
A 3D Interactive Texture Painter

George ElKoura
University of Toronto

gelkoura@dgp.toronto.edu

Abstract

This paper presents a method for painting texture
interactively on a 3D model. Unlike some previously
published methods, the technique presented here does
not require a grid topology and does not require a dense
mesh. The resolution of the texture map produced is
independent of the density of the geometry.
We also discuss the application in a 3D application of
various brushes traditional to 2D painting. We also
present ideas that are only possible in 3D.

1. Introduction

It is common in computer graphics to take shortcuts in
order to generate a believable image efficiently. Texture
maps are the most commonly used among such shortcuts.
They allow us to modulate the properties for any point on
a surface. Texture maps are simply a bitmap that can be
applied to a surface. The bitmap can contain diffuse
colour values, alpha (transparency) values, lighting and
shadow information (usually called light and shadow
maps respectively in that context). Texture maps help us
to efficiently create realistic looking computer imagery.

The difficulty in using texture maps is that for many
surfaces used in computer graphics, there is no natural
parameterization that helps us predictably map a 2D
bitmap on a 3D model. Most notably, a general
polygonal model has no obvious parameterization
whatsoever.

The problem of parameterization is currently solved
by painstakingly mapping each vertex of the polygonal
mesh to a point on the 2D texture. Many commercial
software products are available to help with this.
Usually, a spherical or cylindrical projection is used on
the mesh (depending on the shape of the object) and then
the texture map is tweaked manually to correct the errors
of the simple projection.

Needless to say this is a tedious process. Some studios
hire artists dedicated to this task alone.

This paper presents a method for painting the texture
map directly on the 3D surface interactively. The user
never has to worry about parameterization or texture-map
distortion because what they see on the screen is the final
result of the texture mapping.

Section 2 discusses previous work in this area.
Section 3 discusses the topology required by the program
and the corresponding texture map that is generated.
Sections 4 and 5 discuss some ideas for brushes that can
be used to paint the texture. Section 6 discusses
hardware acceleration techniques that make this
application interactive. Finally, section 7 discusses
results and section 8 provides a conclusion and a
discussion of future work.

2. Previous Work

Pat Hanrahan and Paul Haeberli described a program
[1] that can alleviate some of the tedium in texture
mapping by allowing the artist to paint directly on the
object.

Their system allows the artists to paint material
attributes interactively on the model. The system is not
confined to any particular material property and can be
used to paint diffuse colour as readily as to paint specular
colour or transparency and even geometric displacement.

Their system is dependent on a geometric topology
that can be mapped to a regular grid. This gives a simple
parameterization with which to work and removes some
complexity at the expense of generality.

Another program that uses direct 3D texture mapping
is produced by Right Hemisphere called Deep Paint 3D.
However, we couldn’ t find any published papers
describing their work.

3. Texture and Topology

Two main extensions to Hanrahan and Haeberli’s
paper were the drive behind the program presented in
this paper. The first was to remove the grid topology
restriction and the other was to remove the dependency
between mesh density and texture resolution.

Our program works on any topology, even non-
manifold topologies. The only restriction imposed on the
model is that it be composed of quadrilateral polygons.
Although, we could have easily allowed for triangles as
well, we chose to only support quadrilaterals because
objects represented as Catmull-Clark subdivision surfaces
[4] are in such a form and are easy to model.

The density of the mesh and the resolution of the
texture are independent in our program. This is
important because modern hardware can more easily
render a low-density mesh with high-resolution texture
than a high-density mesh. This is accomplished by
generating an actual bitmap for the texture.

A first attempt at solving this problem involved
allocating a separate texture map for each polygon in the
mesh. Needless to say, this quickly proved to be
inefficient and rendered the program too slow for
interactive application on objects that contain even a
modest number of polygons.

The solution currently implemented, is to allocate a
single texture map (of high-resolution) and assign a
region of the texture map to each polygon. The
parameterization of the polygons and this region
allocation is done at the same time. Each polygon gets
texture coordinates that correspond to its region in the
large texture map. Note that in this method, polygons
that are adjacent in object space do not necessarily get
adjacent regions in the texture map. This is what
removes the topological restrictions imposed by earlier
work.

It is important to note here that due to precision errors
in assigning the texture coordinates, it may be more
effective to divide the geometry into a small number of
texture maps rather than using a single texture map.

The advantage in [1] of closely tying the texture
resolution to the mesh density is that it can very simply
implement geometric displacement in real-time. Our
system does not allow for this because of current
hardware limitations. Once displacement shaders can be
implemented in hardware, then our system will also be
able to do this more efficiently. Currently, our system
does not preclude painting bump maps or displacement
maps that can be used in an external renderer that
supports these features.

