)

Note that there are three sets of terms: the quadratic terms (
∑

wi,jxixj), the linear terms (
∑

wixi)
and the constant term (w0).

Dealing with these summations is rather cumbersome. We can simplify things by using matrix-
vector notation. Letx be anN -dimensional column vector, writtenx = [x1, ...xN ]

T . Then we can
write a quadratic as:

f(x) = xTAx+ bTx+ c (50)

where

A =






w1,1 ... w1,N
... wi,j

...
wN,1 ... wN,N




 (51)

b = [w1, ..., wN ]
T (52)

c = w0 (53)
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You should verify for yourself that these different forms are equivalent: by multiplying out all the
elements off(x), either in the 2D case or, using summations, the generalN −D case.

For many manipulations we will want to do later, it is helpfulfor A to be symmetric, i.e., to
havewi,j = wj,i. In fact, it should be clear that these off-diagonal entriesare redundant. So, if we
are a given a quadratic for whichA is asymmetric, we can symmetrize it as:

f(x) = xT (
1

2
(A+AT ))x+ bTx+ c = xT Ãx+ bTx+ c (54)

and useÃ = 1
2
(A + AT ) instead. You should confirm for yourself that this is equivalent to the

original quadratic.
As before, we can convert the quadratic to a form that leads toclearer interpretation:

f(x) = (x− µ)TA(x− µ) + d (55)

whereµ = −1
2
A−1b, d = c − µTAµ, assuming thatA−1 exists. Note the similarity here to the

1-D case. As before, this function is a bowl-shape inN dimensions, with curvature specified by
the matrixA, and with a single stationary pointµ.4 However, fully understanding the shape of
f(x) is a bit more subtle and interesting.

4.1 Optimizing a quadratic

Suppose we wish to find the stationary points (minima or maxima) of a quadratic

f(x) = xTAx+ bTx+ c. (56)

The stationary points occur where all partial derivatives are zero, i.e.,∂f/∂xi = 0 for all i. The
gradient of a function is the vector comprising the partial derivatives of the function, i.e.,

∇f ≡ [∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂N ]T . (57)

At stationary points it must therefore be true that∇f = [0, . . . , 0]T . Let us assume thatA is
symmetric (if it is not, then we can symmetrize it as above). Equation 56 is a very common form
of cost function (e.g. the log probability of a Gaussian as wewill later see), and so the form of its
gradient is important to examine.

Due to the linearity of the differentiation operator, we canlook at each of the three terms of
Eq.56 separately. The last (constant) term does not depend on x and so we can ignore it because
its derivative is zero. Let us examine the first term. If we write out the individual terms within the

4A stationary point means a setting ofx where the gradient is zero.
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vectors/matrices, we get:

(x1 . . . xN)






a11 . . . a1N
...

. ..
...

aN1 . . . aNN











x1
...
xN




 (58)

=(x1a11 + x2a21 + . . .+ xNaN1x1a12 + x2a22 + . . . (59)

. . .+ x1a1N + x2a2N + . . .+ xNaNN)






x1
...
xN




 (60)

=x2
1a11 + x1x2a21 + . . .+ x1xNaN1 + x1x2a12 + x2

2a22 + . . .+ xNx2aN2 + . . . (61)

. . . x1xNa1N + x2xNa2N + . . .+ x2
NaNN (62)

=
∑

ij

aijxixj (63)

The ith element of the gradient corresponds to∂f/∂xi. So in the expression above, for the
terms in the gradient corresponding to eachxi, we only need to consider the terms involvingxi

(others will have derivative zero), namely

x2
i aii +

∑

j 6=i

xixj(aij + aji) (64)

The gradient then has a very simple form:

∂
(
xTAx

)

∂xi

= 2xiaii +
∑

j 6=i

xj(aij + aji). (65)

We can write a single expression for all of thexi using matrix/vector form:

∂xTAx

∂x
= (A+AT )x. (66)

You should multiply this out for yourself to see that this corresponds to the individual terms above.
If we assume thatA is symmetric, then we have

∂xTAx

∂x
= 2Ax. (67)

This is also a very helpful rule that you should remember. Thenext term in the cost function,bTx,
has an even simpler gradient. Note that this is simply a dot product, and the result is a scalar:

bTx = b1x1 + b2x2 + . . .+ bNxN . (68)

Copyright c© 2011 Aaron Hertzmann and David Fleet 19



CSC 411 / CSC D11 Quadratics

Only one term corresponds to eachxi and so∂f/∂xi = bi. We can again express this in ma-
trix/vector form:

∂
(
bTx

)

∂x
= b. (69)

This is another helpful rule that you will encounter again. If we use both of the expressions we
have just derived, and set the gradient of the cost function to zero, we get:

∂f(x)

∂x
= 2Ax+ b = [0, . . . , 0]T (70)

The optimum is given by the solution to this system of equations (callednormal equations):

x = −1

2
A−1b (71)

In the case of scalarx, this reduces tox = −b/2a. For linear regression with multi-dimensional
inputs above (see Equation 18):A = XXT andb = −2XyT . As an exercise, convince yourself
that this is true.
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5 Basic Probability Theory

Probability theory addresses the following fundamental question:how do we reason?Reasoning
is central to many areas of human endeavor, including philosophy (what is the best way to make
decisions?), cognitive science (how does the mind work?), artificial intelligence (how do we build
reasoning machines?), and science (how do we test and develop theories based on experimental
data?). In nearly all real-world situations, our data and knowledge about the world is incomplete,
indirect, and noisy; hence, uncertainty must be a fundamental part of our decision-making pro-
cess. Bayesian reasoning provides a formal and consistent way to reasoning in the presence of
uncertainty; probabilistic inference is an embodiment of common sense reasoning.

The approach we focus on here isBayesian. Bayesian probability theory is distinguished by
defining probabilities asdegrees-of-belief. This is in contrast toFrequentist statistics, where the
probability of an event is defined as its frequency in the limit of an infinite number of repeated
trials.

5.1 Classical logic

Perhaps the most famous attempt to describe a formal system of reasoning is classical logic, origi-
nally developed by Aristotle. In classical logic, we have some statements that may be true or false,
and we have a set of rules which allow us to determine the truthor falsity of new statements. For
example, suppose we introduce two statements, namedA andB:

A ≡ “My car was stolen”
B ≡ “My car is not in the parking spot where I remember leaving it”

Moreover, let us assert the rule “A impliesB”, which we will write asA → B. Then, ifA is
known to be true, we may deduce logically thatB must also be true (if my car is stolen then it
won’t be in the parking spot where I left it). Alternatively,if I find my car where I left it (“B is
false,” writtenB̄), then I may infer that it was not stolen (Ā) by the contrapositivēB→ Ā.

Classical logic provides a model of how humans might reason, and a model of how we might
build an “intelligent” computer. Unfortunately, classical logic has a significant shortcoming: it
assumes that all knowledge is absolute. Logic requires thatwe know some facts about the world
with absolute certainty, and then, we may deduce only those facts which must follow with absolute
certainty.

In the real world, there are almost no facts that we know with absolute certainty — most of
what we know about the world we acquire indirectly, through our five senses, or from dialogue with
other people. One can therefore conclude that most of what weknow about the world isuncertain.
(Finding something that we know with certainty has occupiedgenerations of philosophers.)

For example, suppose I discover that my car is not where I remember leaving it (B). Does
this mean that it was stolen? No, there are many other explanations — maybe I have forgotten
where I left it or maybe it was towed. However, the knowledge of B makesA moreplausible
— even though I do not know it to be stolen, it becomes more likely a scenario than before. The
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actual degree of plausibility depends on other contextual information — did I park it in a safe
neighborhood?, did I park it in a handicapped zone?, etc.

Predicting the weather is another task that requires reasoning with uncertain information.
While we can make some predictions with great confidence (e.g.we can reliably predict that it
will not snow in June, north of the equator), we are often faced with much more difficult questions
(will it rain today?) which we must infer from unreliable sources of information (e.g., the weather
report, clouds in the sky, yesterday’s weather, etc.). In the end, we usually cannot determine for
certain whether it will rain, but we do get a degree of certainty upon which to base decisions and
decide whether or not to carry an umbrella.

Another important example of uncertain reasoning occurs whenever you meet someone new —
at this time, you immediately make hundreds of inferences (mostly unconscious) about who this
person is and what their emotions and goals are. You make these decisions based on the person’s
appearance, the way they are dressed, their facial expressions, their actions, the context in which
you meet, and what you have learned from previous experiencewith other people. Of course, you
have no conclusive basis for forming opinions (e.g., the panhandler you meet on the street may
be a method actor preparing for a role). However, we need to beable to make judgements about
other people based on incomplete information; otherwise, normal interpersonal interaction would
be impossible (e.g., how do you reallyknowthat everyone isn’t out to get you?).

What we need is a way of discussing not just true or false statements, but statements that have
varying levels of certainty. In addition, we would like to beable to use our beliefs to reason about
the world and interpret it. As we gain new information, our beliefs should change to reflect our
greater knowledge. For example, for any two propositionsA andB (that may be true or false), if
A→ B, then strong belief inA should increase our belief inB. Moreover, strong belief inB may
sometimes increase our belief inA as well.

5.2 Basic definitions and rules

The rules of probability theory provide a system for reasoning with uncertainty.There are a number
of justifications for the use of probability theory to represent logic (such as Cox’s Axioms) that
show, for certain particular definitions of common-sense reasoning, that probability theory is the
only system that is consistent with common-sense reasoning. We will not cover these here (see,
for example, Wikipedia for discussion of the Cox Axioms).

The basic rules of probability theory are as follows.

• The probability of a statementA — denotedP (A) — is a real number between 0 and
1, inclusive. P (A) = 1 indicates absolute certainty thatA is true,P (A) = 0 indicates
absolute certainty thatA is false, and values between 0 and 1 correspond to varying degrees
of certainty.

• The joint probability of two statementsA andB — denotedP (A,B) — is the probability
that both statements are true. (i.e., the probability that the statement “A ∧ B” is true).
(Clearly,P (A,B) = P (B,A).)
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• The conditional probability of A givenB — denotedP (A|B) — is the probability that
we would assign toA being true,if we knewB to be true. The conditional probability is
defined asP (A|B) = P (A,B)/P (B).

• The Product Rule:
P (A,B) = P (A|B)P (B) (72)

In other words, the probability thatA andB are both true is given by the probability thatB is
true, multiplied by the probability we would assign toA if we knewB to be true. Similarly,
P (A,B) = P (B|A)P (A). This rule follows directly from the definition of conditional
probability.

• The Sum Rule:
P (A) + P (Ā) = 1 (73)

In other words, the probability of a statement being true andthe probability that it is false
must sum to 1. In other words, our certainty thatA is true is in inverse proportion to our
certainty that it is not true. A consequence: given a set of mutually-exclusive statementsAi,
exactly one of which must be true, we have

∑

i

P (Ai) = 1 (74)

• All of the above rules can be made conditional on additional information. For example,
given an additional statementC, we can write the Sum Rule as:

∑

i

P (Ai|C) = 1 (75)

and the Product Rule as

P (A,B|C) = P (A|B,C)P (B|C) (76)

From these rules, we further derive many more expressions torelate probabilities. For example,
one important operation is calledmarginalization:

P (B) =
∑

i

P (Ai,B) (77)

if Ai are mutually-exclusive statements, of which exactly one must be true. In the simplest case
— where the statementA may be true or false — we can derive:

P (B) = P (A,B) + P (Ā,B) (78)
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The derivation of this formula is straightforward, using the basic rules of probability theory:

P (A) + P (Ā) = 1, Sum rule (79)

P (A|B) + P (Ā|B) = 1, Conditioning (80)

P (A|B)P (B) + P (Ā|B)P (B) = P (B), Algebra (81)

P (A,B) + P (Ā,B) = P (B), Product rule (82)

Marginalization gives us a useful way to compute the probability of a statementB that is inter-
twined with many other uncertain statements.

Another useful concept is the notion ofindependence. Two statements are independent if and
only if P (A,B) = P (A)P (B). If A andB are independent, then it follows thatP (A|B) = P (A)
(by combining the Product Rule with the defintion of independence). Intuitively, this means that,
whether or notB is true tells you nothing about whetherA is true.

In the rest of these notes, I will always use probabilities asstatements about variables. For
example, suppose we have a variablex that indicates whether there are one, two, or three people
in a room (i.e., the only possibilities arex = 1, x = 2, x = 3). Then, by the sum rule, we can
deriveP (x = 1) + P (x = 2) + P (x = 3) = 1. Probabilities can also describe the range of a real
variable. For example,P (y < 5) is the probability that the variabley is less than 5. (We’ll discuss
continuous random variables and probability densities in more detail in the next chapter.)

To summarize:

The basic rules of probability theory:
• P (A) ∈ [0...1]
• Product rule: P (A,B) = P (A|B)P (B)
• Sum rule: P (A) + P (Ā) = 1
• Two statementsA andB areindependentiff: P (A,B) = P (A)P (B)
•Marginalizing: P (B) =

∑

i P (Ai,B)
• Any basic rule can be made conditional on additional information.
For example, it follows from the product rule thatP (A,B|C) = P (A|B,C)P (B|C)

Once we have these rules — and a suitable model — we can deriveany probability that we
want. With some experience, you should be able to derive any desired probability (e.g.,P (A|C))
given a basic model.

5.3 Discrete random variables

It is convenient to describe systems in terms of variables. For example, to describe the weather,
we might define a discrete variablew that can take on two valuessunny or rainy, and then try to
determineP (w = sunny), i.e., the probability that it will be sunny today.Discrete distributions
describe these types of probabilities.

As a concrete example, let’s flip a coin. Letc be a variable that indicates the result of the flip:
c = heads if the coin lands on its head, andc = tails otherwise. In this chapter and the rest of
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these notes, I will use probabilities specifically to refer to values of variables, e.g.,P (c = heads)
is the probability that the coin lands heads.

What is the probability that the coin lands heads? This probability should be some real number
θ, 0 ≤ θ ≤ 1. For most coins, we would sayθ = .5. What does this number mean? The numberθ
is a representation of our belief about the possible values of c. Some examples:

θ = 0 we are absolutely certain the coin will land tails
θ = 1/3 we believe that tails is twice as likely as heads
θ = 1/2 we believe heads and tails are equally likely
θ = 1 we are absolutely certain the coin will land heads

Formally, we denote the probability of the coin coming up heads asP (c = heads), soP (c =
heads) = θ. In general, we denote the probability of a specific eventevent asP (event). By the
Sum Rule, we knowP (c = heads) + P (c = tails) = 1, and thusP (c = tails) = 1− θ.

Once we flip the coin and observe the result, then we can be pretty sure that we know the value
of c; there is no practical need to model the uncertainty in this measurement. However, suppose
we do not observe the coin flip, but instead hear about it from afriend, who may be forgetful or
untrustworthy. Letf be a variable indicating how the friend claims the coin landed, i.e.f = heads

means the friend says that the coin came up heads. Suppose thefriend says the coin landed heads
— do we believe him, and, if so, with how much certainty? As we shall see, probabilistic reasoning
obtains quantitative values that, qualitatively, matchesour common sense very effectively.

Suppose we know something about our friend’s behaviour. We can represent our beliefs with
the following probabilities, for example,P (f = heads|c = heads) represents our belief that the
friend says “heads” when the the coin landed heads. Because the friend can only say one thing, we
can apply the Sum Rule to get:

P (f = heads|c = heads) + P (f = tails|c = heads) = 1 (83)

P (f = heads|c = tails) + P (f = tails|c = tails) = 1 (84)

If our friend always tells the truth, then we knowP (f = heads|c = heads) = 1 andP (f =
tails|c = heads) = 0. If our friendusuallylies, then, for example, we might haveP (f = heads|c =
heads) = .3.

5.4 Binomial and Multinomial distributions

A binomial distribution is the distribution over the numberof positive outcomes for a yes/no (bi-
nary) experiment, where on each trial the probability of a positive outcome isp ∈ [0, 1]. For exam-
ple, forn tosses of a coin for which the probability of heads on a singletrial is p, the distribution
over the number of heads we might observe is a binomial distribution. The binomial distribution
over the number of positive outcomes, denotedK, givenn trials, each having a positive outcome
with probabilityp is given by

P (K = k) =

(
n
k

)

pk (1− p)n−k (85)
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for k = 0, 1, . . . , n, where (
n
k

)

=
n!

k! (n− k)!
. (86)

A multinomial distribution is a natural extension of the binomial distribution to an experiment
with k mutually exclusive outcomes, having probabilitiespj, for j = 1, . . . , k. Of course, to be
valid probabilities

∑
pj = 1. For example, rolling a die can yield one of six values, each with

probability 1/6 (assuming the die is fair). Givenn trials, the multinomial distribution specifies the
distribution over the number of each of the possible outcomes. Givenn trials,k possible outcomes
with probabilitiespj, the distribution over the event that outcomej occursxj times (and of course
∑

xj = n), is the multinomial distribution given by

P (X1 = x1, X2 = x2, . . . , Xk = xk) =
n!

x1! x2! . . . xk!
px1
1 px2

2 . . . pxk

k (87)

5.5 Mathematical expectation

Suppose each outcomeri has an associated real valuexi ∈ R. Then the expected value ofx is:

E[x] =
∑

i

P (ri)xi . (88)

The expected value off(x) is given by

E[f(x)] =
∑

i

P (ri)f(xi) . (89)
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6 Probability Density Functions (PDFs)

In many cases, we wish to handle data that can be represented as a real-valued random variable,
or a real-valued vectorx = [x1, x2, ..., xn]

T . Most of the intuitions from discrete variables transfer
directly to the continuous case, although there are some subtleties.

We describe the probabilities of a real-valued scalar variable x with a Probability Density
Function (PDF), writtenp(x). Any real-valued functionp(x) that satisfies:

p(x) ≥ 0 for all x (90)
∫ ∞

−∞
p(x)dx = 1 (91)

is a valid PDF. I will use the convention of upper-caseP for discrete probabilities, and lower-case
p for PDFs.

With the PDF we can specify the probability that the random variablex falls within a given
range:

P (x0 ≤ x ≤ x1) =

∫ x1

x0

p(x)dx (92)

This can be visualized by plotting the curvep(x). Then, to determine the probability thatx falls
within a range, we compute the area under the curve for that range.

The PDF can be thought of as the infinite limit of a discrete distribution, i.e., a discrete dis-
tribution with an infinite number of possible outcomes. Specifically, suppose we create a discrete
distribution withN possible outcomes, each corresponding to a range on the realnumber line.
Then, suppose we increaseN towards infinity, so that each outcome shrinks to a single real num-
ber; a PDF is defined as the limiting case of this discrete distribution.

There is an important subtlety here: a probability density is not a probability per se. For
one thing, there is no requirement thatp(x) ≤ 1. Moreover, the probability thatx attains any
one specific value out of the infinite set of possible values isalways zero, e.g.P (x = 5) =
∫ 5

5
p(x)dx = 0 for any PDFp(x). People (myself included) are sometimes sloppy in referring

to p(x) as a probability, but it is not a probability — rather, it is a function that can be used in
computing probabilities.

Joint distributions are defined in a natural way. For two variablesx andy, the joint PDFp(x, y)
defines the probability that(x, y) lies in a given domainD:

P ((x, y) ∈ D) =
∫

(x,y)∈D
p(x, y)dxdy (93)

For example, the probability that a 2D coordinate(x, y) lies in the domain(0 ≤ x ≤ 1, 0 ≤ y ≤ 1)
is
∫

0≤x≤1

∫

0≤y≤1
p(x, y)dxdy. The PDF over a vector may also be written as a joint PDF of its

variables. For example, for a 2D-vectora = [x, y]T , the PDFp(a) is equivalent to the PDFp(x, y).
Conditional distributions are defined as well:p(x|A) is the PDF overx, if the statementA is

true. This statement may be an expression on a continuous value, e.g. “y = 5.” As a short-hand,
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we can writep(x|y), which provides a PDF forx for every value ofy. (It must be the case that
∫
p(x|y)dx = 1, sincep(x|y) is a PDF over values ofx.)

In general, for all of the rules for manipulating discrete distributions there are analogous rules
for continuous distributions:

Probability rules for PDFs:
• p(x) ≥ 0, for all x
•
∫∞
−∞ p(x)dx = 1

• P (x0 ≤ x ≤ x1) =
∫ x1

x0
p(x)dx

• Sum rule:
∫∞
−∞ p(x)dx = 1

• Product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x).
•Marginalization: p(y) =

∫∞
−∞ p(x, y)dx

•We can also add conditional information, e.g.p(y|z) =
∫∞
−∞ p(x, y|z)dx

• Independence:Variablesx andy are independent if:p(x, y) = p(x)p(y).

6.1 Mathematical expectation, mean, and variance

Some very brief definitions of ways to describe a PDF:
Given a functionf(x) of an unknown variablex, theexpected valueof the function with repect

to a PDFp(x) is defined as:

Ep(x)[f(x)] ≡
∫

f(x)p(x)dx (94)

Intuitively, this is the value that we roughly “expect”x to have.
The meanµ of a distributionp(x) is the expected value ofx:

µ = Ep(x)[x] =

∫

xp(x)dx (95)

The variance of a scalar variablex is the expected squared deviation from the mean:

Ep(x)[(x− µ)2] =

∫

(x− µ)2p(x)dx (96)

The variance of a distribution tells us how uncertain, or “spread-out” the distribution is. For a very
narrow distributionEp(x)[(x− µ)2] will be small.

Thecovarianceof a vectorx is a matrix:

Σ = cov(x) = Ep(x)[(x− µ)(x− µ)T ] =

∫

(x− µ)(x− µ)Tp(x)dx (97)

By inspection, we can see that the diagonal entries of the covariance matrix are the variances of
the individual entries of the vector:

Σii = var(xii) = Ep(x)[(xi − µi)
2] (98)
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The off-diagonal terms are covariances:

Σij = cov(xi, xj) = Ep(x)[(xi − µi)(xj − µj)] (99)

between variablesxi andxj. If the covariance is a large positive number, then we expectxi to be
larger thanµi whenxj is larger thanµj. If the covariance is zero and we know no other information,
then knowingxi > µi does not tell us whether or not it is likely thatxj > µj.

One goal of statistics is to infer properties of distributions. In the simplest case, thesample
mean of a collection ofN data pointsx1:N is just their average:̄x = 1

N

∑

i xi. The sample
covarianceof a set of data points is:1

N

∑

i(xi − x̄)(xi − x̄)T . The covariance of the data points
tells us how “spread-out” the data points are.

6.2 Uniform distributions

The simplest PDF is theuniform distribution . Intuitively, this distribution states that all values
within a given range[x0, x1] are equally likely. Formally, the uniform distribution on the interval
[x0, x1] is:

p(x) =

{
1

x1−x0
if x0 ≤ x ≤ x1

0 otherwise
(100)

It is easy to see that this is a valid PDF (becausep(x) > 0 and
∫
p(x)dx = 1).

