
Textured Image Based Painter ly Render ing Under Arbitrary L ighting

George ElKoura
University of Toronto

gelkoura@cs.toronto.edu

Abstract

Painterly rendering styles have received some
attention lately as an interesting alternative to photo-
realistic image processing and synthesis. State of the art
painterly renderings, while producing results that
superficially resemble certain artistic styles, such as
impressionistic or expressionistic, fail to convey the
implicit detail provided by the artist’s choices of brushes
and canvas.
In this paper we present techniques to simulate the
effects of paint thickness and canvas texture as they
interact under arbitrary lighting conditions. We also
extend previous works by allowing the user to specify
brush nibs of any size, shape and texture.

1. Introduction

Current techniques employed in image based painterly
renderings attempt to simulate artistic styles by
simulating a paint stroke’s color, size, length, spacing
and curvature [1]. However, physical paint artists have
many more variables at their disposal. They can convey
their art by their choice of paint thickness in each stroke,
by their use of canvas texture, and the luckier ones even
have the choice of lighting conditions under which their
paintings are displayed.

We present techniques that extend previous work to
enable the representation of paint thickness, canvas, and
lighting. Moreover, we present a technique to generalize
the shape of the brush nib.

In section 2 we discuss previous work. In section 3 we
discuss the generalization of the brush nib’s shape.
Sections 4, 5 and 6 discuss adding paint thickness,
canvas and lighting respectively. We discuss our
implementation and results in sections 7 and 8. Finally
we discuss some ideas for future work in section 9.

2. Previous Work

Hertzmann et al. presented techniques to generate
image-based painterly renderings that make use of curved
brush strokes and brushes of varying size. This work was
later extended by adapting some video-coherence

techniques that were originally presented by Litwinowicz
in [9].

While this work allowed for varying brush sizes, it did
not make provisions for varying the brush shape. We
address the issues of using a generalized brush shape in
this paper.

The idea of simulating more realistic brush strokes is
not new. Lewis used signal processing approaches to
give strokes a texture in 1984 [7], and Turner Whitted, in
1983, introduced the idea of sweeping an anti-aliased
circle along a curve to produce anti-aliased lines [8].
Whitted also suggested that sweeping other kinds of
primitives would produce other interesting effects, such
as a line that looks as though it were made of glass for
example.

Modern, commercial image processing software, such
as Corel Corporation’s PHOTO-PAINT, allows for the
simulation of a variety of paint and canvas effects. The
paint effects seem to be generated by processing the
image with a convolution filter, and do not seem to
attempt creating a realistic looking painting. Simulating
the canvas in this package is done, it seems, by using the
luminance of a pattern to emboss the image and cross-
dissolve using user-specified parameters. Again, these

Figure 1 A painted butterfly rendered with brush depth
and canvas thickness.

Figure 2 Example of a non-
symmetric noisy brush nib.

techniques, though interesting, do not make any
provisions for arbitrary lighting and do not attempt to
achieve a 3D look.

Central to our technique is the use of displacement
maps to give the appearance of depth to a flat image.
Displacement maps are a generalization on the idea of
texture maps and were presented as part of the Reyes
rendering architecture [6], which was of great help in the
development of this work.

3. Using a general brush nib

Hertzmann, in [1], uses an anti-aliased circle as the
brush nib. We use a more general approach by allowing
the user to use an arbitrary image as a nib. The nib
template is used as a multiplicative filter on the choice of
color obtained from the original picture.

The choice of a circle obviates the need to properly
orient the brush nib along the direction of the stroke.
However, when an arbitrary shape is used, orienting the
nib becomes critical. We require that the nib template
chosen by the user be given in a vertical position, in other
words, it should be pointing up. Then we compute the
angle between the vector (0, 1) and tangent vector to the
curve at the point at which we wish to render the nib, and
we rotate the nib by this angle.