3.1 Gutter Space

In an initial implementation, the problem of

“bleeding” was very bothersome. Bleeding occurs when
the texture regions are laid out too close to one another.
The problem is particularly annoying because texture
region adjacency does not correspond to geometric
adjacency, so bleeding could occur on a polygon far away
and disconnected from where we are painting. To solve
this problem, we create gutter space to separate the
texture region. Since the assignment of texture
coordinates occurs independently of the texture map
allocation, the gutter space is currently assigned as a
small fraction.

4. 2D Brushes Applied to 3D

2D paint programs are well established, and many of
the techniques used in 2D programs have application in a
3D paint program. However, some complications arise
in 3D that aren’ t present in 2D. The main issue is that
we have two spaces: screen space and object space. Our
implementation currently has four brushes that are
borrowed from 2D paint programs and applied to 3D.

4.1 Local Space Brush

The local space brush operates only on the local space

of the geometry. Once the polygon under the cursor is
found, and we know what part of the texture map we’d
like to modify (see Section 6 for how this is done), this
brush paints a filled circle using the current colour and
clips the circle to the region of the texture map occupied
by the polygon. Of importance to note here is that the
position under the cursor is sampled only once.

Figure 4.1.1 Local Space Brush. Notice how the brush
nib is clipped at the cube face boundary because the
mouse was clicked inside the face. Compare this with
the default brush.

4.2 Screen Space Brush

The screen space brush operates by effectively

drawing a circle in screen space and projecting down
onto the mesh. Here a midpoint algorithm for drawing a
circle is used to generate a list of pixels in screen space.
Then each pixel is sampled to get the polygon and the
texture coordinates at that pixel and then that pixel is
painted. Due to the low precision of floating points used
on the hardware, this does not produce desirable results.
Many pixels map to the same texture coordinates because
of the low-precision interpolation. This produces a
speckled look, which is usually not what the user expects.
See section 6 for a discussion on the effect and possible
solution to the lack of desired precision on the hardware.

Figure 4.2.1 Screen Space Brush. Here we can clearly
see the problem. The hardware interpolates using only 8
bits per channel, thus giving us only a few points on the
texture map that we can colour.

4.3 Default Brush

For lack of a better name, the default brush operates

both in screen space and in local space. When it finds
the pixels we need to paint in screen space, we then paint
a circle in local space. However, since the circles we
draw in local space are still dependent on the sampled
pixels and texture coordinates, this brush still suffers
from the lack of precision on the graphics hardware, but
to a much lesser degree than the screen space brush.

Figure 4.3.1 Default Brush. Notice how the brush nib is
not clipped at the cube face boundary but looks like a
circle projected onto the geometry. Compare this with
the local space brush.

4.4 L ine Brush

The line brush implements a simple Bresenham line
algorithm in screen space and applies the same technique
in the default brush along the rasterized line. This
allows us to draw straight lines on screen and have the
line projected onto our model.

This same technique can be applied for virtually all
simple 2D brushes, for example, circle, ellipse, rectangle,
and so on. Only the line brush is currently implemented.

Figure 4.4.1 Line Brush. This is the line brush, which
uses an underlying default brush. Here the line is
projected onto the geometry.

5. 3D Brushes

In three dimensions we can offer interesting brushes
that make our job of painting a 3D surface simpler. We
have implemented two such brushes, where one is simply
the generalization of the other.

5.1 Face Fill

The face fill brush simply colours the polygon under

the pixel uniformly with the selected colour. The 3D face
fill brush provides a generalization of this brush.

5.2 3D Face Fill

The 3D face fill brush behaves like the simple face fill

brush in that it colours a face in a uniform selected
colour. However, it also allows the user to select an
angle and it continues to colour polygons whose normals
differ by less than the selected angle. This allows the
user the uniformly colour a region that contains a little
curvature. Co-planar polygons can be coloured in this
way by setting the angle to 0, or the entire mesh can be

coloured by setting the angle to 90 (given that your mesh
meets the restriction.)

For this brush, it was necessary to implement a
structure for connectivity so that face fills don’ t jump
over discontinuities. We implemented a simple point
connectivity structure. We believe that more predictable
results would be obtained from an edge connectivity
structure such as the Baumgart's winged edge structure
[5].

Figure 5.2.1 3D Face Fill Brush. This is the geometry of
a toy spaceship. Using the 3D Face Fill brush with the
angle parameter set to 90 degrees, the entire object was
painted red, then using an angle of 25 degrees, only the
burner area was painting in yellow, because the
polygons comprising this area don’ t defer by more than
25 degrees.