We can also write this distribution with this alternative notation:

x|x0, x1 ∼ U(x0, x1) (101)

Equations 100 and 101 are equivalent. The latter simply says: x is distributed uniformly in the
rangex0 andx1, and it is impossible thatx lies outside of that range.

The mean of a uniform distributionU(x0, x1) is (x1 + x0)/2. The variance is(x1 − x0)
2/12.

6.3 Gaussian distributions

Arguably the single most important PDF is theNormal (a.k.a.,Gaussian) probability distribution
function (PDF). Among the reasons for its popularity are that it is theoretically elegant, and arises
naturally in a number of situations. It is the distribution that maximizes entropy, and it is also tied
to the Central Limit Theorem: the distribution of a random variable which is the sum of a number
of random variables approaches the Gaussian distribution as that number tends to infinity (Figure
6).

Perhaps most importantly, it is the analytical properties of the Gaussian that make it so ubiqui-
tous. Gaussians are easy to manipulate, and their form so well understood, that we often assume
quantities are Gaussian distributed, even though they are not, in order to turn an intractable model,
or problem, into something that is easier to work with.
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Figure 6: Histogram plots of the mean ofN uniformly distributed numbers for various values of
N . The effect of the Central Limit Theorem is seen: asN increases, the distribution becomes more
Gaussian.(Figure fromPattern Recognition and Machine Learningby Chris Bishop.)

The simplest case is a Gaussian PDF over a scalar valuex, in which case the PDF is:

p(x|µ, σ2) =
1√
2πσ2

exp

(

− 1

2σ2
(x− µ)2

)

(102)

(The notationexp(a) is the same asea). The Gaussian has two parameters, the meanµ, and
the varianceσ2. The mean specifies the center of the distribution, and the variance tells us how
“spread-out” the PDF is.

The PDF forD-dimensional vectorx, the elements of which are jointly distributed with a the
Gaussian denity function, is given by

p(x|µ,Σ) =
1

√

(2π)D|Σ|
exp

(
−(x− µ)TΣ−1(x− µ)/2

)
(103)

whereµ is the mean vector, andΣ is theD×D covariance matrix, and|A| denotes the determinant
of matrixA. An important special case is when the Gaussian is isotropic(rotationally invariant).
In this case the covariance matrix can be written asΣ = σ2I whereI is the identity matrix. This is
called a spherical or isotropic covariance matrix. In this case, the PDF reduces to:

p(x|µ, σ2) =
1

√

(2π)Dσ2D
exp

(

− 1

2σ2
||x− µ||2

)

. (104)

The Gaussian distribution is used frequently enough that itis useful to denote its PDF in a
simple way. We will define a functionG to be the Gaussian density function, i.e.,

G(x;µ,Σ) ≡ 1
√

(2π)D|Σ|
exp

(
−(x− µ)TΣ−1(x− µ)/2

)
(105)

When formulating problems and manipulating PDFs this functional notation will be useful. When
we want to specify that a random vector has a Gaussian PDF, it is common to use the notation:

x|µ,Σ ∼ N (µ,Σ) (106)
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Equations 103 and 106 essentially say the same thing. Equation 106 says thatx is Gaussian, and
Equation 103 specifies (evaluates) the density for an inputx.

The covariance matrixΣ of a Gaussian must be symmetric and positive definite — this is
equivalent to requiring that|Σ| > 0. Otherwise, the formula does not correspond to a valid PDF,
since Equation 103 is no longer real-valued if|Σ| ≤ 0.

6.3.1 Diagonalization

A useful way to understand a Gaussian is to diagonalize the exponent. The exponent of the Gaus-
sian is quadratic, and so its shape is essentially elliptical. Through diagonalization we find the
major axes of the ellipse, and the variance of the distribution along those axes. Seeing the Gaus-
sian this way often makes it easier to interpret the distribution.

As a reminder, the eigendecomposition of a real-valued symmetric matrixΣ yields a set of
orthonormal vectorsvi and scalarsλi such that

Σui = λiui (107)

Equivalently, if we combine the eigenvalues and eigenvectors into matricesU = [u1, ...,uN ] and
Λ = diag(λ1, ...λN ), then we have

ΣU = UΛ (108)

SinceU is orthonormal:
Σ = UΛUT (109)

The inverse ofΣ is straightforward, sinceU is orthonormal, and henceU−1 = UT :

Σ−1 =
(
UΛUT

)−1
= UΛ−1UT (110)

(If any of these steps are not familiar to you, you should refresh your memory of them.)
Now, consider the negative log of the Gaussian (i.e., the exponent); i.e., let

f(x) =
1

2
(x− µ)TΣ−1(x− µ) . (111)

Substituting in the diagonalization gives:

f(x) =
1

2
(x− µ)TUΛ−1UT (x− µ) (112)

=
1

2
zTz (113)

where
z = diag(λ

− 1
2

1 , ..., λ
− 1

2
N )UT (x− µ) (114)

This new functionf(z) = zTz/2 =
∑

i z
2
i /2 is a quadratic, with new variableszi. Given variables

x, we can convert them to thez representation by applying Eq. 114, and, if all eigenvaluesare
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Figure 7: The red curve shows the elliptical surface of constant probability density for a Gaussian
in a two-dimensional space on which the density isexp(−1/2) of its value atx = µ. The major
axes of the ellipse are defined by the eigenvectorsui of the covariance matrix, with corresponding
eigenvaluesλi. (Figure fromPattern Recognition and Machine Learningby Chris Bishop.)(Notey1 and
y2 in the figure should readz1 andz2.)

nonzero, we can convert back by inverting Eq. 114. Hence, we can write our Gaussian in this new
coordinate system as5:

1
√

(2π)N
exp

(

−1

2
||z||2

)

=
∏

i

1√
2π

exp

(

−1

2
z2i

)

(115)

It is easy to see that for the quadratic form off(z), its level sets (i.e., the surfacesf(z) = c for
constantc) are hyperspheres. Equivalently, it is clear from115 thatz is a Gaussian random vector
with an isotropic covariance, so the different elements ofz are uncorrelated. In other words, the
value of this transformation is that we have decomposed the original N -D quadratic with many
interactions between the variables into a much simpler Gaussian, composed ofd independent vari-
ables. This convenient geometrical form can be seen in Figure 7. For example, if we consider an
individual zi variable in isolation (i.e., consider a slice of the function f(z)), that slice will look
like a 1D bowl.

We can also understand the local curvature off with a slightly different diagonalization.
Specifically, letv = UT (x− µ). Then,

f(u) =
1

2
vTΛ−1v =

1

2

∑

i

v2i
λi

(116)

If we plot a cross-section of this function, then we have a 1D bowl shape with variance given by
λi. In other words, the eigenvalues tell us variance of the Gaussian in different dimensions.

5The normalizing|Σ| disappears due to the nature of change-of-variables in PDFs, which we won’t discuss here.

Copyright c© 2011 Aaron Hertzmann and David Fleet 32



CSC 411 / CSC D11 Probability Density Functions (PDFs)

xa

xb = 0.7

xb

p(xa, xb)

0 0.5 1
0

0.5

1

xa

p(xa)

p(xa|xb = 0.7)

0 0.5 1
0

5

10

Figure 8: Left: The contours of a Gaussian distributionp(xa, xb) over two variables. Right: The
marginal distributionp(xa) (blue curve) and the conditional distributionp(xa|xb) for xb = 0.7 (red
curve).(Figure fromPattern Recognition and Machine Learningby Chris Bishop.)

6.3.2 Conditional Gaussian distribution

In the case of the multivariate Gaussian where the random variables have been partitioned into two
setsxa andxb, the conditional distribution of one set conditioned on theother is Gaussian. The
marginal distribution of either set is also Gaussian. When manipulating these expressions, it is
easier to express the covariance matrix in inverse form, as a”precision” matrix,Λ ≡ Σ−1. Given
thatx is a Gaussian random vector, with meanµ and covarianceΣ, we can expressx, µ, Σ andΛ
all in block matrix form:

x =

(
xa

xb

)

, µ =

(
µa

µb

)

, Σ =

(
Σaa Σab

Σba Σbb

)

, Λ =

(
Λaa Λab

Λba Λbb

)

, (117)

Then one can show straightforwardly that the marginal PDFs for the componentsxa andxb are
also Gaussian, i.e.,

xa ∼ N (µa,Σaa) , xb ∼ N (µb,Σbb). (118)

With a little more work one can also show that the conditionaldistributions are Gaussian. For
example, the conditional distribution ofxa givenxb satisfies

xa|xb ∼ N (µa|b,Λ
−1
aa ) (119)

whereµa|b = µa−Λ−1
aaΛab(xb−µb). Note thatΛ−1

aa is not simplyΣaa. Figure 8 shows the marginal
and conditional distributions applied to a two-dimensional Gaussian.

Finally, another important property of Gaussian functionsis that the product of two Gaussian
functions is another Gaussian function (although no longernormalized to be a proper density func-
tion):

G(x; µ1,Σ2)G(x; µ2,Σ2) ∝ G(x; µ,Σ), (120)
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where

µ = Σ
(
Σ−1

1 µ1 + Σ−1
2 µ2

)
, (121)

Σ = (Σ−1
1 + Σ−1

2 )−1. (122)

Note that the linear transformation of a Gaussian random variable is also Gaussian. For exam-
ple, if we apply a transformation such thaty = Ax wherex ∼ N (x|µ,Σ), we havey ∼
N (y|Aµ, AΣAT ).
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7 Estimation

We now consider the problem of determining unknown parameters of the world based on mea-
surements. The general problem is one ofinference, which describes the probabilities of these
unknown parameters. Given a model, these probabilities canbe derived using Bayes’ Rule. The
simplest use of these probabilities is to performestimation, in which we attempt to come up with
single “best” estimates of the unknown parameters.

7.1 Learning a binomial distribution

For a simple example, we return to coin-flipping. We flip a coinN times, with the result of thei-th
flip denoted by a variableci: “ci = heads” means that thei-th flip came up heads. The probability
that the coin lands heads on any given trial is given by a parameterθ. We have no prior knowledge
as to the value ofθ, and so our prior distribution onθ is uniform.6 In other words, we describeθ
as coming from a uniform distribution from 0 to 1, sop(θ) = 1; we believe that all values ofθ are
equally likely if we have not seen any data. We further assumethat the individual coin flips are
independent, i.e.,P (c1:N |θ) =

∏

i p(ci|θ). (The notation “c1:N ” indicates the set of observations
{c1, ..., cN}.) We can summarize this model as follows:

Model: Coin-Flipping
θ ∼ U(0, 1)

P (c = heads) = θ
P (c1:N |θ) =

∏

i p(ci|θ)
(123)

Suppose we wish to learn about a coin by flipping it 1000 times and observing the results
c1:1000, where the coin landed heads750 times? What is our belief aboutθ, given this data? We
now need to solve forp(θ|c1:1000), i.e., our belief aboutθ after seeing the 1000 coin flips. To do
this, we apply the basic rules of probability theory, beginning with the Product Rule:

P (c1:1000, θ) = P (c1:1000|θ) p(θ) = p(θ|c1:1000)P (c1:1000) (124)

Solving for the desired quantity gives:

p(θ|c1:1000) =
P (c1:1000|θ)p(θ)

P (c1:1000)
(125)

The numerator may be written using

P (c1:1000|θ) p(θ) =
∏

i

P (ci|θ) = θ750(1− θ)1000−750 (126)

6We would usually expect a coin to be fair, i.e., the prior distribution forθ is peaked near0.5.
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Figure 9: Posterior probability ofθ from two different experiments: one with a single coin flip
(landing heads), and 1000 coin flips (750 of which land heads). Note that the latter distribution is
much more peaked.

The denominator may be solved for by the marginalization rule:

P (c1:1000) =

∫ 1

0

P (c1:1000, θ)dθ =

∫ 1

0

θ750(1− θ)1000−750dθ = Z (127)

whereZ is a constant (evaluating it requires more advanced math, but it is not necessary for our
purposes). Hence, the final probability distribution is:

p(θ|c1:1000) = θ750(1− θ)1000−750/Z (128)

which is plotted in Figure 9. This form gives a probability distribution overθ that expresses our
belief aboutθ after we’ve flipped the coin 1000 times.

Suppose we just take the peak of this distribution; from the graph, it can be seen that the peak
is atθ = .75. This makes sense: if a coin lands heads 75% of the time, then we would probably
estimate that it will land heads 75% of the time of the future.More generally, suppose the coin
lands headsH times out ofN flips; we can compute the peak of the distribution as follows:

argmax
θ

p(θ|c1:N) = H/N (129)

(Deriving this is a good exercise to do on your own; hint: minimize the negative log ofp(θ|c1:N )).

Copyright c© 2011 Aaron Hertzmann and David Fleet 36



CSC 411 / CSC D11 Estimation

7.2 Bayes’ Rule

In general, given that we have a model of the world described by some unknown variables, and we
observe some data; our goal is to determine the model from thedata. (In coin-flip example, the
model consisted of the likelihood of the coin landing heads,and the prior overθ, while the data
consisted of the results ofN coin flips.) We describe the probability model asp(data|model) — if
we knewmodel, then this model will tell us what data we expect. Furthermore, we must have some
prior beliefs as to whatmodel is (p(model)), even if these beliefs are completely non-committal
(e.g., a uniform distribution). Given the data, what do we know aboutmodel?

Applying the product rule as before gives:

p(data,model) = p(data|model)p(model) = p(model|data)p(data) (130)

Solving for the desired distribution, gives a seemingly simple but powerful result, known widely
asBayes’ Rule:

Bayes’ Rule:
p(model|data) = p(data|model)p(model)

p(data)

The different terms in Bayes’ Rule are used so often that they all have names:

p(model|data)
︸ ︷︷ ︸

posterior

=

likelihood
︷ ︸︸ ︷

P (data|model)

prior
︷ ︸︸ ︷

p(model)

p(data)
︸ ︷︷ ︸

evidence

(131)

• The likelihood distribution describes the likelihood ofdata givenmodel — it reflects our
assumptions about how the datac was generated.

• The prior distribution describes our assumptions aboutmodel before observing the data
data.

• Theposterior distribution describes our knowledge ofmodel, incorporating both the data
and the prior.

• Theevidenceis useful in model selection, and will be discussed later. Here, its only role is
to normalize the posterior PDF.

7.3 Parameter estimation

Quite often, we are interested in finding a single estimate ofthe value of an unknown parameter,
even if this means discarding all uncertainty. This is called estimation: determining the values
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of some unknown variables from observed data. In this chapter, we outline the problem, and
describe some of the main ways to do this, including Maximum APosteriori (MAP), and Maximum
Likelihood (ML). Estimation is the most common form of learning — given some data from the
world, we wish to “learn” how the world behaves, which we willdescribe in terms of a set of
unknown variables.

Strictly speaking, parameter estimation is not justified byBayesian probability theory, and
can lead to a number of problems, such as overfitting and nonsensical results in extreme cases.
Nonetheless, it is widely used in many problems.

7.3.1 MAP, ML, and Bayes’ Estimates

We can now define the MAP learning rule: choose the parameter value θ that maximizes the
posterior, i.e.,

θ̂ = argmax
θ

p(θ|D) (132)

= argmax
θ

P (D|θ)p(θ) (133)

Note that we don’t need to be able to evaluate the evidence term p(D) for MAP learning, since
there are noθ terms in it.

Very often, we will assume that we have no prior assumptions about the value ofθ, which we
express as auniform prior : p(θ) is a uniform distribution over some suitably large range. Inthis
case, thep(θ) term can also be ignored from MAP learning, and we are left with only maximizing
the likelihood. Hence, theMaximum Likelihood (ML) learning principle (i.e., estimator) is

θ̂ML = argmax
θ

P (D|θ) (134)

It often turns out that it is more convenient to minimize the negative-log of the objective func-
tion. Because “− ln” is a monotonic decreasing function, we can pose MAP estimation as:

θ̂MAP = argmax
θ

P (D|θ)p(θ) (135)

= argmin
θ
− ln (P (D|θ)p(θ)) (136)

= argmin
θ
− lnP (D|θ)− ln p(θ) (137)

We can see that the objective conveniently breaks into a partcorresponding to the likelihood
and a part corresponding to the prior.

One problem with this approach is that all model uncertaintyis ignored. We are choosing
to put all our faith in the most probable model. This sometimes has surprising and undesirable
consequences. For example, in the coin tossing example above, if one were to flip a coin just once
and see a head, then the estimator in Eqn. (129) would tell us that the probability of the outcome
being heads is 1. Sometimes a more suitable estimator is the expected value of the posterior
distribution, rather than its maximum. This is called theBayes’ estimate.
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In the coin tossing case above, you can show that the expectedvalue ofθ, under the posterior
provides an estimate of the probability that is biased toward 1/2. That is:

∫ 1

0

p(θ|c1:N) θ dθ =
H + 1

N + 2
(138)

You can see that this value is always somewhat biased toward 1/2, but converges to the MAP
estimate asN increases. Interestingly, even when there are is no data whatsoever, in which case
the MAP estimate is undefined, the Bayes’ estimate is simply 1/2.

7.4 Learning Gaussians

We now consider the problem of learning a Gaussian distribution fromN training samplesx1:N .
Maximum likelihood learning of the parametersµ andΣ entails maximizing the likelihood:

p(x1:N |µ,Σ) (139)

We assume here that the data points come from a Gaussian. We further assume that they are drawn
independently. We can therefore write the joint likelihoodover the entire set of data as the produce
of the likelihoods for each individual datum, i.e.,

p(x1:N |µ,Σ) =
N∏

i=1

p(x1:N |µ,Σ) (140)

=
N∏

i=1

1
√

(2π)M |Σ|
exp

(

−1

2
(xi − µ)TΣ−1(xi − µ)

)

, (141)

whereM is the dimensionality of the dataxi. It is somewhat more convenient to minimize the
negative log-likelihood:

L(µ,Σ) ≡ − ln p(x1:N |µ,Σ) (142)

= −
∑

i

ln p(xi|µ,Σ) (143)

=
∑

i

(xi − µ)TΣ−1(xi − µ)

2
+

N

2
ln |Σ|+ NM

2
ln(2π) (144)

Solving forµ andΣ by setting∂L/∂µ = 0 and∂L/∂Σ = 0 (subject to the constraint thatΣ is
symmetric) gives the maximum likelihood estimates7:

µ∗ =
1

N

∑

i

xi (145)

Σ∗ =
1

N

∑

i

(xi − µ∗)(xi − µ∗)T (146)

7Warning: the calculation for the optimal covariance matrixinvolves Lagrange multipliers and is not easy.
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The ML estimates make intuitive sense; we estimate the Gaussian’s mean to be the sample mean
of the data, and the Gaussian’s covariance to be the sample covariance of the data. Maximum
likelihood estimates usually make sense intuitively. Thisis very helpful when debugging your
math — you can sometimes find bugs in derivations simply because the ML estimates do not look
right.

7.5 MAP nonlinear regression

Let us revisit the nonlinear regression model from Section 3.1, but now admitting that there exists
noise in measurements and modelling errors. We’ll now writethe model as

y = wTb(x) + n (147)

wheren is a Gaussian random variable, i.e.,

n ∼ N (0, σ2) . (148)

We add this random variable to the regression equation in (147) to represent the fact that most
models and most measurements involve some degree of error. We’ll refer to this error asnoise.

It is straightforward to show from basic probability theorythat Equation (147) implies that,
givenx andw, y is also Gaussian (i.e., has a Gaussian density), i.e.,

p(y |x,w) = G(y; wTb(x), σ2) ≡ 1√
2πσ

e−(y−wTb(x))2/2σ2

(149)

(G is defined in the previous chapter.) It follows that, for a collection ofN independent training
points,(y1:N ,x1:N ), the likelihood is given by

p(y1:N |w,x1:N ) =
N∏

i=1

G(yi; w
Tb(xi), σ

2)

=
1

(2πσ2)N/2
exp

(

−
N∑

i=1

(yi −wTb(xi))
2

2σ2

)

(150)

Furthermore, let us assume the following (weight decay) prior distribution over the unknown
weightsw:

w ∼ N (0, αI) . (151)

That is, forw ∈ R
M ,

p(w) =
M∏

k=1

1√
2πα

e−w2
k
/2α =

1

(2πα)M/2
e−wTw/2α . (152)
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Now, to estimate the model parameters (i.e.,w), let’s consider the posterior distribution over
w conditioned on ourN training pairs,(xi, yi). Based on the formulation above, assuming inde-
pendent training samples, it follows that

p(w|y1:N ,x1:N) =
p(y1:N |w,x1:N)p(w|x1:N)

p(y1:N |x1:N)
(153)

=
(
∏

i p(yi|w,xi)) p(w)

p(y1:N |x1:N)
. (154)

Note thatp(w|x1:N) = p(w), since we can assume thatx alone provides no information aboutw.
In MAP estimation, we want to find the parametersw that maximize their posterior probability:

w∗ = argmax
w

p(w|y1:N ,x1:N) (155)

= argmin
w
− ln p(w|y1:N ,x1:N ) (156)

The negative log-posterior is:

L(w) = − ln p(w|y1:N ,x1:N ) (157)

=

(
∑

i

1

2σ2
(yi −wTb(xi))

2

)

+
N

2
ln(2πσ2) (158)

+
1

2α
||w||2 + M

2
ln(2πα) + ln p(y1:N |x1:N) (159)

Now, we can discard terms that do not depend onw, since they are irrelevant for optimization:

L(w) =

(
∑

i

1

2σ2
(yi −wTb(xi))

2

)

+
1

2α
||w||2 + constants (160)

Furthermore, we can multiply by a constant, without changing where the optima are, so let us
multiply the whole expression by2σ2. Then, if we defineλ = σ2/α, we have the exact same
objective function as used in nonlinear regression with regularization. Hence, nonlinear least-
squares with regularization is a form of MAP estimation, andcan be optimized the same way.
When the measurements are very reliable, thenσ is small and we give the regularizer less influence
on the estimate. But when the data are relatively noisy, soσ is larger, then regularizer has more
influence.
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8 Classification

In classification, we are trying to learn a map from an input space to some finite output space. In
the simplest case we simply detect whether or not the input has some property or not. For example,
we might want to determine whether or not an email is spam, or whether an image contains a face.
A task in the health care field is to determine, given a set of observed symptoms, whether or not a
person has a disease. These detection tasks arebinary classificationproblems.

In multi-class classificationproblems we are interested in determining to which of multiple
categories the input belongs. For example, given a recordedvoice signal we might wish to rec-
ognize the identity of a speaker (perhaps from a set of peoplewhose voice properties are given in
advance). Another well studied example is optical character recognition, the recognition of letters
or numbers from images of handwritten or printed characters.