The rotation is computed as

yy

yy

yuuxy

uyxux

+−=

−−=
2

2

1'

1'

where),(yx are the un-rotated coordinates,

)','(yx are the corresponding rotated coordinates and

yu is the y component of the derivative of the curve at

the point),(yx . This form, in general, is more efficient

than explicitly computing the angle and the rotation
matrix. We use NURBS for our stroke curves and
computing the derivatives is fairly straightforward (see
[4]).

Applying this rotation significantly improves the
quality of the rendered strokes, this should be obvious in
the general case. However, even for a circle with noise
applied, not performing this corrective rotation will
wash-out the effect of the constant noise. One way to get
around this is to regenerate the noise on the brush nib for
each dab, however this is unrealistic and does not
represent the properties of brush thistles, which produce
predictable dabs per stroke. Ideally, both would be
implemented and left up to the user’s discretion.

4. Paint Thickness

One approach to generating a 3D texture look that
interacts with arbitrary lighting is to generate normal
information for each stroke and render each stroke using
simple bump-mapping techniques. This approach proved
to be unsuccessful. The quality of the results is in direct
proportion to the quality of the normals supplied by the
user. The best way to produce these normals is to force
the user to model a 3D brush nib. Needless to say, this
puts too much onus on the user and provides for a very
frustrating experience.

The second approach
we tried, which proved
to be much more
successful, makes use of
displacement maps [6].
Instead of generating
normals, we generate a
displacement map. The
terms displacement
maps and height maps
are used
interchangeably. The
displacement map is
like a texture map that contains the height of each pixel.
When geometry is rendered with a displacement map,
each point is displaced by the value indicated in the
displacement map before finally being rendered on
screen. This approach has many advantages over the
initial “normals” technique. First, it uses one plane
instead of three, thus saving memory. Secondly, it allows
for self-shadowing which bump-mapping does not. In
other words, under certain lighting conditions, some
brush strokes will be shadowed by other strokes. Lastly,
and most importantly, it is much easier for a user to
supply a displacement map for a brush nib than it is to
supply the normals for the nib.

The user only supplies one image that represents the
brush nib. The luminance from the image is used for
height information at each pixel, and the shape is
determined by setting a threshold on luminance. That is
to say, pixels with a luminance value above a certain
threshold will contribute to the shape of the nib.

5. Canvas Texture

Much of a painting’s highlights under certain lighting
conditions result from the interaction of the paint with
the canvas. It is thus important, in order to produce
convincing results, to simulate the canvas as well as the
paint thickness. Other attempts at simulating the paint

canvas use a patterned texture to brighten and darken
certain parts of the image to produce the effect of a
picture drawn on a canvas. Other luminance patterns
produce pictures that have the appearance of being drawn
on a brick wall for example [5].

The advantage of our technique is that the canvas only
affects the height of the brush stroke, not the color of the
brush stroke, as in real world paintings. The other
techniques cannot be arbitrary lit and do not show the
subtle specular highlights seen with our technique.

The canvas pattern in our system is only applied to the
height-plane of the image and only appears during the
rendering of the displacement map. Before any of the
strokes are rendered, the canvas pattern is generated on
the height-plane according to user settings. As paint
stroke thickness is rendered into this plane, we add the
stroke thickness to the height at that location (which
includes the canvas and previous strokes). Our initial
implementation added and capped the sum for each
stroke. However, for complicated stroke patterns, we
quickly reach the cap and we end up with a uniform (the
maximum) height at each pixel and in essence losing all
the height information. Instead we let the sum
accumulate un-capped, and, after the painting is fully
rendered, find the maximum height and divide all pixels
by it. This normalization step produces great results.

The user can specify the size of the canvas grid and
the height of the canvas. Only regular patterns are
supported by the system, though there is nothing that
precludes using an arbitrary, user-specified, canvas
pattern.