6. Hardware Acceleration

One of the main problems that must be solved is
performing the inverse mapping from the position on the
screen where the user clicked to the texture coordinates
of the polygon that occupies the pixel.

Our first attempt used the object tag technique
described in [1] where the entire geometry was rendered
into a buffer, but instead of colour using an integer that
uniquely identifies the polygon. On modern hardware we
have at least 24 bits to represent the unique ID and can
thus support a good number of polygons. Once the
polygon is discovered we then cast a ray from the eye
through the pixel and intersect it against the polygon.
Only the selected polygon is intersected so we do not
need to perform any ray tracing optimizations. Once the
point on the ray that intersects the polygon is found, we
need to convert this point into parameterized space of the

polygon. This is the inverse parameterization required to
find the texture coordinates corresponding to the point.
Since we only support “well-behaved” quadrilaterals, we
triangulate the quad and find the barycentric coordinates
of the point in whichever triangle contains it.

This method works, but it is slow. We can optimize
the entire process by taking advantage of modern
hardware and our imposed texture coordinates. Our
texture coordinates are designed in such a way that no
two polygons have any texture coordinates in common.
In other words, the texture coordinates uniquely identify
the polygon. Thus, instead of rendering a unique ID
during the picking phase, we instead use the red and
green channels to render the u and v of the texture
coordinates respectively. Thus we let the hardware
interpolate the texture coordinates for us. All we have to
do now is read this buffer to get the texture coordinates
corresponding to where the mouse cursor was positioned.

A very important note here is that the precision is still
24 bits, and since we are only using red and green we are
limited to 16 bits of precision. This is not adequate for
practical purposes and is the cause of the problem in the
screen space brush discussed earlier. We get around this
problem by painting an area instead of just a point.
However, the ideal solution would come from true
floating-point operations on the graphics hardware. The
next generation graphics hardware promises to offer such
support.

7. Results

The techniques presented here work well at interactive
speeds on faster machines. Older-generation machines
with poor texture hardware seem to struggle during the
painting. We could perhaps implement methods where
we decrease the texture resolution while the user is
painting if we require that the program run on the older
machines.

The application is fun to use but without more
brushes, it is hard to produce production quality textures.
As with other applications of this nature, it requires a
skilled artist to produce visually appealing results.

The main dissatisfaction is with the low-precision
hardware interpolation used to perform the texture
coordinate calculations. This limitation makes the
default brush hard to predict and hard to use for detailed
work. Being able to control the brush sizes helps quite a
bit, but still does not alleviate the need for higher
precision calculations on the hardware.

8. Conclusions and Future Work

The techniques discussed in this paper are a stepping-
stone towards what could be a very useful and
entertaining application for painting interactively on the
surfaces of 3D objects. Removing the need for the artists
to manually assign texture coordinates, lifting the grid
topology restriction, and separating texture density from
mesh density all go towards making texture mapping
accessible even to young children.

See Figures 8.1 and 8.2 for some images of the
program at work.

The important next steps are implementing many
more brushes and improving the texture coordinate
interpolation precision, either through hardware or
through a fast software solution.

Also, more intelligent allocation of texture coordinates
would be helpful. For example, a polygon with bigger
area would occupy a larger texture map region. This
would also help in dynamically selecting the texture map
resolution, which is now done statically.

Independent to the dynamic texture map resolution is
being able to calculate and use the optimal size of the
gutter for the texture map.

9. References

[1] P. Hanrahan and P. Haeberli, “Direct WYSIWYG
Painting and Texturing on 3D Shapes” , In ACM
SIGGRAPH Conference Proceedings, August 1990, pp.
215-223.

[2] D. Hearn and M. P. Baker, “Computer Graphics” , 2nd
Ed, Prentice Hall, 1997.

[3] M. Woo, J. Neider et al., “OpenGL Programming
Guide” , 3rd Ed, Addison-Wesley, 1999.

[4] E. Catmull and J. Clark, “Recursively Generated B-
Split Surfaces On Arbitrary Topological Meshes” ,
Computer Aided Design, 1978, pp. 350-355.

[5] B. Baumgart, “Winged Edge Polyhedron
Representation” , Technical Report CS-320, Stanford
Articial Intelligence Laboratory, 1972.

 Figure 8.1 Dolphin Screenshot. This image shows the application painting a texture on a model of a

dolphin modeled using subdivision surfaces. See Figure 8.2 for the texture map that is generated for
this model.

Figure 8.2 Dolphin Texture Map. This is the texture map that is generated for the dolphin model shown in Figure 8.1.
Note that the “ gutter” space between the texture regions is exaggerated here for clarity.