The inputx might be a vector of real numbers, or a discrete feature vector. In the case of
binary classification problems the outputy might be an element of the set{−1, 1}, while for
a multi-dimensional classification problem withN categories the output might be an integer in
{1, . . . , N}.

The general goal of classification is to learn adecision boundary, often specified as the level
set of a function, e.g.,a(x) = 0. The purpose of the decision boundary is to identity the regions
of the input space that correspond to each class. For binary classification the decision boundary is
the surface in the feature space that separates the test inputs into two classes; pointsx for which
a(x) < 0 are deemed to be in one class, while points for whicha(x) > 0 are in the other. The
points on the decision boundary,a(x) = 0, are those inputs for which the two classes are equally
probable.

In this chapter we introduce several basis methods for classification. We focus mainly on
on binary classification problems for which the methods are conceptually straightforward, easy
to implement, and often quite effective. In subsequent chapters we discuss some of the more
sophisticated methods that might be needed for more challenging problems.

8.1 Class Conditionals

One approach is to describe a “generative” model for each class. Suppose we have two mutually-
exclusive classesC1 andC2. The prior probability of a data vector coming from classC1 isP (C1),
andP (C2) = 1− P (C1). Each class has a distribution for its data:p(x|C1), andp(x|C2). In other
words, to sample from this model, we would first randomly choose a class according toP (C1),
and then sample a data vectorx from that class.

Given labeled training data{(xi, yi)}, we can estimate the distribution for each class by maxi-
mum likelihood, and estimateP (C1) by computing the ratio of the number of elements of class 1
to the total number of elements.

Once we have trained the parameters of ourgenerativemodel, we perform classification by
comparing the posterior class probabillities:

P (C1|x) > P (C2|x) ? (161)
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That is, if the posterior probability ofC1 is larger than the probability ofC2, then we might classify
the input as belonging to class 1. Equivalently, we can compare their ratio to 1:

P (C1|x)
P (C2|x)

> 1 ? (162)

If this ratio is greater than 1 (i.e.P (C1|x) > P (C2|x)) then we classifyx as belonging to class 1,
and class 2 otherwise.

The quantitiesP (Ci|x) can by computed using Bayes’ Rule as:

P (Ci|x) =
p(x|Ci)P (Ci)

p(x)
(163)

so that the ratio is:
p(x|C1)P (C1)

p(x|C2)P (C2)
(164)

Note that thep(x) terms cancel and so do not need to be computed. Also, note thatthese com-
putations are typically done in the logarithmic domain as this is often faster and more numerically
stable.

Gaussian Class Conditionals. As a concrete example, consider a generative model in which the
inputs associated with theith class (fori = 1, 2) are modeled with a Gaussian distribution, i.e.,

p(x|Ci) = G(x;µi,Σi) . (165)

Also, let’s assume that the prior class probabilities are equal:

P (Ci) =
1

2
. (166)

The values ofµi andΣi can be estimated by maximum likelihood on the individual classes in the
training data.

Given this models, you can show that the log of the posterior ratio (164) is given by

a(x) = −1

2
(x− µ1)

T
Σ−1

1 (x− µ1)−
1

2
ln |Σ1|+

1

2
(x− µ2)

T
Σ−1

2 (x− µ2) +
1

2
ln |Σ2| (167)

The sign of this function determines the class ofx, since the ratio of posterior class probabilities
is greater than1 when this log is greater than zero. Sincea(x) is quadratic inx, the decision
boundary (i.e., the set of points satisfyinga(x) = 0) is a conic section (e.g., a parabola, an ellipse,
a line, etc.). Furthermore, in the special case whereΣ1 = Σ2, the decision boundary is linear
(why?).
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Figure 10: GCC classification boundaries for two cases. Note that the decision boundary is linear
when both classes have the same covariance.

8.2 Logistic Regression

Noting thatp(x) can be written as (why?)

p(x) = p(x, C1) + p(x, C2) = p(x|C1)P (C1) + p(x|C2)P (C2) , (168)

we can express the posterior class probability as

P (C1|x) =
p(x|C1)P (C1)

p(x|C1)P (C1) + p(x|C2)P (C2)
. (169)

Dividing both the numerator and denominator byp(x|C1)P (C1) we obtain:

P (C1|x) =
1

1 + e−a(x)
(170)

= g(a(x)) (171)

wherea(x) = ln p(x|C1)P (C1)
p(x|C2)P (C2)

andg(a) is the sigmoid function. Note thatg(a) is monotonic, so that

the probability of classC1 grows asa grows and is precisely1
2

whena = 0. SinceP (C1|x) = 1
2

represents equal probability for both classes, this is the boundary along which we wish to make
decisions about class membership.

For the case of Gaussian class conditionals where both Gaussians have the same covariance,a
is a linear function ofx. In this case the classification probability can be written as

P (C1|x) =
1

1 + e−wTx−b
= g(wTx+ b) , (172)

or, if we augment the data vector with a 1 and the weight vectorwith b,

P (C1|x) =
1

1 + e−wTx
. (173)
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At this point, we can forget about the generative model (e.g., the Gaussian distributions) that we
started with, anduse this as our entire model.In other words, rather than learning a distribution
over each class, we learn onlythe conditional probability of y given x. As a result, we have
fewer parameters to learn since the number of parameters in logistic regression is linear in the
dimension of the input vector, while learning a Gaussian covariance requires a quadratic number
of parameters. With fewer parameters we can learn models more effectively with less data. On the
other hand, we cannot perform other tasks that we could with the generative model (e.g., sampling
from the model; classify data with noisy or missing measurements).

We can learn logistic regression with maximum likelihood. In particular, given data{xi, yi},
we minimize the negative log of:

p({xi, yi}|w, b) ∝ p({yi} | {xi},w, b)

=
∏

i

p(yi|xi,w, b)

=
∏

i:yi=C1

P (C1|xi)
∏

i:yi=C2

(1− P (C1|xi)) (174)

In the first step above we have assumed that the input featuresare independent of the weights in
the logistic regressor, i.e.,p({xi}) = p({xi}|w, b). So this term can be ignored in the likelihood
since it is constant with respect to the unknowns. In the second step we have assumed that the
input-output pairs are independent, so the joint likelihood is the product of the likelihoods for each
input-output pair.

The decision boundary for logistic regression is linear; in2D, it is a line. To see this, recall
that the decision boundary is the set of pointsP (C1|x) = 1/2. Solving forx gives the points
wTx+ b = 0, which is a line in 2D, or a hyperplane in higher dimensions.

Although this objective function cannot be optimized in closed-form, it is convex, which means
that it has a single minimum. Therefore, we can optimize it with gradient descent (or any other
gradient-based search technique), which will be guaranteed to find the global minimum.

If the classes are linearly separable, this approach will lead to very large values of the weights
w, since as the magnitude ofw tends to infinity, the functiong(a(x)) behaves more and more like
a step function and thus assigns higher likelihood to the data. This can be prevented by placing a
weight-decay prior onw: p(w) = G(w; 0, σ2).

Multiclass classification. Logistic regression can also be applied to multiclass classification, i.e.,
where we wish to classify a data point as belonging to one ofK classes. In this case, the probability
of data vectorx being in classi is:

P (Ci|x) =
e−wT

i x

∑K
k=1 e

−wT
k
x

(175)

You should be able to see that this is equivalent to the methoddescribed above in the two-class case.
Furthermore, it is straightforward to show that this is a sensible choice of probability:0 ≤ P (Ci|x),
and

∑

k P (Ck|x) = 1 (verify these for yourself).
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Figure 11: Classification boundary for logistic regression.

8.3 Artificial Neural Networks

Logistic regression works for linearly separable datasets, but may not be sufficient for more com-
plex cases. We can generalize logistic regression by replacing the linear functionwTx + b with
any other function. If we replace it with a neural network, weget:

P (C1|x) = g

(
∑

j

w
(1)
j g

(
∑

k

w
(2)
k,jxk + b

(2)
j

)

+ b(1)

)

(176)

This representation is no longer connected to any particular choice of class-conditional model; it
is purely a model of the class probability given the measurement.

8.4 K-Nearest Neighbors Classification

We can apply the KNN idea to classification as well. For class labels{−1, 1}, the classifier is:

ynew = sign




∑

i∈NK(x)

yi



 (177)

where

sign(z) =

{
−1 z ≤ 0
1 z > 0

(178)

Alternatively, we might take a weighted average of theK-nearest neighbors:

y = sign




∑

i∈NK(x)

w(xi)yi



 , w(xi) = e−||xi−x||2/2σ2

(179)
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Figure 12: For two classes and planar inputs, the decision boundary for a 1NN classififier (the
bold black curve) is a subset of the perpendicular bisectingline segments (green) between pairs of
neighbouring points (obtained with a Voronoi tesselation).

whereσ2 is an additional parameter to the algorithm.
For KNN the decision boundary will be a collections of hyperplane patches that are perpendic-

ular bisectors of pairs of points drawn from the two classes.As illustrated in Figure 12, this is a set
of bisecting line segments for 2D inputs. Figure 12, shows a simple case but it is not hard to imag-
ine that the decision surfaces can get very complex, e.g., ifa point from class 1 lies somewhere in
the middle of the points from class 2. By increasing the numberof nearest neighbours (i.e.,K) we
are effectively smoothing the decision boundary, hopefully thereby improving generalization.

8.5 Generative vs. Discriminative models

The classifiers described here illustrate a distinction between two general types of models in ma-
chine learning:

1. Generative models, such as the GCC, describe the complete probability of the datap(x, y).

2. Discriminative models, such as LR, ANNs, and KNN, describe the conditional probability
of the output given the input:p(y|x)

The same distinction occurs in regression and classification, e.g., KNN is a discriminative method
that can be used for either classification or regression.

The distinction is clearest when comparing LR with GCC with equal covariances, since they
are both linear classifiers, but the training algorithms aredifferent. This is because they have dif-
ferent goals; LR is optimized for classification performance, where as the GCC is a “complete”
model of the probability of the data that is then pressed intoservice for classification. As a conse-
quence, GCC may perform poorly with non-Gaussian data. Conversely, LR is not premised on any
particular form of distribution for the two class distributions. On the other hand, LR canonly be

Copyright c© 2011 Aaron Hertzmann and David Fleet 47



CSC 411 / CSC D11 Classification

−15 −10 −5 0 5

−15

−10

−5

0

5

 

 
class 1
class 2
decision boundary

Figure 13: In this example there are two classes, one with a small isotropic covariance, and one
with an anistropic covariance. One can clearly see that the data are linearly separable (i.e., a line
exists that correctly separates the input training samples). Despite this, LS regression does not
separate the training data well. Rather, the LS regression decision boundary produces 5 incorrectly
classified training points.

used for classification, whereas the GCC can be used for other tasks, e.g., to sample newx data, to
classify noisy inputs or inputs with outliers, and so on.

The distinctions between generative and discriminative models become more significant in
more complex problems. Generative models allow us to put more prior knowledge into how we
build the model, but classification may often involve difficult optimization ofp(y|x); discriminative
methods are typically more efficient and generic, but are harder to specialize to particular problems.

8.6 Classification by LS Regression

One tempting way to perform classification is with least-squares rgression. That is, we could treat
the class labelsy ∈ {−1, 1} as real numbers, and estimate the weights by minimizing

E(w) =
∑

i

(yi − xT
i w)2 , (180)

for labeled training data{xi, yi}. Given the optimal regression weights, one could then perform
regression on subsequent test inputs and use the sign of the output to determine the output class.

In simple cases this can perform well, but in general it will perform poorly. This is because the
objective function in linear regression measures the distance from the modeled class labels (which
can be any real number) to the true class labels, which may notprovide an accurate measure of how
well the model has classified the data. For example, a linear regression model will tend to produce
predicted labels that lie outside the range of the class labels for “extreme” members of a given
class (e.g. 5 when the class label is 1), causing the error to be measured as high even when the
classification (given, say, by the sign of the predicted label) is correct. In such a case the decision
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boundary may be shifted towards such an extreme case, potentially reducing the number of correct
classifications made by the model. Figure 13 demonstrates this with a simple example.

The problem arises from the fact that the constraint thaty ∈ (−1, 1) is not built-in to the model
(the regression algorithm knows nothing about it), and so wastes considerable representational
power trying to reproduce this effect. It is much better to build this constraint into the model.

8.7 Näıve Bayes

One problem with class conditional models, as described above, concerns the large number of
parameters required to learn the likelihood model, i.e., the distribution over the inputs conditioned
on the class. In Gaussian Class Conditional models, withd-dimensional input vectors, we need
to estimate the class mean and class covariance matrix for each class. The mean will be ad-
dimensional vector, but the number of unknowns in the covariance matrix grows quadratically
with d. That is, the covariance is ad× d matrix (although because it is symmetric we do not need
to estimate alld2 elements).

Näıve Bayes aims to simplify the estimation problem by assumingthat the different input
features (e.g., the different elements of the input vector), are conditionally independent. That is,
they are assumed to be independent when conditioned on the class. Mathematically, for inputs
x ∈ R

d, we express this as

p(x|C) =
d∏

i=1

p(xi|C) . (181)

With this assumption, rather than estimating oned-dimensional density, we instead estimated 1-
dimensional densities. This is important because each 1D Gaussian only has two parameters, its
mean and variance, both of which are scalars. So the model has2d unknowns. In the Gaussian
case, the Näıve Bayes model effectively replaces the generald×d covariance matrix by a diagonal
matrix. There ared entries along the diagonal of the covariance matrix; theith entry is the variance
of xi|C. This model is not as expressive but it is much easier to estimate.

8.7.1 Discrete Input Features

Up to now, we have looked at algorithms for real-valued inputs. We now consider the Naı̈ve Bayes
classification algorithm for discrete inputs. In discrete Näıve Bayes, the inputs are a discrete set
of “features”, and each input either has or doesn’t have eachfeature. For example, in document
classification (including spam filtering), a feature might be the presence or absence of a particular
word, and the feature vector for a document would be a list of which words the document does or
doesn’t have.

Each data vector is described by a list of discrete featuresF1:D = [F1, ..., FD]. Each featureFi

has a set of possible values that it can take; to keep things simple, we’ll assume that each feature
is binary: Fi ∈ {0, 1}. In the case of document classification, each feature might correspond to
the presence of a particular word in the email (e.g., ifF3 = 1, then the email contains the word
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“business”), or another attribute (e.g.,F4 = 1 might mean that the mail headers appear forged).
Similarly, a classifier to distinguish news stories betweensports and financial news might be based
on particular words and phrases such as “team,” “baseball,”and “mutual funds.”

To understand the complexity of discrete class conditionalmodels in general (i.e., without using
the Näıve Bayes model), consider the distribution over 3 inputs, for classC = 1, i.e.,P (F1:3 |C =
1). (There will be another model forC = 0, but for our little thought experiment here we’ll just
consider the model forC = 1.) Using basic rules of probability, we find that

P (F1:3 |C = 1) = P (F1 |C = 1, F2, F3) P (F2, F3 |C = 1)

= P (F1 |C = 1, F2, F3) P (F2 |C = 1, F3) P (F3 |C = 1) (182)

Now, givenC = 1 we know thatF3 is either 0 or 1 (ie. it is a coin toss), and to model it we simply
want to know the probabilityP (F3 = 1 |C = 1). Of course the probability thatF3 = 0 is simply
1 − P (F3 = 1 |C = 1). In other words, with one parameter we can model the third factor above,
P (F3 |C = 1).

Now consider the second factorP (F2 |C = 1, F3). In this case, becauseF2 depends onF3,
and there are two possible states ofF3, there are two distributions we need to model, namely
P (F2 |C = 1, F3 = 0) andP (F2 |C = 1, F3 = 1). Acordingly, we will need two parameters, one
for P (F2 = 1 |C = 1, F3 = 0) and one forP (F2 = 1 |C = 1, F3 = 1). Using the same logic, to
modelP (F1 |C = 1, F2, F3) will require one model parameter for each possible setting of (F2, F3),
and of course there are22 such settings. ForD-dimensional binary inputs, there areO(2D−1)
parameters that one needs to learn. The number of parametersrequired grows prohibitively large
asD increases.

The Näıve Bayes model, by comparison, only haveD parameters to be learned. The assump-
tion of Näıve Bayes is that the feature vectors are all conditionally independent given the class. The
independence assumption is often very naı̈ve, but yet the algorithm often works well nonetheless.
This means that the likelihood of a feature vector for a particular classj is given by

P (F1:D|C = j) =
∏

i

P (Fi|C = j) (183)

whereC denotes a classC ∈ {1, 2, ...K}. The probabilitiesP (Fi|C) are parameters of the model:

P (Fi = 1|C = j) = ai,j (184)

We must also define class priorsP (C = j) = bj.
To classify a new feature vector using this model, we choose the class with maximum proba-

bility given the features. By Bayes’ Rule this is:

P (C = j|F1:D) =
P (F1:D|C = j)P (C = j)

P (F1:D)
(185)

=
(
∏

i P (Fi|C = j))P (C = j)
∑K

ℓ=1 P (F1:D, C = ℓ)
(186)

=

(∏

i:Fi=1 ai,j
∏

i:Fi=0(1− ai,j)
)
bj

∑K
ℓ=1

(∏

i:Fi=1 ai,ℓ
∏

i:Fi=0(1− ai,ℓ)
)
bℓ

(187)
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If we wish to find the class with maximum posterior probability, we need only compute the numer-
ator. The denominator in (187) is of course the same for all classesj. To compute the denominator
one simply divides the numerators for each class by their sum.

The above computation involves the product of many numbers,some of which might be quite
small. This can lead to underflow. For example, if you take theproducta1a2...aN , and allai << 1,
then the computation may evaluate to zero in floating point, even though the final computation
after normalization should not be zero. If this happens for all classes, then the denominator will be
zero, and you get a divide-by-zero error, even though, mathematically, the denominator cannot be
zero. To avoid these problems, it is safer to perform the computations in the log-domain:

αj =

(
∑

i:Fi=1

ln ai,j +
∑

i:Fi=0

ln(1− ai,j)

)

+ ln bj (188)

γ = min
j

αj (189)

P (C = j|F1:D) =
exp(αj − γ)
∑

ℓ exp(αℓ − γ)
(190)

which, as you can see by inspection, is mathematically equivalent to the original form, but will not
evaluate to zero for at least one class.

8.7.2 Learning

For a collection ofN training vectorsFk, each with an associated class labelCk, we can learn the
parameters by maximizing the data likelihood (i.e., the probability of the data given the model).
This is equivalent to estimating multinomial distributions (in the case of binary features, binomial
distributions), and reduces to simple counting of features.

Suppose there areNk examples of each class, andN examples total. Then the prior estimate is
simply:

bk =
Nk

N
(191)

Similarly, if classk hasNi,k examples whereFi = 1, then

ai,k =
Ni,k

Nk

(192)

With large numbers of features and small datasets, it is likely that some features will never be
seen for a class, giving a class probability of zero for that feature. We might wish to regularize, to
prevent this extreme model from occurring. We can modify thelearning rule as follows:

ai,k =
Ni,k + α

Nk + 2α
(193)

for some small valueα. In the extreme case where there are no examples for which feature i is
seen for classk, the probabilityai,k will be set to1/2, corresponding to no knowledge. As the
number of examplesNk becomes large, the role ofα will become smaller and smaller.
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In general, given in a multinomial distribution with a largenumber of classes and a small
training set, we might end up with estimates of prior probability bk being zero for some classes.
This might be undesirable for various reasons, or be inconsistent with our prior beliefs. Again, to
avoid this situation, we can regularize the maximum likelihood estimator with our prior believe
that all classes should have a nonzero probability. In doingso we can estimate the class prior
probabilities as

bk =
Nk + β

N +Kβ
(194)

for some small value ofβ. When there are no observations whatsoever, all classes are given
probability1/K. When there are observations the estimated probabilities will lie betweenNk/N
and1/K (converging toNk/N asN →∞).

Derivation. Here we derive just the per-class probability assuming two classes, ignoring the
feature vectors; this case reduces to estimating a binomialdistribution. The full estimation can
easily be derived in the same way.

Suppose we observeN examples of class0, andM examples of class1; what isb0, the proba-
bility of observing class0? Using maximum likelihood estimation, we maximize:

∏

i

P (Ci = k) =

(
∏

i:Ci=0

P (Ci = 0)

)(
∏

i:Ci=1

P (Ci = 1)

)

(195)

= bN0 b
M
1 (196)

Furthermore, in order for the class probabilities to be a valid distribution, it is required thatb0+b1 =
1, and thatbk ≥ 0. In order to enforce the first constraint, we setb1 = 1− b0:

∏

i

P (Ci = k) = bN0 (1− b0)
M (197)

The log of this is:
L(b0) = N ln b0 +M ln(1− b0) (198)

To maximize, we compute the derivative and set it to zero:

dL

db0
=

N

b0
− M

1− b0
= 0 (199)

Multiplying both sides byb0(1− b0) and solving gives:

b∗0 =
N

N +M
(200)

which, fortunately, is guaranteed to satisfy the constraint b0 ≥ 0.
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9 Gradient Descent

There are many situations in which we wish to minimize an objective function with respect to a
parameter vector:

w∗ = argmin
w

E(w) (201)

but no closed-form solution for the minimum exists. In machine learning, this optimization is
normally a data-fitting objective function, but similar problems arise throughout computer science,
numerical analysis, physics, finance, and many other fields.

The solution we will use in this course is calledgradient descent. It works for any differen-
tiable energy function. However, it does not come with many guarantees: it is only guaranteed to
find a local minima in the limit of infinite computation time.

Gradient descent is iterative. First, we obtain an initial estimatew1 of the unknown parameter
vector. How we obtain this vector depends on the problem; oneapproach is to randomly-sample
values for the parameters. Then, from this initial estimate, we note that the direction of steepest
descent from this point is to follow the negative gradient−∇E of the objective function evaluated
atw1. The gradient is defined as a vector of derivatives with respect to each of the parameters:

∇E ≡






dE
dw1
...

dE
dwN




 (202)

The key point is that, if we follow the negative gradient direction in a small enough distance,the
objective function is guaranteed to decrease. (This can be shown by considering a Taylor-series
approximation to the objective function).

It is easiest to visualize this process by consideringE(w) as a surface parameterized byw; we
are trying to finding the deepest pit in the surface. We do so bytaking small downhill steps in the
negative gradient direction.

The entire process, in its simplest form, can be summarized as follows:

pick initial valuew1

i← 1
loop

wi+1 ← wi − λ∇E|wi

i← i+ 1
endloop

Note that this process depends on three choices: the initialization, the termination conditions,
and the step-sizeλ. For the termination condition, one can run until a preset number of steps has
elapsed, or monitor convergence, i.e., terminate when

|E(wi+1)− E(wi)| < ǫ (203)
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for some preselected constantǫ, or terminate when either condition is met.
The simplest way to determine the step-sizeλ is to pick a single value in advance, and this

approach is often taken in practice. However, it is somewhatunreliable: if we choose step-size too
large, than the objective function might actually get worseon some steps; if the step-size is too
small, then the algorithm will take a very long time to make any progress.