The canvas is generated by the algorithm shown in
Algor ithm 1. The variables patch_height, patch_width
and canvas_height are user supplied parameters. The
variable base_height is used to make sure that the canvas
has at least some height throughout. The algorithm

simply breaks the image up into patches (of user-
specified size) and uses quadratic roll-off to simulate the
weaves.

6. L ighting the Painting

Lighting the painting, after the color plane and the
height plane have been generated, is taken care of by the
renderer.

We start with a single quadrilateral polygon that has
the same aspect ratio as the original image, and a camera

numpatchx ← image_width/patch_width
numpatchy ← image_height/patch_height

for patchx = 0 to numpatchx
 for patchy = 0 to numpatchy
 for p = -patch_width/2 to patch_width/2
 for q = -patch_height/2 to patch_height/2
 if (patchx + patchy) is odd then
 { horizontal patch }

a ← patch_width2 / 4
 c ← canvas_height
 v ← (-c/a)p2 + c;
 else
 { vertical patch }
 a ← (patch_height2 / 4
 c ← canvas_height
 v = (-c/a)q2 + c
 end

 pixel_height(p, q) ← v + base_height
 end
 end
 end
end

Algor ithm 1 Routing for generating canvas height
maps.

 (a) (b) (c)

Figure 3 Canvas height maps generated using different parameters. (a) and (b) are 16 × 16 with height 0.7 and 0.2 respectively.
(c) is 4 × 4 with height 0.5.

(a)

(b)

(c)

Figure 4 (a) The original dog picture. (b) The generated
heigh map. (c) The final render of the painting.

 with the same resolution, and apply the color plane as a
texture map and the height plane as a displacement map.
We can then place lights around the polygon to light our
painting appropriately and then send it to a Reyes [6]
based renderer.

After the displacement map and the texture map have
been generated, what can be done with the renderer is
limitless.

Reyes renderers work by converting all primitives to
micropolygons and adaptively subdividing them as
required, based on the footprint occupied by the
micropolygon in the image. The rendering pipeline
allows for these micropolygons to be displaced before
they are rendered. We take advantage of this by letting
the render do the hard work of figuring out how much
our polygon needs to be subdivided and then we displace
the micropolygons according to the generated
displacement map. Finally the renderer takes the moved
micropolygons and renderers them with accurate lighting
and shadows.

7. Implementation

The techniques described in this paper were
implemented as a custom Composite Operator (COP) in
Side Effect Software’s Houdini Animation Tools. We
used COPS version 2.0, which was still in production
during the development of this work. This presented its
own challenges, including the necessity to implement
image manipulation functions that would be readily
available in other libraries designed for computer vision
applications. However the power and flexibility of this
architecture were well worth the extra effort spent in
implementing some simple routines. The images were
then rendered with Mantra, a renderer based on the
Reyes architecture, similar to Pixar’s RenderMan.

We used a few variations on Hertzmann’s modified
algorithm. Instead of using summed-area tables for
blurring (and video coherence), we used the slower
Gaussian blur. Summed-area tables are exceptional
when performance is paramount, but are disadvantageous
when memory footprints must be kept low. Also, instead
of using cubic B-splines, we used cubic NRUBS curves
with a uniform basis.

8. Results

In this section we discuss results obtained using our
system. In general we find the results good, though we
believe that it may be hard to convince someone that they
are real paintings. The shortcomings of the system, and

suggestions for ameliorating them, are discussed in the
section following this one. More results and a more
thorough discussion of the result can be found at
http://www.dgp.toronto.edu/~gelkoura/proj/index.html.

8.1. The Butter fly

The butterfly results are shown on the color plates at
the end of the paper. We first show what the image
would be like rendered without any height information at
all. This is similar to the effect that would be generated
by other painterly rendering algorithms, and looks rather
flat.

We then show what the image would be like rendered
with only the height information obtained from the brush
strokes (and not the canvas). The painting is rendered
with two light sources at the top corners looking towards
the painting. Without the canvas, the painting looks as
though it has been painted on a perfect surface. This is
because this particular picture has a constant colored
background. The painting doesn’ t look quite right when
only using the brush stroke heights.