The solution is to useline search, namely, at each step, to search for a step-size that reduces
the objective function as much as possible. For example, a simple gradient search with line search
procedure is:

pick initial valuew1

i← 1
loop

∆← ∇E|wi

λ← 1
while E(wi − λ∆) ≥ E(wi)

λ← λ
2

end while
wi+1 ← wi − λ∆
i← i+ 1

end loop

A more sophisticated approach is to reuse step-sizes between iterations:

pick initial valuew1

i← 1
λ← 1
loop

∆← ∇E|wi

λ← 2λ
while E(wi − λ∆) ≥ E(wi)

λ← λ
2

end while
wi+1 ← wi − λ∆
i← i+ 1

end loop
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There are many, many more advanced methods for numerical optimization. For unconstrained
optimization, I recommend the L-BFGS-B library, which is available for download on the web. It
is written in Fortran, but there are wrappers for various languages out there. This method will be
vastly superior to gradient descent for most problems.

9.1 Finite differences

The gradient of any function can be computed approximately by numerical computations. This
is useful for debugging your gradient computations, and in situations where it’s too difficult or
tedious to implement the complete derivative. The numerical approximation follows directly from
the definition of derivative:

dE

dw

∣
∣
∣
∣
w

≈ E(w + h)− E(w)

h
(204)

for some suitably small stepsizeh. Computing this value for each element of the parameter vector
gives you an approximate estimate of the gradient∇E.

It is strongly recommend that you use this method to debug your derivative computations; many
errors can be detected this way! (This test is analogous to the use of “assertions”).

Aside:
The termbackpropagation is sometimes used to refer to an efficient algorithm for
computing derivatives for Artificial Neural Networks. Confusingly, this term is also
used to refer to gradient descent (without line search) for ANNs.
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10 Cross Validation

Suppose we must choose between two possible ways to fit some data. How do we choose between
them? Simply measuring how well they fit they data would mean that we always try to fit the
data as closely as possible — the best method for fitting the data is simply to memorize it in big
look-up table. However, fitting the data is no guarantee thatwe will be able togeneralizeto new
measurements. As another example, consider the use of polynomial regression to model a function
given a set of data points. Higher-order polynomials will always fit the data as well or better than
a low-order polynomial; indeed, anN − 1 degree polynomial will fitN data points exactly (to
within numerical error). So just fitting the data as well as wecan usually produces models with
many parameters, and they are not going to generalize to new inputs in almost all cases of interest.

The general solution is to evaluate models by testing them ona new data set (the “test set”),
distinct from the training set. This measures howpredictive the model is: Is it useful in new
situations? More generally, we often wish to obtain empirical estimates of performance. This
can be useful for finding errors in implementation, comparing competing models and learning
algorithms, and detecting over or under fitting in a learned model.

10.1 Cross-Validation

The idea of empirical performance evaluation can also be used to determine model parameters that
might otherwise to hard to determine. Examples of such modelparameters include the constantK
in the K-Nearest Neighbors approach or theσ parameter in the Radial Basis Function approach.

Hold-out Validation. In the simplest method, we first partition our data randomly into a “training
set” and a “validation set.” LetK be the unknown model parameter. We pick a set of range of
possible values forK (e.g.,K = 1, ..., 5). For each possible value ofK, we learn a model with
thatK on the training set, and compute that model’s error on the validation set. For example, the
error on validation set might be just the squared-error,

∑

i ||yi − f(xi)||2. We then pick theK
which has the smallest validation set error. The same idea can be applied if we have more model
parameters (e.g., theσ in KNN), however, we must try many possible combinations ofK andσ to
find the best.

There is a significant problem with this approach: we use lesstraining data when fitting the
other model parameters, and so we will only get good results if our initial training set is rather
large. If large amounts of data are expensive or impossible to obtain this can be a serious problem.

N -Fold Cross Validation. We can use the data much more efficiently byN -fold cross-validation.
In this approach, we randomly partition the training data into N sets of equal size and run the
learning algorithmN times. Each time, a different one of theN sets is deemed the test set, and
the model is trained on the remainingN − 1 sets. The value ofK is scored by averaging the error
across theN test errors. We can then pick the value ofK that has the lowest score, and then learn
model parameters for thisK.
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A good choice forN is N = M − 1, whereM is the number of data points. This is called
Leave-one-out cross-validation.

Issues with Cross Validation. Cross validation is a very simple and empirical way of comparing
models. However, there are a number of issues to keep in mind:

• The method can be very time-consuming, since many training runs may be needed. For
models with more than a few parameters, cross validation maybe too inefficient to be useful.

• Because a reduced dataset is used for training, there must be sufficient training data so that
all relevant phenomena of the problem exist in both the training data and the test data.

• It is safest to use a random partition, to avoid the possibility that there are unmodeled cor-
relations in the data. For example, if the data was collectedover a period of a week, it is
possible that data from the beginning of the week has a different structure than the data later
in the week.

• Because cross-validation finds a minimum of an objective function, over- and under-fitting
may still occur, although it is much less likely. For example, if the test set is very small, it
may prefer a model that fits the random pattern in the test data.

Aside:
Testing machine learning algorithms is very much like testing scientific theories:
scientific theories must be predictive, or, that is, falsifiable. Scientific theories must
also describe plausible models of reality, whereas machinelearning methods need
only be useful for making decisions. However, statistical inference and learning first
arose as theories of scientific hypothesis testing, and remain closely related today.

One of the most famous examples is the case of planetary motion. Prior to Newton,
astronomers described the motion of the planets through onerous tabulation of
measurements — essentially, big lookup tables. These tables were not especially
predictive, and needed to updated constantly. Newton’s equations of motion —
which could describe the motion of the planets with only a fewsimple equations —
were vastly simpler and yet also more effective at predicting motion, and became the
accepted theories of motion.

However, there remained some anomolies. Two astronomers, John Couch Adams
and Urbain Le Verier, thought that these discrepancies might be due to a new,
as-yet-undiscovered planet. Using techniques similar to modern regression, but with
laborious hand-calculation, they independently deduced the position, mass, and
orbit of the new planet. By observing in the predicted directions, astronomers were
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indeed able to observe a new planet, which was later named Neptune. This provided
powerful validation for their models.

Incidentally, Adams was an undergraduate working alone when he began his
investigations.

Reference: http://en.wikipedia.org/wiki/Discoveryof Neptune
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11 Bayesian Methods

So far, we have considered statistical methods which selecta single “best” model given the data.
This approach can have problems, such as over-fitting when there is not enough data to fully con-
strain the model fit. In contrast, in the “pure” Bayesian approach, as much as possible we only com-
pute distributions over unknowns; we never maximize anything. For example, consider a model
parameterized by some weight vectorw, and some training dataD that comprises input-output
pairsxi, yi, for i = 1...N . The posterior probability distribution over the parameters, conditioned
on the data is, using Bayes’ rule, given by

p(w|D) = p(D|w)p(w)

p(D) (205)

The reason we want to fit the model in the first place is to allow us to make predictions with future
test data. That is, given some future inputxnew , we want to use the model to predictynew . To
accomplish this task through estimation in previous chapters, we used optimization to find ML or
MAP estimates ofw, e.g., by maximizing (205).

In a Bayesian approach, rather than estimation a single best value forw, we computer (or
approximate) the entire posterior distributionp(w|D). Given the entire distribution, we can still
make predictions with the following integral:

p(ynew |D, xnew ) =

∫

p(ynew ,w|D, xnew )dw

=

∫

p(ynew |w,D, xnew ) p(w|D, xnew )dw (206)

The first step in this equality follows from the Sum Rule. The second follows from the Product
Rule. Additionally, the outputsynew and training dataD are independent conditioned onw, so
p(ynew |w,D) = p(ynew |w). That is, givenw, we have all available information about making
predictions that we could possibly get from the training dataD (according to the model). Finally,
givenD, it is safe to assume thatxnew , in itself, provides no information aboutW. With these
assumptions we have the following expression for our predictions:

p(ynew |D, xnew ) =

∫

p(ynew |w, xnew ) p(w|D)dw (207)

In the case of discrete parametersw, the integral becomes a summation.
The posterior distributionp(ynew |D, xnew ) tells us everything there is to know about our beliefs

about the new valueynew . There are many things we can do with this distribution. For example,
we could pick the most likely prediction, i.e.,argmaxy p(ynew |D, xnew ), or we could compute the
variance of this distribution to get a sense of how much confidence we have in the prediction. We
could sample from this distribution in order to visualize the range of models that are plausible for
this data.
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The integral in (207) is rarely easy to compute, often involving intractable integrals or expo-
nentially large summations. Thus, Bayesian methods often rely on numerical approximations, such
as Monte Carlo sampling; MAP estimation can also be viewed as an approximation. However, in
a few cases, the Bayesian computations can be done exactly, asin the regression case discussed
below.

11.1 Bayesian Regression

Recall the statistical model used in basis-function regression:

y = b(x)Tw + n, n ∼ N (0, σ2) (208)

for a fixed set of basis functionsb(x) = [b1(x), ...bM(x)]T .
To complete the model, we also need to define a “prior” distribution over the weightsw (de-

notedp(w)) which expresses what we believe aboutw, in absence of any training data. One might
be tempted to assign a constant density over all possible weights. There are several problems with
this. First, the result cannot be a valid probability distribution since no choice of the constant
will give the density a finite integral. We could, instead, choose a uniform distribution with finite
bounds, however, this will make the resulting computationsmore complex.

More importantly, a uniform prior is often inappropriate; we often find that smoother functions
are more likely in practice (at least for functions that we have any hope in learning), and so we
should employ a prior that prefers smooth functions. A choice of prior that does so is a Gaussian
prior:

w ∼ N(0, α−1I) (209)

which expresses a prior belief that smooth functions are more likely. This prior also has the ad-
ditional benefit that it will lead to tractable integrals later on. Note that this prior depends on a
parameterα; we will see later in this chapter how this “hyperparameter”can be determined auto-
matically as well.

As developed in previous chapters on regression, the data likelihood function that follows from
the above model definition (with the input and output components of the training dataset denoted
x1:N andy1:N ) is

p(y1:N |x1:N ,w) =
N∏

i=1

p(yi|xi,w) (210)

and so the posterior is:

p(w|x1:N , y1:N ) =

(
∏N

i=1 p(yi|xi,w)
)

p(w)

p(y1:N |x1:N )
(211)
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In the negative log-domain, using Equations (208) and (209), the model is given by:

− ln p(w|x1:N , y1:N ) = −
∑

i

ln(p(yi|xi,w))− ln(p(w)) + ln(p(y1:N |x1:N ))

=
1

2σ2

∑

i

(yi − f(xi))
2 +

α

2
||w||2 + constants

As above in the regression notes, it is useful if we collect the training outputs into a single vector,
i.e.,y = [y1, ..., yN ]

T , and we collect the all basis functions evaluated at each of the inputs into a
matrixB with elementsBi,j = bj(xi). In doing so we can simplify the log posterior as follows:

− ln p(w|x1:N , y1:N ) =
1

2σ2
||y −Bw||2 + α

2
||w||2 + constants

=
1

2σ2
(y −Bw)T (y −Bw) +

α

2
wTw + constants

=
1

2
wT (BTB/σ2 + αI)w − 1

2
yTBw/σ2 − 1

2
wTBTy/σ2 + constants

=
1

2
(w − w̄)TK−1(w − w̄) + constants (212)

where

K =
(
BTB/σ2 + αI

)−1
(213)

w̄ = KBTy/σ2 (214)

(The last step of the derivation uses the methods ofcompleting the square. It is easiest to verify
the last step by going backwards, that is by multiplying out(w − w̄)TK−1(w − w̄).)

The derivation above tells us that the posterior distribution over the weight vector is a multi-
dimensional Gaussian with mean̄w and covariance matrixK, i.e.,

p(w|x1:N , y1:N ) = G(w; w̄,K) (215)

In other words, our belief aboutw once we have seen the data is specified by a Gaussian density.
We believe that̄w is the most probable value forw, but we have uncertainty about this estimate, as
determined by the covarianceK. The covariance expresses our uncertainty about these parameters.
If the covariance is very small, then we have a lot of confidence in the MAP estimate. The nature
of the posterior distribution is illustrated visually in Figure 14. Note that̄w is the MAP estimate
for regression, since it maximizes the posterior.

Prediction. For a new data pointxnew , the predictive distribution forynew is given by:

p(ynew |xnew ,D) =

∫

p(ynew |xnew ,D,w)p(w|D)dw

= N (ynew ;b(xnew )
T w̄, σ2 + b(xnew )

TKb(xnew ))
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Figure 14: Iterative posterior computation for a linear regression model:y = w0x + w1. The top
row shows the prior distribution, and several fair samples from the prior distribution. The second
row shows the likelihood overw after observing a single data point (i.e., anx, y pair), along with
the resulting posterior (the normalized product of the likelihood and the prior), and then several fair
samples from the posterior. The third row shows the liklihood when a new observation is added to
the previous observation, followed by the corresponding posterior and random samples from the
posterior. The final row shows the result of 20 observations.
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The predictive distribution may be viewed as a function fromxnew to a distribution over values of
ynew . An example of this for an RBF model is given in Figure 15.

This is the Bayesian way to do regression. To predict a new value ynew for an inputxnew ,
we don’t estimate a single modelw. Instead we average over all possible models, weighting the
different models according to their posterior probability.

11.2 Hyperparameters

There are often implicit parameters in our model that we holdfixed, such as the covariance con-
stants in linear regression, or the parameters that govern the prior distribution over the weights.
These are usually called “hyperparameters.” For example, in the RBF model, the hyperparameters
constitute the parametersα, σ2, and the parameters of the basis functions (e.g., the width of the
basis functions). Thus far we have assumed that the hyperparameters were “known” (which means
that someone must set them by hand), or estimated by cross-validation (which has a number of pit-
falls, including long computation times, especially for large numbers of hyperparameters). Instead
of either of these approaches, we may apply the Bayesian approach in order to directly estimate
these values as well.

To find a MAP estimate for theα parameter in the above linear regression example we compute:

α∗ = argmax ln p(α|x1:N , y1:N ) (216)

where

p(α|x1:N , y1:N ) =
p(y1:N |x1:N , α)p(α)

p(y1:N |x1:N )
(217)

and

p(y1:N |x1:N , α) =

∫

p(y1:N ,w|x1:N , α)dw

=

∫

p(y1:N |x1:N ,w, α)p(w|α)dw

=

∫
(
∏

i

p(yi|xi,w, α)

)

p(w|α)dw

For RBF regression, this objective function can be computed inclosed-form. However, depend-
ing on the form of the prior over the hyperparameters, it is often necessary to use some form of
numerical optimization, such as gradient descent.

11.3 Bayesian Model Selection

How do we choose which model to use? For example, we might liketo automatically choose the
form of the basis functions or the number of basis functions.Cross-validation is one approach, but
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Figure 15: Predictive distribution for an RBF model (with 9 basis functions), trained on noisy
sinusoidal data. The green curve is the true underlying sinusoidal function. The blue circles are
data points. The red curve is the mean prediction as a function of the input. The pink region
represents 1 standard deviation. Note how this region shrinks close to where more data points are
observed.(Figure fromPattern Recognition and Machine Learningby Chris Bishop.)
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it can be expensive, and, more importantly, inaccurate if small amounts of data are available. In
general one intuition is that we want to choose simple modelsover complex models to avoid over-
fitting,insofar as they provide equivalent fits to the data. Below we consider a Bayesian approach
to model selection which provides just such a bias to simple models.

The goal of model selection is to choose the best model from some set of candidate models
{Mi}Li=1 based on some observed dataD. This may be done either with a maximum likelihood
approach (picking the model that assigns the largest likelihood to the data) or a MAP approach
(picking the model with the highest posterior probability). If we take a uniform prior over models
(i.e. p(Mi) is a constant for alli = 1...L) then these approaches can be seen to be equivalent since:

p(Mi|D) =
p(D|Mi)p(Mi)

p(D)
∝ p(D|Mi)

In practice a uniform prior over models may not be appropriate, but the design of suitable priors
in these cases will depend significantly on one’s knowledge of the application domain. So here we
will assume a uniform prior over models and focus onp(D|Mi).

In some sense, whenever we estimate a parameter in a model we are doing model selection
where the family of models is indexed by the different valuesof that parameter. However the term
“model selection” can also mean choosing the best model fromsome set of parametric models
that are parameterized differently. A good example of this would be choosing the number of basis
functions to use in an RBF regression model. Another simple example is choosing the polynomial
degree for polynomial regression.

The key quantity for Bayesian model selection isp(D|Mi), often called themarginal data
likelihood. Given two models,M1 andM2, we will choose the modelM1 whenp(D|M1) >
p(D|M1). To specify these quantities in more detail we need to take the model parameters into
account. Different models may have different numbers of parameters (e.g., polynomials of dif-
ferent degrees), or entirely different parameterizations(e.g., RBFs and neural networks). In what
follows, letwi be the vector of parameters for modelMi. In the case of regression, for example,
wi might comprise the regression weights and hyper-parameters like the weight on the regularizer.

The extent to which a model explains (or fits) the data dependson the choice of the right
parameters. Using the sum rule and Bayes’ rule it follows we can write the marginal data likelihood
as

p(D|Mi) =

∫

p(D,wi|Mi)dwi =

∫

p(D|wi,Mi)p(wi|Mi)dwi (218)

This tells us that the ideal model is one that assigns high prior probabilityp(wi|Mi) to every weight
vector that also yields a high value of the likelihoodp(D|wi,Mi) (i.e., to parameter vectors that
fit the data well). One can also recognize that the product of the data likelihood and the prior in
the integrand is proportional to the posterior over the parameters that we previously maximized to
find MAP estimates of the model parameters.8

8This is the same quantity we compute when optimizing hyper-parameters (which is a type of model selection) and
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Typically, a “complex model” that assigns a significant posterior probability mass to complex
data will be able to assign significantly less mass to simplerdata than a simpler model would. This
is because the integral of the probability mass must sum to 1 and so a complex model will have
less mass to spend on simpler data. Also, since a complex model will require higher-dimensional
parameterizations, mass must be spread over a higher-dimensional space and hence more thinly.
This phenomenon is visualized in Figure 17.

As an aid to intuition to explain why this marginal data likelihood helps us choose good models,
we consider a simple approximation to the marginal data likelihood p(D|Mi) (depicted in Figure
16 for a scalar parameterw). First, as is common in many problems of interest, the posterior
distribution over the model parametersp(wi|D,Mi) ∝ p(D|wi,Mi)p(wi|Mi) to have a strong
peak at the MAP parameter estimatewMAP

i . Accordingly we can approximate the integral in
Equation (218) as the height of the peak, i.e.,p(D|wMAP

i ,Mi)p(w
MAP
i |Mi), multiplied by its

width∆w
posterior
i .
∫

p(D|wi,Mi)p(wi|Mi)dwi ≈ p(D|wMAP
i ,Mi) p(w

MAP
i |Mi)∆w

posterior
i

We then assume that the prior distribution over parametersp(wi|Mi) is a relatively broad uniform
with width∆w

prior
i , sop(wi) ≈ 1

∆w
prior
i

. This yields a further approximation:

∫

p(D|wi,Mi)p(wi|Mi)dwi ≈
p(D|wMAP

i ,Mi)∆w
posterior
i

∆w
prior
i

Taking the logarithm, this becomes

ln p(D|wMAP
i ,Mi) + ln

∆w
posterior
i

∆w
prior
i

Intuitively, this approximation tells us that models with wider prior distributions on the param-
eters will tend to assign less likelihood to the data becausethe wider prior captures a larger variety
of data (so the density is spread thinner over the data-space). Similarly, models that have a very
narrow peak around their modes are generally less preferable because they assign a lower prob-
ability mass to the surrounding area (and so a slightly perturbed setting of the parameters would
provide a poor fit to the data, suggesting that over-fitting has occurred).

From another perspective, note that in most cases of interest we can assume that∆w
posterior
i <

∆w
prior
i . I.e., the posterior width will be less than the width of the prior. The log ratio is maximal

when the prior and posterior widths are equal. For example, acomplex model with many parame-
ters, or a a very broad prior over the parameters will necessarily assign a small probability to any
single value (including those under the posterior peak). A simpler model will assign a higher prior

also corresponds to the denominator “p(D)” in Bayes’ rule for finding the posterior probability of a particular setting
of the parameterswi. Note that above we generally wrotep(D) and notp(D|Mi) because we were only considering
a single model, and so it was not necessary to condition on it.
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∆wposterior

∆wprior

wMAP w

Figure 16: A visualization of the width-based evidence approximation.(Figure fromPattern Recog-
nition and Machine Learningby Chris Bishop.)

probability to the useful parameter values (ie those under the posterior peak). When the model is
too simple, then the likelihood term in the integrand will beparticularly high and therefore lowers
the marginal data likelihood. So, as models become more complex the data likelihood increasingly

fits the data better. But as the models become more and more complex the log ratioln ∆w
posterior
i

∆w
prior
i

acts as a penalty on unnecessarily complex models.
By selecting a model that assigns the highest posterior probability to the data we are automat-

ically balancing model complexity with the ability of the model to capture the data. This can be
seen as the mathematical realization of Occam’s Razor.

Model averaging. To be fully Bayesian, arguably, we shouldn’t select a single “best” model but
should instead combine estimates from all models accordingto their respective posterior probabil-
ities:

p(ynew |D, xnew ) =
∑

i

p(ynew |Mi,D, xnew ) p(Mi|D) (219)

but this is often impractical and so we resort to model selection instead.
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p(D)

DD0

M1

M2

M3

Figure 17: The x-axis is data complexity from simplest to most complex, and modelsMi are
indexed in order of increasing complexity. Note that in thisexampleM2 is the best model choice
for dataD0 since it simultaneously is complex enough to assign mass toD0 but not so complex
that it must spread its mass too thinly.(Figure fromPattern Recognition and Machine Learningby Chris
Bishop.)
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12 Monte Carlo Methods

Monte Carlo is an umbrella term referring to a set of numericaltechniques for solving one or both
of these problems:

1. Approximating expected values that cannot be solved in closed-form

2. Sampling from distributions for which is a simple sampling algorithm is not available.

Recall that expectation of a functionφ(x) of a continuous variablex with respect to a distribution
p(x) is defined as:

Ep(x)[φ(x)] ≡
∫

p(x)φ(x)dx (220)

Monte Carlo methods approximate this integral by drawingN samples fromp(x)

xi ∼ p(x) (221)

and then approximating the integral by the weighted average:

Ep(x)[φ(x)] ≈
1

N

N∑

i=1

φ(xi) (222)

Estimator properties. This estimate is unbiased:

Ep(x1:N )

[

1

N

∑

i

φ(xi)

]

=
1

N

∑

i

Ep(xi)[φ(xi)] =
1

N
NEp(x)[φ(x)] = Ep(x)[φ(x)] (223)

Furthermore, the variance of this estimate is inversely proportional to the number of samples:

varp(x1:N )

[

1

N

∑

i

φ(xi)

]

=
1

N2

∑

i

varp(x1:N )[φ(xi)] =
1

N2
Nvarp(xi)[φ(xi)] =

1

N
varp(x)[φ(x)]

(224)
Hence, the more samples we get, the better our estimate will be; in the limit, the estimator will
converge to the true value.

Dealing with unnormalized distributions. We often wish to compute the expected value of a
distribution for which evaluating the normalization constant is difficult. For example, the posterior
distribution over parametersw given dataD is:

p(w|D) =
p(D|w)p(w)

p(D)
(225)
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The posterior mean and covariance (w̄ = E[w] andE[(w − w̄)(w − w̄)T ]) can be useful to
understand this posterior, i.e., what we believe the parameter values are “on average,” and how
much uncertainty there is in the parameters. The numerator of p(w|D) is typically easy to compute,
butp(D) entails an integral which is often intractable, and thus must be handled numerically.

Most generally, we can write the problem as computing the expected value with respect to a
distributionp(x) defined as

p(x) ≡ 1

Z
P ∗(x), Z =

∫

P ∗(x)dx (226)

Monte Carlo methods will allow us to handle distributions of this form.

12.1 Sampling Gaussians

We begin with algorithms for sampling from a Gaussian distribution.
For the simple 1-dimensional case,x ∼ N (0, 1), there is well known algorithm called the

Box-Muller Method that is based on an approach called rejection sampling. It is implemented in
Matlab in the commandrandn.

For a general 1D Gaussian,x ∼ N (µ, σ2), we sample a variablez ∼ N (0, 1), and then set
x = σz + µ. You should be able to show thatx has the desired mean and variance.

For the multi-dimensional case,x ∼ N (0, I), each element is independent and Gaussian:
xi ∼ N (0, 1) and so each element can be sampled withrandn.

To sample from a Gaussian with general mean vectorµ and variance matrixΣ we first sample
z ∼ N (0, I), and then setx = Lz + µ, whereΣ = LLT . We can computeL from Σ by the
Cholesky Factorization ofΣ, which must be positive definite. Then we have

E[x] = E[Lz+ µ] = LE[z] + µ = µ (227)

and
E[(z− µ)(z− µ)T ] = E[Lz(Lz)T ] = LE[zzT ]LT = LLT = Σ (228)

12.2 Importance Sampling

In some situations, it may be difficult to sample from the desired distributionp(x); however, we
can sample from a similar distributionq(x). Importance sampling is a technique that allows one to
approximate expectation with respect top(x) by sampling fromq(x). The only requirement onq
is that it have the same support asp, i.e.,q is nonzero everywhere thatp is nonzero.

Importance sampling is based on the following equality:

Eq(x)

[
p(x)

q(x)
φ(x)

]

=

∫
p(x)

q(x)
φ(x)q(x)dx (229)

=

∫

φ(x)p(x)dx (230)

= Ep(x) [φ(x)] (231)
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In other words, we can compute the desired expectation by sampling valuesxi from q(x), and then
computing

Eq

[
p(x)

q(x)
φ(x)

]

≈ 1

N

∑

i

p(xi)

q(xi)
φ(xi) (232)

It often happens thatp and/orq are known only up to multiplicative constants. That is,

p(x) ≡ 1

Zp

P ∗(x) (233)

q(x) ≡ 1

Zq

Q∗(x) (234)

whereP ∗ andQ∗ are easy to evaluate but the constantsZp andZq are not.
Then we have:

Ep(x)[φ(x)] =

∫ 1
Zp
P ∗(x)

1
Zq
Q∗(x)

φ(x)q(x)dx =
Zq

Zp

Eq(x)

[
P ∗(x)

Q∗(x)
φ(x)

]

(235)

and so it remains to approximateZq

Zp
. If we substituteφ(x) = 1, the above formula states that

Zq

Zp

Eq(x)

[
P ∗(x)

Q∗(x)

]

= 1 (236)

and soZp

Zq
= Eq(x)[

P ∗(x)
Q∗(x)

]. Thus we have:

Ep(x)[φ(x)] =
Eq(x)

[
P ∗(x)
Q∗(x)

φ(x)
]

Eq(x)

[
P ∗(x)
Q∗(x)

] (237)

Hence, the importance sampling algorithm is:

1. SampleN valuesxi ∼ q(xi)

2. Compute

wi =
P ∗(xi)

Q∗(xi)
(238)

3. Estimate the expected value

E[φ(x)] ≈
∑

i wiφ(xi)
∑

i wi

(239)

The importance sampling algorithm will only work well whenq(x) is sufficiently similar to the
functionp(x)|φ(x)|. Put more concretely, the variance of the estimator grows asthe dissimilarity
betweenq(x) andp(x)|φ(x)| grows (and is minimized when they are equal). An alternativeis to
use the MCMC algorithm to draw samples directly fromp(x), as described below.
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p(x) q(x)
φ(x)

x

Figure 18: Importance sampling may be used to sample relatively complicated distributions like
this bimodalp(x) by instead sampling simpler distributions like this unimodal q(x). Note that in
this example, sampling fromq(x) will produce many samples that will be given a very low weight
sinceq(x) has a lot of mass wherep(x) is near zero (in the center of the plot). On the other hand,
q(x) has ample mass around the two modes ofp(x) and so it is a relatively good choice. Ifq(x) had
very little mass around one of the modes ofp(x), the estimate given by importance sampling would
have a very high variance (unless|φ(x)| was small enough there to compensate for the difference).
(Figure fromPattern Recognition and Machine Learningby Chris Bishop.)

Copyright c© 2011 Aaron Hertzmann and David Fleet 72



CSC 411 / CSC D11 Monte Carlo Methods

12.3 Markov Chain Monte Carlo (MCMC)

MCMC is a very general algorithm for sampling from any distribution. For example, there is no
simple method for sampling modelsw from the posterior distribution except in specialized cases
(e.g., when the posterior is Gaussian).

MCMC is an iterative algorithm that, given a samplext ∼ p(x), modifies that sample to
produce a new samplext+1 ∼ p(x). This modification is done using a proposal distribution
q(x′|x), that, given ax, randomly selects a “mutation” tox. This proposal distribution may be
almost anything, and it is up to the user of the algorithm to choose this distribution; a common
choice would be simply a Gaussian centered atx: q(x′|x) = N (x′|x, σ2I).

The entire algorithm is:

select initial pointx1

t← 1
loop

Samplex′ ∼ q(x′|xt)
α← P ∗(x′)

P ∗(xt)
q(xt|x′)
q(x′|xt)

Sampleu ∼ Uniform[0, 1]
if u ≤ α then

xt+1 ← x′

else
xt+1 ← xt

end if
t← t+ 1

end loop

Amazingly, it can be shown that, ifx1 is a sample fromp(x), then every subsequentxt is also
a sample fromp(x), if they are considered in isolation. The samples are correlated to each other
via the Markov Chain, but the marginal distribution of any individual sample isp(x).

So far we assumed thatx1 is a sample from the target distribution, but, of course, obtaining
this first sample is itself difficult. Instead, we must perform a process calledburn-in : we initialize
with anyx1, and then discard the firstT samples obtained by the algorithm; if we pick a large
enough value ofT , we are guaranteed that the remaining samples are valid samples from the target
distribution. However, there is no exact method for determining a sufficientT , and so heuristics
and/or experimentation must be used.
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Figure 19: MCMC applied to a 2D elliptical Gaussian with a proposal distribution consisting
of a circular Gaussian centered on the previous sample. Green lines indicate accepted proposals
while red lines indicate rejected ones.(Figure fromPattern Recognition and Machine Learningby Chris
Bishop.)
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13 Principal Components Analysis

We now discuss anunsupervisedlearning algorithm, called Principal Components Analysis,or
PCA. The method is unsupervised because we are learning a mapping without any examples of
what the mapping looks like; all we see are the outputs, and wewant to estimate both the mapping
and the inputs.

PCA is primarily a tool for dealing with high-dimensional data. If our measurements are 17-
dimensional, or 30-dimensional, or 10,000-dimensional, manipulating the data can be extremely
difficult. Quite often, the actual data can be described by a much lower-dimensional representation
that captures all of the structure of the data. PCA is perhaps the simplest approach for finding such
a representation, and yet is it also very fast and effective,resulting in it being very widely used.

There are several ways in which PCA can help:

• Visualization: PCA provides a way to visualize the data, by projecting the data down to two
or three dimensions that you can plot, in order to get a bettersense of the data. Furthermore,
the principal component vectors sometimes provide insightas to the nature of the data as
well.

• Preprocessing:Learning complex models of high-dimensional data is often very slow, and
also prone to overfitting — the number of parameters in a modelis usually exponential in the
number of dimensions, meaning that very large data sets are required for higher-dimensional
models. This problem is generally calledthe curse of dimensionality.PCA can be used to
first map the data to a low-dimensional representation before applying a more sophisticated
algorithm to it. With PCA one can alsowhiten the representation, which rebalances the
weights of the data to give better performance in some cases.

• Modeling: PCA learns a representation that is sometimes used as an entire model, e.g., a
prior distribution for new data.

• Compression:PCA can be used to compress data, by replacing data with its low-dimensional
representation.

13.1 The model and learning

In PCA, we assume we are givenN data vectors{yi}, where each vector isD-dimensional:yi ∈
R

D. Our goal is to replace these vectors with lower-dimensional vectors{xi} with dimensionality
C, whereC < D. We assume that they are related by a linear transformation:

y = Wx+ b =
C∑

j=1

wjxj + b (240)

The matrixW can be viewed as a containing a set ofC basis vectorsW = [w1, ...,wC ]. If we
also assume Gaussian noise in the measurements, this model is the same as the linear regression
model studied earlier, but now thex’s are unknown in addition to the linear parameters.
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To learn the model, we solve the following constrained least-squares problem:

arg min
W,b,{xi}

∑

i

||yi − (Wxi + b)||2 (241)

subject toWTW = I (242)

The constraintWTW = I requires that we obtain an orthonormal mappingW; it is equivalent to
saying that

wT
i wj =

{
1 i = j
0 i 6= j

(243)

This constraint is required to resolve an ambiguity in the mapping: if we did not requireW to
be orthonormal, then the objective function is underconstrained (why?). Note that an ambiguity
remains in the learning even with this constraint (which one?), but this ambiguity is not very
important.

Thex coordinates are often calledlatent coordinates.
The algorithm for minimizing this objective function is as follows:

1. Letb = 1
N

∑

i yi

2. LetK = 1
N

∑

i(yi − b)(yi − b)T

3. LetVΛVT = K be the eigenvector decomposition ofK. Λ is a diagonal matrix of eigen-
values (Λ = diag(λ1, ...λD)). The matrixV contains the eigenvectors:V = [V1, ...VD]
and is orthonormalVTV = I.

4. Assume that the eigenvalues are sorted from largest to smallest (λi ≥ λi+1). If this is not the
case, sort them (and their corresponding eigenvectors).

5. LetW be a matrix of the firstC eigenvectors:W = [V1, ...VC ].

6. Letxi = WT (yi − b), for all i.

13.2 Reconstruction

Suppose we have learned a PCA model, and are given a newynew value; how do we estimate its
correspondingxnew? This can be done by minimizing

||ynew − (Wxnew + b)||2 (244)

This is a linear least-squares problem, and can be solved with standard methods (in MATLAB,
implemented by the backslash operator). HoweverW is orthonormal, and thus its transpose is the
pseudoinverse, so the solution is given simply by:

x∗
new = WT (ynew − b) (245)
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13.3 Properties of PCA

Mean zero coefficients. One can show that the PCA coefficients that represent the training data,
i.e.,{xi}Ni=1, are mean zero.

mean(x) ≡ 1

N

∑

i

xi =
1

N

∑

i

WT (yi − b) (246)

=
1

N
WT

(
∑

i

yi −Nb

)

(247)

= 0 (248)

Variance maximization. PCA can also be defined in the following way; in fact, this is theorig-
inal definition of PCA, and the one that is often meant when people discuss PCA. However, this
formulation is exactly equivalent to the one discussed above. In this goal, we wish to find the first
principal componentw1 to maximize the variance of the first coordinate of the data:

var(x1) =
1

N

∑

i

x2
1,i =

1

N

∑

i

(wT
1 (yi − b))2 (249)

such that||w1||2 = 1. Then, we wish to choose the second principal component to bea unit
vector and orthogonal to the first component, while maximizing the variance ofx2. The remaining
principle components are also defined in this recursive way,so that each componentwi is a unit
vector, orthogonal to all previous basis vectors.

Uncorrelated coefficients. It is straightforward to show that the covariance matrix of the PCA
coefficients is the just the upper leftC×C submatrix ofΛ (i.e., the diagonal matrix containing the
C leading eigenvalues ofK.

cov(x) ≡ 1

N

∑

i

(WT (yi − b)) (WT (yi − b))T (250)

=
1

N
WT

(
∑

i

(yi − b)(yi − b)T

)

W (251)

= WTKW (252)

= WTVΛVTW (253)

= Λ̃ (254)

whereΛ̃ is the diagonal matrix containing theC leading eigenvalues inΛ. This simple derivation
also shows that the marginal variances of the PCA coefficientsare given by the eigenvalues; i.e.,
var(xj) = λj.
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Out of Subspace Error. The total variance in the data is given by the sum of the eigenvalues
of the sample covariance matrixK. The variance captured by the PCA subspace representation is
the sum of the firstC eigenvalues. The total amount of variancelost in the representation is given
by the sum of the remaining eigenvalues. In fact, one can showthat the least-squares error in the
approximation to the original data provided by the optimal (ML) model parameters,W∗, {x∗

i },
andb∗, is given by

∑

i

||yi − (W∗x∗
i + b∗)||2 =

D∑

j=C+1

λj . (255)

When learning a PCA model it is common to use the ratio of the total LS error and the total variance
in the training data (i.e., the sum of all eigenvalues). One needs to chooseC to be large enough
that this ratio is small (often 0.1 or less).

13.4 Whitening

Whitening is a preprocess that replaces the data with a representation that has zero-mean and unit
covariance, and is often useful as a data preprocessing step. Given measurements{yi}, we replace
them with{zi} given by

zi = Λ̃
− 1

2WT (yi − b) = Λ̃
− 1

2xi (256)

whereΛ̃ is a diagonal matrix of the firstC eigenvalues.
Then, the sample mean of thez’s is equal to 0:

mean(z) = mean(Λ̃
− 1

2xi) = Λ̃
− 1

2mean(x) = 0 (257)

To derive the sample covariance, we will first compute the covariance of the untruncated values:
z̃ ≡ Λ− 1

2VT (y − b):

cov(z̃) ≡ 1

N

∑

i

Λ− 1
2VT (yi − b)(yi − b)TVΛ− 1

2 (258)

= Λ− 1
2VT

(

1

N

∑

i

(yi − b)(yi − b)T

)

VΛ− 1
2 (259)

= Λ− 1
2VTKVΛ− 1

2 (260)

= Λ− 1
2VTVΛVTVΛ− 1

2 (261)

= I (262)

Sincez is just the firstC elements of̃z, z also has sample covarianceI.
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13.5 Modeling

PCA is sometimes used to model data likelihood, e.g., we can use it as a form of a “prior”. For
example, suppose we have noisy measurements of somey values and wish to estimate their true
values. If we parameterize the unknowny values by their correspondingx values instead, then
we constrain the estimated values to lie in the low-dimensional subspace of the original data.
However, this approach implies a uniform prior overx values, which may be inadequate, while
being intolerant to deviations from the subspace. A better approach with an inherently probabilistic
model is described below.

13.6 Probabilistic PCA

Probabilistic PCA is a way to estimate a probability distribution p(y); in fact, it is a form of
Gaussian distribution. In particular, we assume the following probability distribution:

x ∼ N (0, I) (263)

y = Wx+ b+ n, n ∼ N (0, σ2I) (264)

wherex andn are assumed to be statistically independent. The model saysthat the low-dimensional
coordinatesx (i.e., the underlying causes) come from a unit Gaussian distribution, and they mea-
surements are a linear function of these low-dimensioanl causes, plus Gaussian noise. Note that we
do not require thatW be orthonormal anymore (in part because we now constrain themagnitude
of thex variables).

Since any linear transformation of a Gaussian variable is itself Gaussian,y must also be Gaus-
sian. This distribution is:

p(y) =

∫

p(x,y)dx =

∫

p(y|x)p(x)dx =

∫

G(y;Wx+ b, σ2I)G(x; 0, I) dx (265)

Evaluating this integral will give usp(y), however, there is a simpler way to solve for the Gaussian
distribution.

Since we know thaty is Gaussian, all we need to do is derive its mean and covariance, which
can be done as follows (using the fact that mathematical expectation is linear):

mean(y) = E[y] = E[Wx+ b+ n] (266)

= WE[x] + b+ E[n] (267)

= b (268)

cov(y) = E[(y − b)(y − b)T ] (269)

= E[(Wx+ b+ n− b)(Wx+ b+ n− b)T ] (270)

= E[(Wx+ n)(Wx+ n)T ] (271)

= E[WxxTWT ] + E[WxnT ] + E[nxTWT ] + E[nnT ] (272)

= WE[xxT ]WT +WE[x]E[nT ] + E[n]E[xT ]WT + σ2I (273)

= WWT + σ2I (274)
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Figure 20: Visualization of PPCA mapping for a 1D to 2D model. AGaussian in 1D is mapped
to a line, and then blurred with 2D noise.(Figure fromPattern Recognition and Machine Learningby
Chris Bishop.)

Hence
y ∼ N (b,WWT + σ2I) (275)

In other words, learning a PPCA model is equivalent to learning a particular form of a Gaussian
distribution. This is illustrated in Figure 20. The PPCA model is not as general as learning a full
Gaussian model with aD ×D covariance matrix; however, it uses fewer numbers to represent the
Gaussian (CD+1 versusD2/2+D/2; why?). Because the representation is more compact, it can
be estimated from smaller datasets, and requires less memory to store the model.

These differences will be significant whenD is large; e.g., ifD = 100, the full covariance
matrix would require5050 parameters and thus require hundreds of thousands of data points to
estimate reliably. However, if the effective dimensionality is, say, 2 or 3, then the PPCA represen-
tation will only have a few hundred parameters and many fewermeasurements.

Learning. The PPCA model can be learned by Maximum Likelihood, i.e., by minimizing:

L(W,b, σ2) = − ln
N∏

i=1

G(yi; b, WWT + σ2I) (276)

=
1

2

∑

i

(yi − b)T (WWT + σ2I)−1(yi − b) +
N

2
ln(2π)D|WWT + σ2I|(277)

This can be optimized in closed form. The solution is very similar to the conventional PCA
case:

1. Letb = 1
N

∑

i yi

2. LetK = 1
N

∑

i(yi − b)(yi − b)T
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3. LetVΛVT = K be the eigenvector decomposition ofK. Λ is a diagonal matrix of eigen-
values (Λ = diag(λ1, ...λD)). The matrixV contains the eigenvectors:V = [V1, ...VD]
and is orthonormalVTV = I.

4. Assume that the eigenvalues are sorted from largest to smallest (λi ≥ λi+1). If this is not the
case, sort them (and their corresponding eigenvectors).

5. Let σ2 = 1
D−C

∑D
j=C+1 λj. In words, the estimated noise variance is equal to the average

marginal data variance over all directions that are orthogonal to theC principal directions
(i.e., this is the average variance (per dimension) of the data that is lost in the approximation
of the data in theC dimensional subspace).

6. LetṼ be the matrix comprising the firstC eigenvectors:̃V = [V1, ...VC ], and letΛ̃ be the
diagonal matrix with theC leading eigenvalues:̃Λ = [λ1, ...λC ].

7. W = Ṽ(Λ̃− σ2I)
1
2 .

8. Letxi = WT (yi − b), for all i.

Note that this solution is similar to that in the conventional PCA case with whitening, except that
(a) the noise variance is estimated, and (b) the noise is removed from the variances of the remaining
eigenvalues.

An alternative optimization. In the above learning algorithm, we “marginalized out”x when
estimating PPCA. In other words, we maximized

p(y1:N |W,b, σ2) =

∫

p(y1:N ,x1:N |W,b, σ2)dx1:N (278)

=

∫

p(y1:N |x1:N ,W,b, σ2)p(x1:N)dx1:N (279)

=
∏

i

∫

p(yi|xi,W,b, σ2)p(xi)dxi (280)

instead of maximizing

p(y1:N ,x1:N |W,b, σ2) =
∏

i

p(yi,xi|W,b, σ2) (281)

=
∏

i

p(yi|xi,W,b, σ2)p(xi) (282)

By integrating outx, we are estimating fewer parameters and thus can get better estimates. Loosely
speaking, doing so might be viewed as being “more Bayesian.” Suppose we did instead try to
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estimate thex’s together with the model parameters:

L(x1:N ,W,b, σ2) = − ln p(y1:N ,x1:N |W,b, σ2) (283)

=
∑

i

(
1

2σ2
||yi − (Wxi + b)||2 + 1

2
||xi||2

)

+
ND

2
ln σ2 +ND ln 2π (284)

Now, suppose we are optimizing this objective function, andwe have some estimates forW and
x. We can always reduce the objective function by replacing

W ← 2W (285)

x ← x/2 (286)

By doing this replacement arbitrarily many times, we can get infinitesimal values forx. This
indicates that the objective function is degenerate; usingit will yield to very poor results.

Note that, however, this arises usingthe same modelas before, but without marginalizing out
x. This illustrates a general principle: the more parametersyou estimate (instead of marginalizing
out), the greater the danger of biased and/or degenerate solutions.
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14 Lagrange Multipliers

The Method of Lagrange Multipliers is a powerful technique for constrained optimization. While
it has applications far beyond machine learning (it was originally developed to solve physics equa-
tions), it is used for several key derivations in machine learning.

The problem set-up is as follows: we wish to find extrema (i.e., maxima or minima) of a
differentiable objective function

E(x) = E(x1, x2, ...xD) (287)

If we have no constraints on the problem, then the extrema aresolutions to the following system
of equations:

∇E = 0 (288)

which is equivalent to writingdE
dxi

= 0 for all i. This equation says that there is no way to infinites-
imally perturbx to get a different value forE; the objective function is locally flat.

Now, however, our goal will be to find extrema subject to a single constraint:

g(x) = 0 (289)

In other words, we want to find the extrema among the set of pointsx that satisfyg(x) = 0.
It is sometimes possible to reparameterize the problem in order to eliminate the constraints

(i.e., so that the new parameterization includes all possible solutions tog(x) = 0), however, this
can be awkward in some cases, and impossible in others.