If we don’ t use the brush height information at all and
only use the canvas height, the painting looks more
convincing than the previous case. This is because this
loosely simulates thin paint on a thick canvas, which is
believable.

Finally, when taking into account both the brush
stroke and the canvas height, we achieve the best, and
most convincing all the paintings. Note here that the
specular highlights are exaggerated for illustrative
purposes, and that an artist would not choose such
settings.

8.2. The Dog

A picture of a dog, kindly donated, was used to
illustrate the effect of lighting the painting with different
light sources. An animation of lights moving across the
painting can be downloaded at
http://www.dgp.toronto.edu/~gelkoura/proj/index.html.

The dog picture is rich in detail and the stroke
patterns produced (which are nicely visible in the height
plane) are more complex than those produced by the
butterfly picture. It is this complexity and fullness that
made us realize quickly that capping the height after
each was a bad idea.

9. Future Work

While we found the results to be exciting and rather
promising, the paintings produced still have a certain

plastic feeling that is so common to computer graphics.
Our gaudy choice of specular highlight parameters
certainly doesn’ t help. However what we seem to be
missing mostly is the interaction of colors between each
stroke. Using a constant color per stroke is unrealistic
and produces a fake looking painting.

Easy additions to the algorithm may also improve the
quality of the output. For example, allowing the user to
specify the roughness parameter of the strokes, and not
just the specular, may reduce that plastic feel.

As far as the generation of the actual paint strokes, we
did all our calculations in RGB space and we expect to
get better results if we worked in HSV. We rely heavily
on luminance, where we really should rely on hue. This
is visible in the dog painting, where the luminance
difference between the dog’s coat and the sidewalk are
negligible, where the hue difference would have been
substantial.

10. Acknowledgments

I would like to thank Professor Kiriakos Kutulakos for
introducing me to the intermingling of computer
graphics and computer vision. I would also like to thank
the Research and Development staff at Side Effects
Software for all their wonderful support and amazing
tools.

11. References

[1] Aaron Hertzmann, “Painterly Rendering with Curved
Brush Strokes of Multiple Sizes” , In ACM SIGGRAPH
98 Conference Proceedings, July 1998, pp. 453-460.

[2] Aaron Hertzmann and Ken Perlin, “Painterly
Rendering for Video and Interaction” , In First
International Symposium on Non-Photorealistic
Animation and Rendering, June 2001.

[3] Side Effects Software, Inc. “Houdini 3D Animation
Tools 5” .

[4] L. Piegl and W. Tiller, The NURBS Book, 2nd
Edition, Springer-Verlag, Berlin, 1997.

[5] Corel Corporation, Inc. “Corel PHOTO-PAINT 10” .

[6] R. L. Cook, L. Carpenter and E. Catmull, “The Reyes
Image Rendering Architecture” , In ACM SIGGRAPH 87
Conference Proceedings, July 1987, pp. 95-102.

[7] John-Peter Lewis, “Texture Synthesis for Digital
Painting” , In ACM SIGGRAPH 84 Conference
Proceedings, July 1984, pp. 245-252.

[8] Turner Whitted, “Anti-Aliased Line Drawing Using
Brush Extrusion” , In ACM SIGGRAPH 83 Conference
Proceedings, July 1983, pp. 151-156.

[9] Peter Litwinowicz. “Processing Images and Video for
an Impressionist Effect” , In Non-Photorealistic
Rendering, SIGGRAPH Course Notes, 1999.

(a) (b)

Figure 5 The original butterfly picture and the painting produced without using any height information.

 (a) (b)

Figure 6 Displacement map generated using only the height information for the brush strokes and the resulting rendered painting.

(a) (b)

Figure 7 Displacement map and resulting image when only canvas height information is used.

 (a) (b)

Figure 8 Displacement map and resulting image when both the canvas and the brush stroke height information is used.