Given the constraintg(x) = 0, we are no longer looking for a point where no perturbation in
any direction changesE. Instead, we need to find a point at which perturbations that satisfy the
constraints do not changeE. This can be expressed by the following condition:

∇E + λ∇g = 0 (290)

for some arbitrary scalar valueλ. The expression∇E = −λg says that any perturbation tox that
changesE also makes the constraint become violated. Hence, perturbations that do not changeg
do not changeE either. Hence, our goal is to find a pointx that satisfies this condition and also
g(x) = 0

In the Method of Lagrange Multipliers, we define a new objective function, called theLa-
grangian:

L(x, λ) = E(x) + λg(x) (291)

Now we will instead find the extrema ofL with respect to bothx andλ. The key fact is that
extrema of the unconstrained objectiveL are the extrema of the original constrained prob-
lem. So we have eliminated the nasty constraints by changing the objective function and also
introducing new unknowns.
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∇E

∇g

x

g(x) = 0

Figure 21: The set of solutions tog(x) = 0 visualized as a curve. The gradient∇g is always normal
to the curve. At an extremal point,∇E points is parallel to∇g. (Figure fromPattern Recognition and
Machine Learningby Chris Bishop.)

To see why, let’s look at the extrema ofL. The extrema toL occur when

dL

dλ
= g(x) = 0 (292)

dL

dx
= ∇E + λ∇g = 0 (293)

which are exactly the conditions given above. Using the Lagrangian is just a convenient way of
combining these two constraints into one unconstrained optimization.

14.1 Examples

Minimizing on a circle. We begin with a simple geometric example. We have the following
constrained optimization problem:

argminx,y x+ y (294)

subject tox2 + y2 = 1 (295)

In other words, we want to find the point on a circle that minimizesx+y; the problem is visualized
in Figure 22. Here,E(x, y) = x+ y andg(x, y) = x2 + y2 − 1. The Lagrangian for this problem
is:

L(x, y, λ) = x+ y + λ(x2 + y2 − 1) (296)
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Figure 22: Illustration of the maximization on a circle problem. (Image from Wikipedia.)

Setting the gradient to zero gives this system of equations:

dL

dx
= 1 + 2λx = 0 (297)

dL

dy
= 1 + 2λy = 0 (298)

dL

dλ
= x2 + y2 − 1 = 0 (299)

From the first two lines, we can see thatx = y. Substituting this into the constraint and solving
gives two solutionsx = y = ± 1√

2
. Substituting these two solutions into the objective, we see that

the minimum is atx = y = − 1√
2
.

Estimating a multinomial distribution. In a multinomial distribution, we have an evente with
K possible discrete, disjoint outcomes, where

P (e = k) = pk (300)

For example, coin-flipping is a binomial distribution whereN = 2 ande = 1 might indicate that
the coin lands heads.

Suppose we observeN events; the likelihood of the data is:

K∏

i=1

P (ei|p) =
∏

k

pNk

k (301)
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whereNk is the number of times thate = k, i.e., the number of occurrences of thek-th event. To
estimate this distribution, we can minimize the negative log-likelihood:

arg min −∑k Nk ln pk (302)

subject to
∑

k pk = 1, pk ≥ 0, for all k (303)

The constraints are required in order to ensure that thep’s form a valid probability distribution.
One way to optimize this problem is to reparameterize: setpK = 1−∑K−1

k=1 pk, substitute in, and
then optimize the unconstrained problem in closed-form. While this method does work in this case,
it breaks the natural symmetry of the problem, resulting in some messy calculations. Moreover,
this method often cannot be generalized to other problems.

The Lagrangian for this problem is:

L(p, λ) = −
∑

k

Nk ln pk + λ

(
∑

k

pk − 1

)

(304)

Here we omit the constraint thatpk ≥ 0 and hope that this constraint will be satisfied by the
solution (it will). Setting the gradient to zero gives:

dL

dpk
= −Nk

pk
+ λ = 0 for all k (305)

dL

dλ
=

∑

k

pk − 1 = 0 (306)

Multiplying dL/dpk = 0 by pk and summing overk gives:

0 = −
K∑

k=1

Nk + λ
∑

k

pk = −N + λ (307)

since
∑

k Nk = N and
∑

k pk = 1. Hence, the optimalλ = N . Substituting this intodL/dpk and
solving gives:

pk =
Nk

N
(308)

which is the familiar maximum-likelihood estimator for a multinomial distribution.

Maximum variance PCA. In the original formulation of PCA, the goal is to find a low-dimensional
projection ofN data pointsy

x = wT (y − b) (309)
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such that the variance of thex′
is is maximized, subject to the constraint thatwTw = 1. The

Lagrangian is:

L(w,b, λ) =
1

N

∑

i

(

xi −
1

N

∑

i

xi

)2

+ λ(wTw − 1) (310)

=
1

N

∑

i

(

wT (yi − b)− 1

N

∑

i

wT (yi − b)

)2

+ λ(wTw − 1) (311)

=
1

N

∑

i

(

wT

(

(yi − b)− 1

N

∑

i

(yi − b)

))2

+ λ(wTw − 1) (312)

=
1

N

∑

i

(
wT (yi − ȳ)

)2
+ λ(wTw − 1) (313)

=
1

N

∑

i

wT (yi − ȳ)(yi − ȳ)Tw + λ(wTw − 1) (314)

= wT

(

1

N

∑

i

(yi − ȳ)(yi − ȳ)T

)

w + λ(wTw − 1) (315)

whereȳ =
∑

i yi/N . SolvingdL/dw = 0 gives:
(

1

N

∑

i

(yi − ȳ)(yi − ȳ)T

)

w = λw (316)

This is just the eigenvector equation: in other words,w must be an eigenvector of the sample
covariance of they′s, andλ must be the corresponding eigenvalue. In order to determinewhich
one, we can substitute this equality into the Lagrangian to get:

L = wTλw + λ(wTw − 1) (317)

= λ (318)

sincewTw = 1. Since our goal is to maximize the variance, we choose the eigenvectorw which
has the largest eigenvalueλ.

We have not yet selectedb, but it is clear that the value of the objective function doesnot
depend onb, so we might as well set it to be the mean of the datab =

∑

i yi/N , which results in
thex′s having zero mean:

∑

i xi/N = 0.

14.2 Least-Squares PCA in one-dimension

We now derive PCA for the case of a one-dimensional projection, in terms of minimizing squared
error. Specifically, we are given a collection of data vectorsy1:N , and wish to find a biasb, a single
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unit vectorw, and one-dimensional coordinatesx1:N , to minimize:

arg min
w,x1:N ,b

∑

i

||yi − (wxi + b)||2 (319)

subject towTw = 1 (320)

The vectorw is called the first principal component. The Lagrangian is:

L(w, x1:N ,b, λ) =
∑

i

||yi − (wxi + b)||2 + λ(||w||2 − 1) (321)

There are several sets of unknowns, and we derive their optimal values each in turn.

Projections (xi). We first derive the projections:

dL

dxi

= −2wT (yi − (wxi + b)) = 0 (322)

UsingwTw = 1 and solving forxi gives:

xi = wT (yi − b) (323)

Bias (b). We begin by differentiating:

dL

db
= −2

∑

i

(yi − (wxi + b)) (324)

Substituting in Equation 323 gives

dL

db
= −2

∑

i

(yi − (wwT (yi − b) + b)) (325)

= −2
∑

i

yi + 2wwT
∑

i

yi − 2NwwTb+ 2Nb (326)

= −2(I−wwT )
∑

i

yi + 2(I−wwT )Nb = 0 (327)

Dividing both sides by2(I−wwT )N and rearranging terms gives:

b =
1

N

∑

i

yi (328)
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Basis vector (w). To make things simpler, we will definẽyi = (yi − b) as the mean-subtracted
data points, and the reconstructions are thenxi = wT ỹi, and the objective function is:

L =
∑

i

||ỹi −wxi||2 + λ(wTw − 1) (329)

=
∑

i

||ỹi −wwT ỹi||2 + λ(wTw − 1) (330)

=
∑

i

(ỹi −wwT ỹi)
T (ỹi −wwT ỹi) + λ(wTw − 1) (331)

=
∑

i

(ỹT
i ỹi − 2ỹT

i wwT ỹi + ỹT
i wwTwwT ỹi) + λ(wTw − 1) (332)

=
∑

i

ỹT
i ỹi −

∑

i

(ỹT
i w)2 + λ(wTw − 1) (333)

where we have usedwTw = 1. We then differentiate and simplify:

dL

dw
= −2

∑

i

ỹiỹ
T
i w + 2λw = 0 (334)

We can rearrange this to get:
(
∑

i

ỹiỹ
T
i

)

w = λw (335)

This is exactly the eigenvector equation, meaning that extrema forL occur whenw is an eigenvec-
tor of the matrix

∑

i ỹiỹ
T
i , andλ is the corresponding eigenvalue. Multiplying both sides by1/N ,

we see this matrix has the same eigenvectors as the data covariance:
(

1

N

∑

i

(yi − b)(yi − b)T

)

w =
λ

N
w (336)

Now we must determine which eigenvector to use. We rewrite Equation 333 as:

L =
∑

i

ỹT
i ỹi −

∑

i

wT ỹiỹ
T
i w + λ(wTw − 1) (337)

=
∑

i

ỹT
i ỹi −wT

(
∑

i

ỹiỹ
T
i

)

w + λ(wTw − 1) (338)

(339)

and substitute in Equation 335:

L =
∑

i

ỹT
i ỹi − λwTw + λ(wTw − 1) (340)

=
∑

i

ỹT
i ỹi − λ (341)
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again usingwTw = 1. We must pick the eigenvalueλ that gives the smallest value ofL. Hence,
we pick the largest eigenvalue, and setw to be the corresponding eigenvector.

14.3 Multiple constraints

When we wish to optimize with respect to multiple constraints{gk(x)}, i.e.,

argminx E(x) (342)

subject togk(x) = 0 for k = 1...K (343)

Extrema occur when:

∇E +
∑

k

λk∇gk = 0 (344)

where we have introducedK Lagrange multipliersλk. The constraints can be combined into a
single Lagrangian:

L(x, λ1:K) = E(x) +
∑

k

λkgk(x) (345)

14.4 Inequality constraints

The method can be extended to inequality constraints of the form g(x) ≥ 0. For a solution to be
valid and maximal, there two possible cases:

• The optimal solution is inside the constraint region, and, hence∇E = 0 andg(x) > 0. In
this region, the constraint is “inactive,” meaning thatλ can be set to zero.

• The optimal solution lies on the boundaryg(x) = 0. In this case, the gradient∇E must point
in theoppositedirection of the gradient ofg; otherwise, following the gradient ofE would
causeg to become positive while also modifyingE. Hence, we must have∇E = −λ∇g for
λ ≥ 0.

Note that, in both cases, we haveλg(x) = 0. Hence, we can enforce that one of these cases is
found with the following optimization problem:

max
w,λ

E(x) + λg(x) (346)

such that g(x) ≥ 0 (347)

λ ≥ 0 (348)

λg(x) = 0 (349)

These are called the Karush-Kuhn-Tucker (KKT) conditions,which generalize the Method of La-
grange Multipliers.

When minimizing, we want∇E to point in the same direction as∇g when on the boundary,
and so we minimizeE − λg instead ofE + λg.
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∇E

∇g

x1

x2

g(x) = 0

g(x) > 0

Figure 23: Illustration of the condition for inequality constraints: the solution may lie on the
boundary of the constraint region, or in the interior.(Figure fromPattern Recognition and Machine
Learningby Chris Bishop.)
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15 Clustering

Clustering is anunsupervisedlearning problem in which our goal is to discover “clusters”in the
data. A cluster is a collection of data that are similar in some way.

Clustering is often used for several different problems. Forexample, a market researcher might
want to identify distinct groups of the population with similar preferences and desires. When
working with documents you might want to find clusters of documents based on the occurrence
frequency of certain words. For example, this might allow one to discover financial documents,
legal documents, or email from friends. Working with image collections you might find clusters
of images which are images of people versus images of buildings. Often when we are given large
amounts of complicated data we want to look for some underlying structure in the data, which
might reflect certainnatural kindswithin the training data. Clustering can also be used to compress
data, by replacing all of the elements in a cluster with a single representative element.

15.1 K-means Clustering

We begin with a simple method calledK-means. GivenN input data vectors{yi}Ni=1, we wish to
label each vector as belonging to one ofK clusters. This labeling will be done via a binary matrix
L, the elements of which are given by

Li,j =

{
1 if data pointi belongs to clusterj
0 otherwise

(350)

The clustering is mutually exclusive. Each data vectori can only be assigned to only cluster:
∑K

j=1 Li,j = 1. Along the way, we will also be estimating a centercj for each cluster.
The full objective function forK-means clustering is:

E(c,L) =
∑

i,j

Li,j||yi − cj||2 (351)

This objective function penalizes the distance between each data point and the center of the cluster
to which it is assigned. Hence, to minimize this error, we want to bring the cluster centers close to
the data it has been assigned, and we also want to assign the data to nearby centers.

This objective function cannot be optimized in closed-form, and so an iterative method is re-
quired. It includes discrete variables (the labelsL), and so gradient-based methods aren’t directly
applicable. Instead, we use a strategy calledcoordinate descent, in which we alternate between
closed-form optimization of one set of variables holding the other variables fixed. That is, we first
pick initial values, then we alternate between updating thelabels for the current centers, and then
updating the centers for the current labels.
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Here is theK-means algorithm:

pick initial values forL andc1:K
loop

// Labeling update: setL← argminL E(c,L)
for each data pointi do

j ← argminj ||yi − cj||2
Li,j = 1
Li,a = 0 for all a 6= j

end for
// Centers update: setc← argminc E(c,L)
for each centerj do

cj ←
∑

i Li,jyi∑
i Li,j

end for end loop

Each step of the optimization is guaranteed to lower the objective function until the algorithm
converges (you should be able to show that each step is optimal.) However, there is no guarantee
that the algorithm will find the global optimum and indeed it may easily get trapped in a poor local
minima.

Initialization. The algorithm is sensitive to initialization, and poor initialization can sometimes
lead to very poor results. Here are a few strategies that can be used to initialize the algorithm:

1. Random labeling. Initialize the labelingL randomly, and then run the center-update step to
determine the initial centers. This approach is not recommended because the initial centers
will likely end up just being very close to the mean of the data.

2. Random initial centers. We could try to place initial center locations randomly, e.g., by
random sampling in the bounding box of the data. However, it is very likely that some of the
centers will fall into empty regions of the feature space, and will therefore be assigned no
data. Getting a good initialization this way can be difficult.

3. Random data points as centers.This method works much better: use a random subset of
the data as the initial center locations.

4. K-medoids clustering. This will be described below.

5. Multiple restarts. In multiple restarts, we runK-means multiple times, each time with a
different random initialization (using one of the above methods). We then take the best clus-
tering out of all of the runs, based on the value of the objective function above in Equation
(351).
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Figure 24:K-means applied to a dataset sampled from three Gaussian distributions. Each data
assigned to each cluster are drawn as circles with distinct colours. The cluster centers are shown
as red stars.

Another key question is how one chooses the number of clusters, i.e.,K. A common approach
is to fixK based on some prior knowledge or computational constraints. One can also try different
values ofK, adding another term to to the objective function to penalize model complexity.

15.2 K-medoids Clustering

(The material in this section is not required for this course.)
K-medoids clustering is a variant ofK-means with the additional constraint that the cluster

centers must be drawn from the data. The following algorithm, called Farthest First Traversal, or
Hochbaum-Shmoys, is simple and effective:

Randomly select a data pointyi as the first cluster center:c1 ← yi

for j = 2 to K
Find the data point furthest from all existing centers:
i← argmaxi mink<j ||yi − ck||2
cj ← yi

end for
Label all remaining data points according to their nearest centers (as ink-means)

This algorithm provides a quality guarantee: it gives a clustering that is no worse than twice
the error of the optimal clustering.

K-medoids clustering can also be improved by coordinate descent. The labeling step is the
same as inK-means. However, the cluster updates must be done by brute-force search for each
candidate cluster center update.
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15.3 Mixtures of Gaussians

The Mixtures-of-Gaussians (MoG) model is a generalizationof K-means clustering. WhereasK-
means clustering works for clusters that are more or less spherical, the MoG model can handle
oblong clusters and overlapping clusters. TheK-means algorithm does an excellent job when
clusters are well separated, but not when the clusters overlap. MoG algorithms compute a “soft,”
probabilistic clustering which allows the algorithm to better handle overlapping clusters. Finally,
the MoG model is probabilistic, and so it can be used to learn probability distributions from data.

The MoG model consists ofK Gaussian distributions, each with their own means and covari-
ances{(µj,Kj)}. Each Gaussian also has an associated (prior) probabilityaj, such that

∑

j aj = 1.
That is, the probabilitiesaj will represent the fraction of the data that are assigned to (or generated
by) the different Gaussian components. As a shorthand, we will write all the model parameters
with a single variable, i.e.,θ = {a1:K , µ1:K ,K1:K}. When used for clustering, the idea is that each
Gaussian component in the mixture should correspond to a single cluster.

The complete probabilistic model comprises the prior probabilities of each Gaussian compo-
nent, and Gaussian likelihood over the data (or feature) space for each component:

P (L = j|θ) = aj (352)

p(y|θ, L = j) = G(y; µj,Kj) (353)

To sample a single data point from this (generative) model, we first randomly select a Gaussian
component according to their prior probabilities{aj}, and then we randomly sample from the
corresponding Gaussian component. The likelihood of a single data point can be derived by the
product rule and the sum rule as follows:

p(y|θ) =
K∑

j=1

p(y, L = j|θ) (354)

=
K∑

j=1

p(y|L = j, θ)P (L = j|θ) (355)

=
K∑

j=1

aj
1

√

(2π)D|Kj|
e−

1
2
(y−µj)

TK
−1
j (y−µj) (356)

whereD is the dimension of data vectors. This model can be interpreted as a linear combination
(or blend) of Gaussians: we get a multimodal distribution byadding together unimodal Gaussians.
Interestingly, the MoG model is similar to the Gaussian Class-Conditional model that we used for
classification; the difference is that the class labels willno longer be included in the training set.

In general, the approach of building models by mixtures is quite general and can be used for
many other types of distributions as well, for example, we could build a mixture of Student-t
distributions, or a mixture of a Gaussian and a uniform, and so on.
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Figure 25: Mixture of Gaussians model applied to a dataset generated from three Gaussians. The
resultingγ is visualized on the right. The data points are shown as colored circles. The color
is determined by the cluster with the highest posterior assignment probabilityγij. One standard
deviation ellipses are shown for each Gaussian. Note that the blue points are well isolated and there
is little ambiguity in their assignments. The other two distributions overlap, and one can see how
the orientation and eccentricity of the covariance structure (the ellipses) influence the assignment
probabilities.

15.3.1 Learning

Given a data sety1:N , where each data point is assumed to be drawn independently from the model,
we learn the model parameters,θ, by minimizing the negative log-likelihood of the data:

L(θ) = − ln p(y1:N |θ) (357)

= −
∑

i

ln p(yi|θ) (358)

Note that this is a constrained optimization, since we requireaj ≥ 0 and
∑

j aj = 1. Furthermore,
Kj must be symmetric, positive-definite matrix to be a covariance matrix. Unfortunately, this
optimization cannot be performed in closed-form.

One approach is to use gradient descent to optimization by gradient descent. There are a few
issues associated with doing so. First, some care is required to avoid numerical issues, as discussed
below. Second, this learning is a constrained optimization, due to constraints on the values of the
a’s. One solution is to project onto the constraints during optimization: at each gradient descent
step (and inside the line search loop), we clamp all negativea values to zero and renormalize the
a’s so that they sum to one. Another option is to reparameterize the problem to be unconstrained.
Specifically, we define new variablesβj, and define thea’s as functions of theβs, e.g.,

aj(β) =
eβj

∑K
j=1 e

βj

(359)

Copyright c© 2011 Aaron Hertzmann and David Fleet 96



CSC 411 / CSC D11 Clustering

This definition ensures that, for any choice of theβs, theas will satisfy the constraints. We sub-
stitute this expression into the model definition and then optimize for theβs instead of theas with
gradient descent. Similarly, we can enforce the constraints on the covariance matrix by reparame-
terization; this is normally done using a upper-triangularmatrixU such thatK = UTU.

An alternative to gradient descent is theExpectation-Maximization algorithm, or EM. EM
is a quite general algorithm for “hidden variable” problems; in this case, the labelsL are “hid-
den” (or “unobserved”). In EM, we define a probabilistic labeling variableγi,j. The variable
γi,j corresponds to the probability that data pointi came from clusterj: γi,j is meant to estimate
P (L = j|yi). In EM, we optimize bothθ andγ together. The algorithm alternates between the
“E-step” which updates theγs, and the “M-step” which updates the model parametersθ.

pick initial values forγ andθ
loop

E-step:
for each data pointi do

γi,j ← P (L = j|yi, θ)
end for
M-step:
for each clusterj do

aj ←
∑

i γi,j
N

µj ←
∑

i γi,jyi
∑

i γi,j

Kj ←
∑

i γi,j(yi−µj)(yi−µj)
T

∑

i γi,j

end for
end loop

Note that the E-step is the same as classification in the Gaussian Class-Conditional model.
The EM algorithm is a local optimization algorithm, and so the results will depend on initial-

ization. Initialization strategies similar to those used forK-means above can be used.

15.3.2 Numerical issues

Exponentiating very small negative numbers can often lead to underflow when implemented in
floating-point arithmetic, e.g.,e−A will give zero for largeA, and ln e−A will give an error (or
-Inf) whereas it should return−A. These issues will often cause machine learning algorithmsto
fail; MoG has several steps which are susceptible. Fortunately, there are some simple tricks that
can be used.

1. Many computations can be performed directly in the log domain. For example, it may be
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more stable to compute
aeb (360)

as
eln a+b (361)

This avoids issues whereb is so small thateb evaluates to zero in floating point, butaeb is
much greater than zero.

2. When computing an expression of the form:

e−βj

∑

j e
−βj

(362)

large values ofβ could lead to the above expression being zero for allj, even though the
expression must sum to one. This may arise, for example, whencomputing theγ updates,
which have the above form. The solution is to make use of the identity:

e−βj

∑

j e
−βj

=
e−βj+C

∑

j e
−βj+C

(363)

for any value ofC. We can chooseC to prevent underflow; a suitable choice isC = minj βj.

3. Underflow can also occur when evaluating

ln
∑

i

e−βj (364)

which can be fixed by using the identity

ln
∑

i

e−βj =

(

ln
∑

i

e−βj+C

)

− C (365)

15.3.3 The Free Energy

Amazingly, EM optimizes the log-likelihood, which doesn’teven have aγ parameter. In order to
understand the EM algorithm and why it works, it is helpful tointroduce a quantity called theFree
Energy:

F(θ, γ) = −
∑

i,j

γi,j ln p(yi, L = j|θ) +
∑

i,j

γi,j ln γi,j (366)

=
1

2

∑

i,j

γi,j(yi − µj)
TK−1

j (yi − µj) (367)

+
1

2

∑

i,j

γi,j ln(2π)
D|Kj| −

∑

i,j

γi,j ln aj (368)

+
∑

i,j

γi,j ln γi,j (369)
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The EM algorithm is a coordinate descent algorithm for optimizing the free energy, subject
to the constraint that

∑

j γi,j = 1 and the constraints ona. In other words, EM can be written
compactly as:

pick initial values forγ andθ
loop

E-step:
γ ← argminγ F(θ, γ)
M-step:
θ ← argminθ F(θ, γ)

end loop

However, the free energy is different from the negative log-likelihoodL(θ) that we initially set
out to minimize. Fortunately, the free energy has the following important properties:

• When the value ofγ is optimal, the Free Energy is equal to the negative log-likelihood:

L(θ) = min
γ
F(θ, γ) (370)

We can use this fact to evaluate the negative log-likelihoodsimply by running an E-step and
then computing the free energy. In fact, this is often more efficient than directly computing
the negative log-likelihood. The proof is given in the next section.

• The minima of the free energy are also minima of the negative log-likelihood:

min
θ
L(θ) = min

θ,γ
F(θ, γ) (371)

This follows from the previous property. Hence,optimizing the free energy is the same as
optimizing the negative log-likelihood.

• The Free Energy is an upper-bound on the negative log-likelihood:

F(θ, γ) ≥ L(θ) (372)

for all values ofγ. This observation gives a sanity check for debugging the free energy
computation.

The Free Energy also provides a very helpful tool for debugging: any step of an implementation
that increases the free energy must be incorrect. The term Free Energy arises from its original
definition in statistical physics.

15.3.4 Proofs

This content of this section is not required material for this course and you may skip it. Here we
outline proofs for the key features of the free energy.
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EM updates. The steps of the EM algorithm may be derived by solvingargminγ F(θ, γ) and
argminθ F(θ, γ). In most cases, the derivations generalize familiar ones, e.g., weighted least-
squares. Thea andγ parameters are multinomial distributions, and optimization of them requires
Lagrange multipliers or reparameterization. One may ignore the positivity constraint, as it turns
out to be automatically satisfied. The details will be skipped here.

Equality after the E-step. The E-step computes the optimal value forγ:

γ∗ ← argmin
γ
F(θ, γ) (373)

which is given by:

γ∗
i,j = P (L = j|yi) (374)

Substituting this into the Free Energy gives:

F(θ, γ∗) = −
∑

i,j

P (L = j|yi) ln
p(yi, L = j)

P (L = j|yi)
(375)

= −
∑

i,j

P (L = j|yi) ln p(yi) (376)

= −
∑

i

(

ln p(yi)
∑

j

P (L = j|yi)

)

(377)

= −
∑

i

ln p(yi) (378)

= L(θ) (379)

Hence,
L(θ) = min

γ
F(θ, γ) (380)

Bound. An important building block in proving thatF(θ, γ) ≥ L(θ) is Jensen’s Inequality,
which applies sinceln is a “concave” function and

∑

j bj = 1, bj ≥ 0.

ln
∑

j

bjxj ≥
∑

j

bj ln xj, or (381)

− ln
∑

j

bjxj ≤ −
∑

j

bj ln xj (382)

We will not prove this here.
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We can then derive the bound as follows, dropping the dependence onθ for brevity:

L(θ) = −
∑

i

ln
∑

j

p(yi, L = j) (383)

= −
∑

i

ln
∑

j

γi,j
γi,j

p(yi, L = j) (384)

≤ −
∑

i,j

γi,j ln
p(yi, L = j)

γi,j
(385)

= F(θ, γ) (386)

15.3.5 Relation toK-means

It should be clear that theK-means algorithm is very closely related to EM. In fact, EM reduces
to K-means if we make the following restrictions on the model:

• The class probabilities are equal:aj =
1
K

.

• The Gaussians are spherical with identical variances:Kj = σ2I for all j.

• The Gaussian variances are infinitesimal, i.e., we considerthe algorithm in the limit as
σ2 → 0. This causes the optimal values forγ to be binary, since, ifj is the nearest class,
limσ2→0 P (L = j|yi) = 1.

With these modifications, the Free Energy becomes equivalent to theK-means objective function,
up to constant values, and the EM algorithm becomes identical to K-means.

15.3.6 Degeneracy

There is a degeneracy in the MoG objective function. Supposewe center one Gaussian at one of
the data points, so thatcj = yi. The error for this data point will be zero, and by reducing the
variance of this Gaussian, we can always increase the likelihood of the data. In the limit as this
Gaussian’s variance goes to zero, the data likelihood goes to infinity. Hence, some effort may be
required to avoid this situation. This degeneracy can also be avoided by using a more Bayesian
form of the algorithm, e.g., marginalizing out the cluster centers rather than estimating them.

15.4 Determining the number of clusters

Determining the value ofK is a model selection problem: we want to determine the most-likely
value ofK given the data. Cross validation is not appropriate here, since we do not have any super-
vision (e.g., correct labels from a subset of the data). Bayesian model selection can be employed,
e.g., by maximizing

K∗ = argmax
K

P (K|y1:N) = argmax
K

∫

p(K, θ|y1:N)dθ (387)
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whereθ are the model parameters. This evaluation is somewhat mathematically-involved. A very
coarse approximation to this computation is Bayesian Information Criterion (BIC).
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Figure 26: Examples of time-series data: speech and language.

16 Hidden Markov Models

Until now, we have exclusively dealt with data sets in which each individual measurement is in-
dependent and identically distributed (IID). That is, for two pointsy1 andy2 in our data set, we
havep(y1) = p(y2) andp(y1,y2) = p(y1)p(y2) (for a fixed model). Time-series data consist of
sequences of data that are not IID: they arise from a process that varies over time, and modeling
the dynamics of this process is important.

16.1 Markov Models

Markov models are time series that have the Markov property:

P (st|st−1, sn−2, ..., s1) = P (st|st−1) (388)

wherest is the state of the system at timet. Intuitively, this property says the probability of a state
at timet is competely determined by the system state at the previous time step. More generally,
for any setA of indices less thant and set of indicesB greater thant we have:

P (st|{si}i∈A∪B) = P (st|smax(A), smin(B)) (389)

which follows from the Markov property.
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Another useful identity which also follows directly from the Markov property is:

P (st−1, st+1|st) = P (st−1|st)P (st+1|st) (390)

Discrete Markov Models. A important example of Markov chains are discrete Markov models.
Each statest can take on one of a discrete set of states, and the probability of transitioning from
one state to another is governed by a probability table for the whole sequence of states. More
concretely,st ∈ {1, ..., K} for some finiteK and, for all timest, P (st = j|st−1 = i) = Aij

whereA is parameter of the model that is a fixed matrix of valid probabilities (so thatAij ≥ 0 and
∑K

j=1 Aij = 1). To fully characterize the model, we also require a distribution over states for the
first time-step:P (s1 = i) = ai.

16.2 Hidden Markov Models

A Hidden Markov model (HMM) models a time-series of observationsy1:T as being determined
by a “hidden” discrete Markov chains1:T . In particular, the measurementyt is assumed to be
determined by an “emission” distribution that depends on the hidden state at timet: p(yt|st = i).
The Markov chain is called “hidden” because we do not measureit, but must reason about it
indirectly. Typically,st encodes underlying structure of the time-series, where as theyt correspond
to the measurements that are actually observed. For example, in speech modeling applications, the
measurementsy might be the waveforms measured from a microphone, and the hidden states might
be the corresponding word that the speaker is uttering. In language modeling, the measurements
might be discrete words, and the hidden states their underlying parts of speech.

HMMs can be used for discrete or continuous data; in this course, we will focus solely on the
continuous case, with Gaussian emission distributions.

The joint distribution over observed and hidden is:

p(s1:T ,y1:T ) = p(y1:T |s1:T )P (s1:T ) (391)

where

P (s1:T ) = P (s1)
T∏

t=2

P (st|st−1) (392)

and

P (y1:T |s1:T ) =
T∏

t=1

p(yt|st) (393)

The Gaussian model says:
p(yt|st = i) = N (yt;µi,Σi) (394)

for some mean and covariance parametersµi andΣi. In other words, each statei has its own Gaus-
sian with its own parameters. A complete HMM consists of the following parameters:a,A,µ1:K ,
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Figure 27: Illustration of the variables in an HMM, and theirconditional dependencies.(Figure
from Pattern Recognition and Machine Learningby Chris Bishop.)
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Figure 28: The hidden states of an HMM correspond to a state machine. (Figure fromPattern
Recognition and Machine Learningby Chris Bishop.)
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Figure 29: Illustration of sampling a sequence of datapoints from an HMM.(Figure fromPattern
Recognition and Machine Learningby Chris Bishop.)

andΣ1:K . As a short-hand, we will denote these parameters by a variable θ = {a,A,µ1:K ,Σ1:K}.

Note that, ifAij = aj for all i, then this model is equivalent to a Mixtures-of-Gaussian model
with mixing proportions given by theai’s, since the distribution over states at any instant does not
depend on the previous state.

In the remainder of this chapter, we will discuss algorithmsfor computing with HMMs.

16.3 Viterbi Algorithm

We begin by considering the problem of computing the most-likely sequence of states given a data
sety1:T and a known HMM model. That is, we wish to compute

s∗1:T = argmax
s1:T

P (s1:T |θ,y1:T ) (395)

The naive approach is to simply enumerate every possible state sequence and choose the one that
maximizes the above conditional probability. Since there are KT possible state-sequences, this
approach is clearly infeasible for sequences of more than a few steps.

Fortunately, we can take advantage of the Markov property toperform this computation much
more efficiently. The Viterbi algorithm is a dynamic programming approach to finding the most
likely sequence of statess1:T givenθ and a sequence of observationsy1:T .

We begin by defining the following quantity for each state andeach time-step:

δt(i) ≡ max
s1:t−1

p(s1:t−1, st = i,y1:t) (396)
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(Henceforth, we omitθ from these equations for brevity.) This quantity tells us the likelihood that
the most-likely sequence up to timet ends at statei, given the data up to timet. We will compute
this quantity recursively. The base case is simply:

δ1(i) = p(s1 = i,y1) = p(y1|s1 = i)P (s1 = i) (397)

for all i. The recursive case is:

δt(i) = max
s1:t−1

p(s1:t−1, st = i,y1:t)

= max
s1:t−2,j

p(st = i|st−1 = j)p(yt|st = i)p(s1:t−2, st−1 = j,y1:t−1)

= p(yt|st = i)max
j

[

p(st = i|st−1 = j) max
s1:t−2

p(s1:t−2, st−1 = j,y1:t−1)

]

= p(yt|st = i)max
j

Ajiδt−1(j)

Once we have computedδ for all time-steps and all states, we can determine the final state of
the most-likely sequence as:

s∗T = argmax
i

P (sT = i|y1:T ) (398)

= argmax
i

P (sT = i,y1:T ) (399)

= argmax
i

δT (i) (400)

sincep(y1:T ) does not depend on the state sequence. We can then backtrack throughδ to determine
the states of each previous time-step, by finding which statej was used to compute each maximum
in the recursive step above. These states would normally be stored during the recursive process so
that they can be looked-up later.

16.4 The Forward-Backward Algorithm

We may be interested in computing quantities such asp(y1:T |θ) or P (st|y1:T , θ); these distribu-
tions are useful for learning and analyzing models. Again, the naive approach to computing these
quantities involves summing over all possible sequences ofhidden states, and thus is intractable to
compute. The Forward-Backward Algorithm allows us to compute these quantities in polynomial
time, using dynamic programming.

In theForward Recursion, we compute:

αt(i) ≡ p(y1:t, st = i) (401)

The base case is:
α1(i) = p(y1|s1 = i)p(s1 = i) (402)
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Figure 30: Illustration of theαt(i) values computed during the Forward Recursion.(Figure from
Pattern Recognition and Machine Learningby Chris Bishop.)

and the recursive case is:

αt(i) =
∑

j

p(y1:t, st = i, st−1 = j) (403)

=
∑

j

p(yt|st = i)P (st = i|st−1 = j)p(y1:t−1, st−1 = j) (404)

= p(yt|st = i)
K∑

j=1

Ajiαt−1(j) (405)

Note that this is identical to the Viterbi algorithm, exceptthat maximization overj has been re-
placed by summation.

In theBackward Recursionwe compute:

βt(i) ≡ p(yt+1:T |st = i) (406)

The base case is:
βT (i) = 1 (407)

The recursive case is:

βt(i) =
K∑

j=1

Aijp(yt+1|st+1 = j)βt+1(j) (408)

From these quantities, we can easily the following useful quantities.

Copyright c© 2011 Aaron Hertzmann and David Fleet 108



CSC 411 / CSC D11 Hidden Markov Models

k = 1

k = 2

k = 3

t 1 t

(st 1,1)

(st 1,2)

(st 1,3)

(st, 1)
A11

A21

A31

p(yt |st, 1)

k = 1

k = 2

k = 3

t t + 1

β(st, 1) β(st +1 ,1)

β(st +1 ,2)

β(st +1 ,3)

A11

A12

A13

p(yt |st +1 ,1)

p(yt |st +1 ,2)

p(yt |st +1 ,3)

Figure 31: Illustration of the steps of the Forward Recursionand the Backward Recursion(Figure
from Pattern Recognition and Machine Learningby Chris Bishop.)

The probability that the hidden sequence had statei at timet is:

γt(i) ≡ p(st = i|y1:T ) (409)

=
p(y1:T |st = i)p(st = i)

p(y1:T )
(410)

=
p(y1:t|st = i)p(yt+1:T |st = i)p(st = i)

p(y1:T )
(411)

=
αt(i)βt(i)

p(y1:T )
(412)

The normalizing constant — which is also the likelihood of the entire sequence,p(y1:T ) — can be
computed by the following formula:

p(y1:T ) =
∑

i

p(st = i,y1:T ) (413)

=
∑

i

αt(i)βt(i) (414)

The result of this summation will be the same regardless of which time-stept we choose to do the
summation over.

The probability that the hidden sequence transitioned fromstatei at timet to statej at time
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t+ 1 is:

ξt(i, j) ≡ P (st = i, st+1 = j|y1:T ) (415)

=
αt(i)Aijp(yt+1|st+1 = j)βt+1(j)

p(y1:T )
(416)

=
αt(i)Aijp(yt+1|st+1 = j)βt+1(j)

∑

i

∑

j αt(i)Aijp(yt+1|st+1 = j)βt+1(j)
(417)

Note that the denominator gives an expression forp(y1:T ), which can be computed for any value
of t.

16.5 EM: The Baum-Welch Algorithm

Learning in HMMs is normally done by maximum likelihood, i.e., we wish to find the model
parameters such that:

θ∗ = argmax
θ

p(y1:T |θ) (418)

As before, even evaluating this objective function requires KT steps, and methods like gradient
descent will be impractical. Instead, we can use the EM algorithm. Note that, since an HMM
is a generalization of a Mixture-of-Gaussians, EM for HMMs will be a generalization of EM for
MoGs. The EM algorithm applied to HMMs is also known as the Baum-Welch Algorithm.

The algorithm alternates between the following two steps:

• The E-Step: The Forward-Backward Algorithm is performed, in order to computeγ andξ.

• The M-Step: The parametersθ are updated as follows:

ai = γ1(i) (419)

µi =

∑

t γt(i)yt
∑

t γt(i)
(420)

Σi =

∑

t γt(i)(yt − µi)(yt − µi)
T

∑

t γt(i)
(421)

Aij =

∑

t ξt(i, j)∑

k

∑

t ξt(i, k)
(422)

16.5.1 Numerical issues: renormalization

In practice, numerical issues are a problem for the straightforward implementation of the Forward-
Backward Algorithm. Since theαt’s involve joint probabilities over the entire sequence up to
time t, they will be very small. In fact, ast grows, the values ofαt tend to shrink exponentially
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towards 0. Thus the limit of machine precision will quickly be reached and the computed values
will underflow (evaluate to zero).

The solution is to compute a normalized terms in the Forward-Backward recursions:

α̂t(i) =
αi(t)

∏T
m=1 cm

(423)

β̂t(i) =

(
T∏

m=t+1

cm

)

βi(t) (424)

Specifically, we usect = p(yt|y1:t−1). It can then be seen that, if we useα̂ andβ̂ in the M-step
instead ofα andβ, thect terms will cancel out (you can see this by substituting the formulas for
γ andξ into the M-step). We then must choosect to keep the scaling of̂α andβ̂ within machine
precision.

In the base case for the forward recursion, we set:

c1 =
K∑

i=1

p(y1|s1 = i)ai (425)

α̂1(i) =
p(y1|s1 = i)ai

c1
(426)

(This may be implemented by first computing the numerator ofα̂, and then summing it to getc1).
The recursion for computinĝα is

ct =
∑

i

p(yt|st = i)
K∑

j=1

Ajiα̂t−1(j) (427)

α̂t(i) = p(yt|st = i)

∑K
j=1 Ajiα̂t−1(j)

ct
(428)

In the backward step, the base case is:

β̂T (i) = 1 (429)

and the recursive case is

β̂t(i) =

∑K
j=1Aijp(yt+1|st+1 = j)β̂t+1(j)

ct+1

(430)

using the samect values computed in the forward recursion.
Theγ andξ variables can then be computed as

γt(i) = α̂t(i)β̂t(i) (431)

ξt(i, j) =
α̂t(i)p(yt+1|st+1 = j)Aijβ̂t+1(j)

ct+1

(432)
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It can be shown thatct = p(yt|y1:t−1). Hence, once the recursion is complete, we can compute
the data likelihood as

p(y1:T ) =
∏

t

ct (433)

or, in the log-domain (which is more stable),

ln p(y1:T ) =
∑

ln ct (434)

This quantity is decreased after ever EM-step until convergence of EM.

16.5.2 Free Energy

EM can be viewed as optimizing the model parametersθ together with the distributionξ.
The Free Energy for a Hidden Markov Model is:

F (θ, ξ) = −
∑

i

γ1(i) ln ai −
∑

i,j

T−1∑

t=1

ξt(i, j) lnAij −
∑

i

T∑

t=1

γt(i) ln p(yt|st = i)

+
∑

i,j

T−1∑

t=1

ξt(i, j) ln ξt(i, j)−
∑

i

T−2∑

t=2

γt(i) ln γt(i) (435)

whereγ is defined as a function ofξ as:

γt(i) =
∑

k

ξt(i, k) =
∑

k

ξt−1(k, i) (436)

Warning! Since we weren’t able to find any formula for the free energy, we derived it from
scratch (see below). In our tests, it didn’t precisely matchthe negative log-likelihood. So there
might be a mistake here, although the free energy did decrease as expected.

Derivation. This material is very advanced and not required for the course. It is mainly here
because we couldn’t find it elsewhere.

As a short-hand, we defines = s1:T to be a variable representing an entire state sequence. The
likelihood of a data sequence is:

p(y1:T ) =
∑

s

p(y1:T , s) (437)

where the summation is over all possible state sequences.
In EM, we’re really optimizingθ and a distributionq(s) over the possible state sequences. The

variableξ is just one way of representing this distribution by its marginals; the variableγ are the
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marginals ofξ:

γt(i) = q(st = i) =
∑

s\{i}
q(s) (438)

ξt(i, j) = q(st = i, st+1 = j) =
∑

s\{i,j}
q(s) (439)

We can also compute the full distribution fromξ andγ:

q(s) = q(s1)
T−1∏

t=1

q(st+1|st) (440)

= γ1(i)
T−1∏

t=1

ξt(i, j)

γt(i)
(441)

=

∏T−1
t=1 ξt(i, j)
∏T−1

t=2 γt(i)
(442)

The Free Energy is then:

F (θ, q) = −
∑

s

q(s) ln p(s,y1:T ) +
∑

s

q(s) ln q(s) (443)

= F1(q) + F2(q) (444)

The first term can be decomposed as:

F1(q) = −
∑

s

q(s) ln p(s,y1:T ) (445)

=
∑

s

q(s) ln

(

P (s1)
T−1∏

t=1

P (st+1|st)
T∏

t=1

p(yt|st)
)

(446)

= −
∑

s

q(s) lnP (s1)−
∑

s

∑

t

q(s) lnP (st+1|st)−
∑

s

∑

t

q(s) ln p(yt|st) (447)

= −
∑

i

γ1(i) lnP (s1 = i)−
∑

i,j,t

ξt(i, j) lnP (st+1 = j|st = i)

−
∑

i,t

γt(i) ln p(yt|st = i) (448)
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The second term can be simplified as:

F2(q) =
∑

s

q(s) ln q(s) (449)

=
∑

s

q(s) ln

∏T−1
t=1 ξt(i, j)
∏T−1

t=2 γt(i)
(450)

=
∑

s

T−1∑

t=1

q(s) ln ξt(i, j)−
∑

s

T−1∑

t=2

q(s) ln γt(i) (451)

=
∑

i,j

T−1∑

t=1

ξt(i, j) ln ξt(i, j)−
∑

i

T−1∑

t=2

γt(i) ln γt(i) (452)

16.6 Most likely state sequences

Suppose we wanted to computed the most likely statesst for each time in a sequence. There are
two ways that we might do it: we could take themost likely state sequence:

s∗1:T = argmax
s1:T

p(s1:T |y1:T ) (453)

or we could takethe sequence of most-likely states:

s∗t = argmax
st

p(st|y1:T ) (454)

While these sequences may often be similar, they can be different as well. For example, it is
possible that the most likely states for two consecutive time-steps do not have a valid transition
between them, i.e., ifs∗t = i ands∗t+1 = j, it is possible (though unlikely) thatAij = 0. This
illustrates that these two ways to create sequences of states answer two different questions: what
sequence is jointly most likely? And, for each time-step, what is the most likely state just for that
time-step?
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17 Support Vector Machines

We now discuss an influential and effective classification algorithm called Support Vector Ma-
chines (SVMs). In addition to their successes in many classification problems, SVMs are respon-
sible for introducing and/or popularizing several important ideas to machine learning, namely,ker-
nel methods, maximum margin methods, convex optimization, andsparsity/support vectors. Unlike
the mostly-Bayesian treatment that we have given in this course, SVMs are based on some very
sophisticated Frequentist arguments (based on a theory called Structural Risk Minimization and
VC-Dimension) which we will not discuss here, although thereare many close connections to
Bayesian formulations.

17.1 Maximizing the margin

Suppose we are givenN training vectors{(xi, yi)}, wherex ∈ R
D, y ∈ {−1, 1}. We want to learn

a classifier
f(x) = wTφ(x) + b (455)

so that the classifier’s output for a newx is sign(f(x)).
Suppose that our training data are linearly-separable in the feature spaceφ(x), i.e., as illustrated

in Figure 32, the two classes of training exemplars are sufficiently well separated in the feature
space that one can draw a hyperplane between them (e.g., a line in 2D, or plane in 3D). If they
are linearly separable then in almost all cases there will bemany possible choices for the linear
decision boundary, each one of which will produce no classification errors on the training data.
Which one should we choose? If we place the boundary very closeto some of the data, there
seems to be a greater danger that we will misclassify some data, especially when the training data
are alsmot certainy noisy.

This motivates the idea of placing the boundary to maximize themargin, that is, the distance
from the hyperplane to the closest data point in either class. This can be thought of having the
largest “margin for error” — if you are driving a fast car between a scattered set of obstacles, it’s
safest to find a path that stays as far from them as possible.

More precisely, in amaximum margin method, we want to optimize the following objective
function:

maxw,b mini dist(xi,w, b) (456)

such that, for alli, yi(wTφ(xi) + b) ≥ 0 (457)

wheredist(x,w, b) is the Euclidean distance from the feature pointφ(x) to the hyperplane defined
byw andb. With this objective function we are maximizing the distance from the decision bound-
arywTφ(x) + b = 0 to the nearest pointi. The constraints force us to find a decision boundary
that classifies all training data correctly. That is, for theclassifier a training point correctlyyi and
wTφ(xi) + b should have the same sign, in which case their product must bepositive.
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Figure 32: Left: the margin for a decision boundary is the distance to the nearest data point. Right:
In SVMs, we find the boundary with maximum margin.(Figure fromPattern Recognition and Machine
Learningby Chris Bishop.)

It can be shown that the distance from a pointφ(xi) to a hyperplanewTφ(x) + b = 0 is given
by |wTφ(xi)+b|

||w|| , or, sinceyi tells us the sign off(xi),
yi(w

Tφ(xi)+b)
||w|| . This can be seen intuitively by

writing the hyperplane in the formf(x) = wT (φ(xi) − p), wherep is a point on the hyperplane
such thatwTp = b. The vector fromφ(xi) to the hyperplane projected ontow/||w|| gives a vector
from the hyperplane to the the point; the length of this vector is the desired distance.

Substituting this expression for the distance function into the above objective function, we get:

maxw,b mini
yi(w

Tφ(xi)+b)
||w|| (458)

such that, for alli, yi(wTφ(xi) + b) ≥ 0 (459)

Note that, because of the normalization by||w|| in (458), the scale ofw is arbitrary in this objective
function. That is, if we were to multiplyw andb by some real scalarα, the factors ofα in the
numerator and denominator will cancel one another. Now, suppose that we choose the scale so
that thenearest pointto the hyperplane,xi, satisfiesyi(wTφ(xi) + b) = 1. With this assumption
themini in Eqn (458) becomes redundant and can be removed. Thus we canrewrite the objective
function and the constraint as

maxw,b
1

||w|| (460)

such that, for alli, yi(wTφ(xi) + b) ≥ 1 (461)

Finally, as a last step, since maximizing1/||w|| is the same as minimizing||w||2/2, we can
re-express the optimization problem as

minw,b
1
2
||w||2 (462)

such that, for alli, yi(wTφ(xi) + b) ≥ 1 (463)

Copyright c© 2011 Aaron Hertzmann and David Fleet 116



CSC 411 / CSC D11 Support Vector Machines

This objective function is aquadratic program , or QP, because the objective function and the
constraints are both quadratic in the unknowns. A QP has a single global minima, which can be
found efficiently with current optimization packages.

In order to understand this optimization problem, we can seethat the constraints will be “active”
for only a few datapoints. That is, only a few datapoints willbe close to the margin, thereby
constraining the solution. These points are called thesupport vectors. Small movements of
the other data points have no effect on the decision boundary. Indeed, the decision boundary is
determined only by the support vectors. Of course, moving points to within the margin of the
decision boundary will change which points are support vectors, and thus change the decision
boundary. This is in constrast to the probabilistic methodswe have seen earlier in the course, in
which the positions of all data points affect the location ofthe decision boundary.

17.2 Slack Variables for Non-Separable Datasets

Many datasets will not be linearly separable. As a result, there will be no way to satisfy all the
constraints in Eqn. (463). One way to cope with such datasetsand still learn useful classifiers is to
loosen some of the constraints by introducingslack variables.

Slack variables are introduced to allow certain constraintto be violated. That is, certain training
points will be allowed to be within the margin. We want the number of points within the margin
to be as small as possible, and of course we want their penetration of the margin to be as small as
possible. To this end, we introduce a slack variableξi, one for each datapointi. (ξ is the Greek
letter xi, pronounced “ksi.”). The slack variable is introduced into the optmization problem in two
ways. First, the slack variableξi dictates the degree to which the constraint on theith datapoint
can be violated. Second, by adding the slack variable to the energy function we are aiming to
simultaneously minimize the use of the slack variables.

Mathematically, the new optimization problem can be expressed as

min
w,b,ξ1:N

∑

i

ξi + λ
1

2
||w||2 (464)

such that, for alli, yi(wTφ(xi) + b) ≥ 1− ξi andξi ≥ 0 (465)

As discussed above, we aim to both maximize the margin and minimize violation of the mar-
gin constraints. This objective function is still a QP, and so can be optimized with a QP library.
However, it does have a much larger number of optimization variables, namely, oneξ must now
be optimized for each datapoint. In practice, SVMs are normally optimized with special-purpose
optimization procedures designed specifically for SVMs.
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Figure 33: The slack variablesξi ≥ 1 for misclassified points, and0 < ξi < 1 for points close to
the decision boundary.(Figure fromPattern Recognition and Machine Learningby Chris Bishop.)++

17.3 Loss Functions

In order to better understand the behavior of SVMs, and how they compare to other methods, we
will analyze them in terms of theirloss functions.9 In some cases, this loss function might come
from the problem being solved: for example, we might pay a certain dollar amount if we incorrectly
classify a vector, and the penalty for a false positive mightbe very different for the penalty for a
false negative. The rewards and losses due to correct and incorrect classification depend on the
particular problem being optimized. Here, we will simply attempt to minimize the total number of
classification errors, using a penalty is called the0-1 Loss:

L0−1(x, y) =

{
1 yf(x) < 0
0 otherwise

(466)

(Note thatyf(x) > 0 is the same as requiring thaty andf(x) have the same sign.) This loss
function says that we pay a penalty of 1 when we misclassify a new input, and a penalty of zero if
we classify it correctly.

Ideally, we would choose the classifier to minimize the loss over the new test data that we are
given; of course, we don’t know the true labels, and instead we optimize the following surrogate
objective function over the training data:

E(w) =
∑

i

L(xi, yi) + λR(w) (467)

9A loss function specifies a measure of the quality of a solution to an optimization problem. It is the penalty
function that tell us how badly we want to penalize errors in amodels ability to fit the data. In probabilistic methods
it is typically the negative log likelihood or the negative log posterior.
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Figure 34: Loss functions,E(z), for learning, forz = y f(x). Black: 0-1 loss. Red: LR loss.
Green: Quadratic loss ((z − 1)2). Blue: Hinge loss.(Figure fromPattern Recognition and Machine
Learningby Chris Bishop.)

whereR(w) is a regularizer meant to prevent overfitting (and thus improve performance on future
data). The basic assumption is that loss on the training set should correspond to loss on the test
set. If we can get the classifier to have small loss on the training data, while also being smooth,
then the loss we pay on new data ought to not be too big either. This optimization framework is
equivalent to MAP estimation as discussed previously10; however, here we are not at all concerned
with probabilities. We only care about whether the classifier gets the right answers or not.

Unfortunately, optimizing a classifier for the 0-1 loss is very difficult: it is not differentiable
everywhere, and, where it is differentiable, the gradient is zero everywhere. There are a set of
algorithms called Perceptron Learning which attempt to do this; of these, the Voted Perceptron
algorithm is considered one of the best. However, these methods are somewhat complex to analyze
and we will not discuss them further. Instead, we will use other loss functions that approximate
0-1 loss.

We can see that maximum likelihood logistic regression is equivalent to optimization with the
following loss function:

LLR = ln
(
1 + e−yf(x)

)
(468)

which is the negative log-likelihood of a single data vector. This function is a poor approximation
to the 0-1 loss, and, if all we care about is getting the labelsright (and not the class probabilities),
then we ought to search for a better approximation.

SVMs minimize the slack variables, which, from the constraints, can be seen to give thehinge
loss:

Lhinge =

{
1− yf(x) 1− yf(x) > 0

0 otherwise
(469)

10However, not all loss functions can be viewed as the negativelog of a valid likelihood function, although all
negative-log likelihoods can be viewed as loss functions for learning.
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This loss function is zero for points that are classified correctly (with distance to the decision
boundary at least 1); hence, it is insensitive to correctly-classified points far from the boundary. It
increases linearly for misclassified points, not nearly as quickly as the LR loss.

17.4 The Lagrangian and the Kernel Trick

We now use the Lagrangian in order to transform the SVM problem in a way that will lead to a
powerful generalization. For simplicity here we assume that the dataset is linearly separable, and
so we drop the slack variables.

The Langrangian allows us to take the constrained optimization problem above in Eqn. (463)
and re-express it as an unconstrained problem. The Lagrangian for the SVM objective function in
Eqn. (463), with Lagrange multipliersai ≥ 0, is:

L(w, b, a1:N ) =
1

2
||w||2 −

∑

i

ai
(
yi
(
wTφ(xi) + b

)
− 1
)

(470)

The minus sign with the secon term is used because we are minimizing with respect to the first
term, but maximizing the second.

Setting the derivative ofdL
dw

= 0 and dL
db

= 0 gives the following constraints on the solution:

w =
∑

i

aiyiφ(xi) (471)

∑

i

yiai = 0 (472)

Using (471) we can substitute forw in 470. Then simplifying the result, and making use of the
next constraint (471), one can derive what is often called thedual Lagrangian:

L(a1:N) =
∑

ai −
1

2

∑

i

∑

j

aiajyiyjφ(xi)
Tφ(xj) (473)

While this objective function is actually more expensive to evaluate than the primal Lagrangian
(i.e., 470), it does lead to the following modified form

L(a1:N) =
∑

ai −
1

2

∑

i

∑

j

aiajyiyjk(xi,xj) (474)

wherek(xi,xj) = φ(xi)
Tφ(xj) is called akernel function. For example, if we used the basic

linear features, i.e.,φ(x) = x, thenk(xi,xj) = xT
i xj.

The advantage of the kernel function representation is thatit frees us from thinking about the
features directly; the classifier can be specified solely in terms of the kernel. Any kernel that
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satisfies a specific technical condition11 is a valid kernel. For example, one of the most commonly-
used kernels is the “RBF kernel”:

k(x, z) = e−γ||x−z||2 (475)

which corresponds to a vector of featuresφ(x) with infinite dimensionality! (Specifically, each
element ofφ is a Gaussian basis function with vanishing variance).

Note that, just as most constraints in the Eq. (463) are not “active”, the same will be true here.
That is, only some constraints will be active (ie the supportvectors), and for all other constraints,
ai = 0. Hence, once the model is learned, most of the training data can be discarded; only the
support vectors and theira values matter.

The one final thing we need to do is estimate the biasb. We now know the values forai for
all support vectors (i.e., for data constraints that are considered active), and hence we knoww.
Accordingly, for all support vectors we know, by assumptionabove, that

f(xi) = wTφ(xi) + b = 1 . (476)

From this one can easily solve forb.

Applying the SVM to new data. For the kernel representation to be useful, we need to be able
to classify new data without needing to evaluate the weights. This can be done as follows:

f(xnew) = wTφ(xnew ) + b (477)

=

(
∑

i

aiyiφ(xi)

)T

φ(xnew) + b (478)

=
∑

i

aiyik(xi,xnew ) + b (479)

Generalizing the kernel representation to non-separable datasets (i.e., with slack variables) is
straightforward, but will not be covered in this course.

17.5 Choosing parameters

To determine an SVM classifier, one must select:

• The regularization weightλ

• The parameters to the kernel function

• The type of kernel function

These values are typically selected either by hand-tuning or cross-validation.

11Specifically, suppose one is givenN input pointsx1:N , and forms a matrixK such thatKi,j = k(xi,xj). This
matrix must be positive semidefinite (i.e., all eigenvaluesnon-negative) for all possible input sets fork to be a valid
kernel.
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Figure 35: Nonlinear classification boundary learned usingkernel SVM (with an RBF kernel).
The circled points are the support vectors; curves are isocontours of the decision function (e.g., the
decision boundaryf(x) = 0, etc.) (Figure fromPattern Recognition and Machine Learningby Chris
Bishop.)

17.6 Software

Like many methods in machine learning there is freely available software on the web. For SVM
classification and regression there is well-known softwaredeveloped by Thorsten Joachims, called
SVMlight, (URL: http://svmlight.joachims.org/ ).
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18 AdaBoost

Boosting is a general strategy for learning classifiers by combining simpler ones. The idea of
boosting is to take a “weak classifier” — that is, any classifier that will do at least slightly better
than chance — and use it to build a much better classifier, thereby boosting the performance of the
weak classification algorithm. This boosting is done by averaging the outputs of a collection of
weak classifiers. The most popular boosting algorithm isAdaBoost, so-called because it is “adap-
tive.”12 AdaBoost is extremely simple to use and implement (far simpler than SVMs), and often
gives very effective results. There is tremendous flexibility in the choice of weak classifier as well.
Boosting is a specific example of a general class of learning algorithms calledensemble methods,
which attempt to build better learning algorithms by combining multiple simpler algorithms.

Suppose we are given training data{(xi, yi)}Ni=1, wherexi ∈ R
K and yi ∈ {−1, 1}. And

suppose we are given a (potentially large) number of weak classifiers, denotedfm(x) ∈ {−1, 1},
and a0-1 loss functionI, defined as

I(fm(x), y) =

{
0 iffm(xi) = yi
1 iffm(xi) 6= yi

(480)

Then, the pseudocode of the AdaBoost algorithm is as follows:

for i from 1 toN , w(1)
i = 1

for m = 1 to M do
Fit weak classifierm to minimize the objective function:

ǫm =
∑N

i=1 w
(m)
i I(fm(xi) 6=yi)
∑

i w
(m)
i

whereI(fm(xi) 6= yi) = 1 if fm(xi) 6= yi and0 otherwise
αm = ln 1−ǫm

ǫm

for all i do
w

(m+1)
i = w

(m)
i eαmI(fm(xi) 6=yi)

end for
end for

After learning, the final classifier is based on a linear combination of the weak classifiers:

g(x) = sign

(
M∑

m=1

αmfm(x)

)

(481)

Essentially, AdaBoost is a greedy algorithm that builds up a ”strong classifier”, i.e.,g(x), incre-
mentally, by optimizing the weights for, and adding, one weak classifier at a time.

12AdaBoost was called adaptive because, unlike previous boosting algorithms, it does not need to know error bounds
on the weak classifiers, nor does it need to know the number of classifiers in advance.

Copyright c© 2011 Aaron Hertzmann and David Fleet 123



CSC 411 / CSC D11 AdaBoost

0 1 2

0

2

0 1 2

0

2

0 1 2

0

2

0 1 2

0

2

0 1 2

0

2

0 1 2

0

2

Figure 36: Illustration of the steps of AdaBoost. The decision boundary is shown in green for each
step, and the decision stump for each step shown as a dashed line. The results are shown after 1, 2,
3, 6, 10, and 150 steps of AdaBoost.(Figure fromPattern Recognition and Machine Learningby Chris
Bishop.)
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Figure 37: 50 steps of AdaBoost used to learn a classifier with decision stumps.
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18.1 Decision stumps

As an example of a weak classifier, we consider “decision stumps,” which are a trivial special case
of decision trees. A decision stump has the following form:

f(x) = s(xk > c) (482)

where the value in the parentheses is 1 if thek-th element of the vectorx is greater thanc, and
-1 otherwise. The scalars is either -1 or 1 which allows one the classifier to respond with class 1
whenxk ≤ c. Accordingly, there are three parameters to a decision stump:

• c ∈ R

• k ∈ {1, ...K}, whereK is the dimension ofx, and

• s ∈ {−1, 1}
Because the number of possible parameter settings is relatively small, a decision stump is often

trained by brute force: discretize the real numbers from thesmallest to the largest value in the
training set, enumerate all possible classifiers, and pick the one with the lowest training error. One
can be more clever in the discretization: between each pair of data points, only one classifier must
be tested (since any stump in this range will give the same value). More sophisticated methods, for
example, based on binning the data, or building CDFs of the data, may also be possible.

18.2 Why does it work?

There are many different ways to analyze AdaBoost; none of them alone gives a full picture of why
AdaBoost works so well. AdaBoost was first invented based on optimization of certain bounds on
training, and, since then, a number of new theoretical properties have been discovered.

Loss function view. Here we discuss the loss function interpretation of AdaBoost. As was shown
(decades after AdaBoost was first invented), AdaBoost can be viewed as greedy optimization of a
particular loss function. We definef(x) = 1

2

∑

m αmfm(x), and rewrite the classifier asg(x) =
sign(f(x)) (the factor of 1/2 has no effect on the classifier output). AdaBoost can then be viewed
as optimizing theexponential loss:

Lexp(x, y) = e−yf(x) (483)

so that the full learning objective function is

E =
∑

i

e−
1
2
yi

∑M
m=1 αmfm(x) (484)

which must be optimized with respect to the weightsα and the parameters of the weak classifiers.
The optimization process is greedy and sequential: we add one weak classifier at a time, choosing it
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and itsα to be optimal with respect toE, and then never change it again. Note that the exponential
loss is an upper-bound on the 0-1 loss:

Lexp(x, y) ≥ L0−1(x, y) (485)

Hence, if exponential loss of zero is achieved, then the 0-1 loss is zero as well, and all training
points are correctly classified.

Consider the weak classifierfm to be added at stepm. The entire objective function can be
written to separate out the contribution of this classifier:

E =
∑

i

e−
1
2
yi

∑m−1
j=1 αjfj(x)− 1

2
yiαmfm(x) (486)

=
∑

i

e−
1
2
yi

∑m−1
j=1 αjfj(x) e−

1
2
yiαmfm(x) (487)

Since we are holding constant the firstm − 1 terms, we can replace them with a single constant
w

(m)
i = e−

1
2
yi

∑m−1
j=1 αjfj(x). Note that these are the same weights computed by the recursion used by

AdaBoost:w(m)
i ∝ w

(m−1)
i e−

1
2
yiαjfm−1(x). (There is a proportionality constant that can be ignored).

Hence, we have

E =
∑

i

w
(m)
i e−

1
2
ymαmfm(x) (488)

We can split this into two summations, one for data correctlyclassified byfm, and one for those
misclassified:

E =
∑

i:fm(xi)=yi

w
(m)
i e−

αm
2 +

∑

i:fm(xi) 6=yi

w
(m)
i e

αm
2 (489)

Rearranging terms, we have

E = (e
αm
2 − e−

αm
2 )
∑

i

w
(m)
i I(fm(xi) 6= yi) + e−

αm
2

∑

i

w
(m)
i (490)

Optimizing this with respect tofm is equivalent to optimizing
∑

i w
(m)
i I(fm(xi) 6= yi), which is

what AdaBoost does. The optimal value forαm can be derived by solvingdE
dαm

= 0:

dE

dαm

=
αm

2

(

e
αm
2 + e−

αm
2

)∑

i

w
(m)
i I(fm(xi) 6= yi)−

αm

2
e−

αm
2

∑

i

w
(m)
i = 0 (491)

Dividing both sides by αm

2
∑

i w
(m)
i

, we have

0 = e
αm
2 ǫm + e−

αm
2 ǫm − e−

αm
2 (492)

e
αm
2 ǫm = e−

αm
2 (1− ǫm) (493)

αm

2
+ ln ǫm = −αm

2
+ ln(1− ǫm) (494)

αm = ln
1− ǫm
ǫm

(495)
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Figure 38: Loss functions for learning: Black: 0-1 loss. Blue:Hinge Loss. Red: Logistic re-
gression. Green: Exponential loss.(Figure fromPattern Recognition and Machine Learningby Chris
Bishop.)

Problems with the loss function view. The exponential loss is not a very good loss function to
use in general. For example, if we directly optimize the exponential loss over all variables in the
classifier (e.g., with gradient descent), we will often get terrible performance. So the loss-function
interpretation of AdaBoost does not tell the whole story.

Margin view. One might expect that, when AdaBoost reaches zero training set error, adding any
new weak classifiers would cause overfitting. In practice, the opposite often occurs: continuing to
add weak classifiers actually improves test set performancein many situations. One explanation
comes from looking at the margins: adding classifiers tends to increase the margin size. The formal
details of this will not be discussed here.

18.3 Early stopping

It is nonetheless possible to overfit with AdaBoost, by addingtoo many classifiers. The solution
that is normally used practice is a procedure calledearly stopping. The idea is as follows. We
partition our data set into two pieces, a training set and a test set. The training set is used to train
the algorithm normally. However, at each step of the algorithm, we also compute the 0-1 binary
loss on the test set. During the course of the algorithm, the exponential loss on the training set is
guaranteed to decrease, and the 0-1 binary loss will generally decrease as well. The errors on the
testing set will also generally decrease in the first steps ofthe algorithm, however, at some point,
the testing error will begin to get noticeably worse. When this happens, we revert the classifier to
the form that gave the best test error, and discard any subsequent changes (i.e., additional weak
classifiers).

The intuition for the algorithm is as follows. When we begin learning, our initial classifier is

Copyright c© 2011 Aaron Hertzmann and David Fleet 128



CSC 411 / CSC D11 AdaBoost

extremely simple and smooth. During the learning process, we add more and more complexity to
the model to improve the fit to the data. At some point, adding additional complexity to the model
overfits: we are no longer modeling the decision boundary we wish to fit, but are fitting the noise
in the data instead. We use the test set to determine when overfitting begins, and stop learning at
that point.

Early stopping can be used for most iterative learning algorithms. For example, suppose we use
gradient descent to learn a regression algorithm. If we begin with weightsw = 0, we are beginning
with a very smooth curve. Each step of gradient descent will make the curve less smooth, as the
entries ofw get larger and larger; stopping early can preventw from getting too large (and thus
too non-smooth).

Early stopping is very simple and very general; however, it is heuristic, as the final result one
gets will depend on the particulars in the optimization algorithm being used, and not just on the
objective function. However, AdaBoost’s procedure is suboptimal anyway (once a weak classifier
is added, it is never updated).

An even more aggressive form of early stopping is to simply stop learning at a fixed number of
iterations, or by some other criteria unrelated to test set error (e.g., when the result “looks good.”)
In fact, pracitioners often using early stopping to regularize unintentionally, simply because they
halt the optimizer before it has converged, e.g., because the convergence threshold is set too high,
or because they are too impatient to wait.
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