Shape Matching of 3-D Contours using Normalized Fourier Descriptors
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Abstract structural methods, especially those using graph-like repre-
sentations [14], usually lead to variants of the computation-
In this paper, we develop a simple, eigen-space matchingintensive graph isomorphism algorithm [9].

algorithm for closed 3-D contours. Our algorithm relies on In this paper, we study the problem of matchiB¢d
a novel method which normalizes the Fourier descriptors contours which are closed curves embeddedRA. This
(FDs) of a 3-D contour with respect to two of its FD co- is more difficult than the 2-D problem, but more manage-
efficients corresponding to the lowest non-zero frequencies.able than general surface matching, since generalization of
The remaining matching task only involves vertex shift and known 2-D techniques is possible. On the other hand, effi-
rotation about thez-axis. Our approach is inspired by the cient matching techniques for 3-D contours are quite useful
observation that the traditional Fourier transform of a 1-D in the surface case, if appropriate characteristic contours can
signal is equivalent to the decomposition of the signal into be extracted from the surface models [1].
a linear combination of the elgenvectqrs qf a ;moothlng P-4 1 Related work and motivation
erator. It turns out that our FD normalization is equivalent
to aligning the limit plane approached by the sequence of  The first notable matching technique for 2-D contours

progressively smoothed 3-D contour with the-plane. is due to Zahn and Roskies [21], where a contour is repre-
sented by a 1-D, arc-length parameterized signal of cumu-
1. Introduction lative turning angles. The Fourier transform, or Hoairier

descriptors(FDs), of the signal are used to represent the

Shape matching and the measurement of shape similaritycurve. Other measures, such as curvature [13] and mo-
are essential tasks in several computer vision problems, in-ments [7], can also be used to define the signal.
cluding model-based object recognition, classification, and A problem with such descriptors is that a closed curve is
retrieval. Earlier work on the topic focus primarily on pla- not always closed when it is reconstructed from a truncated
nar shapes [7, 12, 13, 14, 17, 19, 21]. For an extended in-set of FDs. Persoon and Fu [11] remedies this by treating
troduction of these techniques, please refer to any of thea 2-D contour as aomplex-valuedignal, and the FDs are
several survey papers [6, 9, 18]. Matching of 3-D surface still defined as its Fourier transform.
models is considerably more difficult [1, 15], and is just In both cases, the similarity distance between two con-
starting to receive more attention [4, 8, 20]. tours is defined as th@mallestpossible sum of component-

Planar shapes are usually characterized by, and comwise differences between the corresponding FDs; the con-
pared with respect to, their 2-D contours [7, 12, 13, 19, 21]. tours are free to undergo any rigid transformation, and the
One of the main reasons for the popularity of contour-basedchoice of the starting point on the contour can be arbitrary.
shape analysis techniques is that edge detection constituteBinding the best way to match two contours is possible
an important aspect of shape recognition by the human vi-through non-linear optimization [11], but the computational
sual system and by psycho-visual experiments studying eyecost is formidable when interactivity is desired.
movements [9]. Wallace and Wintz [19], and more recently, Rui et

Contour-based methods also tend to be more efficiental. [12], propose the use aformalized Fourier descrip-
and intuitive than those based on moment integrals [17] ortors (NFDs) to match 2-D contours more efficiently. The
structural information [14]. In particular, it is difficult to  average position, i.e., the centroid, of the contour vertices
correlate high-order moments with shape features [6], andare aligned with the origin. Scale normalization is accom-



plished by dividing all vertices by the magnitude of the Previous matching methods for 3-D curves [2, 5] com-
largest FD coefficient. Finally, therientation of the ma-  bine polygonal pre-smoothing, B-spline approximation, and
jor axesof the shapes are aligned exactly before a much geometric hashing [20] to locate maximum matchaiiee

simplified shape matching step is performed. portionsbetween a test curve and a model curve. Matching

The price to pay for efficiency is that these approachesis based on estimated differential quantities invariant under
using NFDs are not guaranteed to find the optimal match-rigid transformation. Since a curve segment is defined us-
ing. But if the two contours are sufficiently close to each ing asequencef control points, there is no need to handle
other, which is often the case in applications such as imagedifferent choices of the starting point for the parameteriza-
classification and retrieval, the distance found will generally tion. To achieve better robustness, Pajdla and van Gool [10]
be very close to the optimum [19]. propose the use of semi-differential invariants.

Let us now turn our attention to the matching of 3-D con-  In this paper, we are concerned with matching the shape
tours. We first argue that current 1-D or 2-D techniques do of 3-D contoursglobally. For many practical applications,
not work for 3-D contours as is. For example, the trans- the matching of overall shapes is more essential than that of
formation of a 3-D contour into a 1-D signal of curvature local features. This, along with the inevitable presence of
would lose too much information, as shown in Figure 1. noise in the raw data, warrants the use of FDs. We general-
ize the notion oNFDs[19, 12] to handle 3-D contours, and
develop a matching algorithm that is simple, efficient, and
easy to implement. We demonstrate the effectiveness of our
approach both theoretically and empirically.

1.2. Overview of approach and contribution

We formulate the discrete Fourier transform of a 3-D

(@ (b) contour as a decomposition with respect to the eigenvec-
tors of asmoothing operatorEach FD coefficient obtained
Figure 1. Two very different contours can is a complex 3-D vector. Separating the real and imaginary
have the same arc-length parameterized cur- parts of the complex numbers, we can view an FD coeffi-
vature distribution. cient as being characterized by two real 3-D vectors.

To match two contours, we obtain their FDs after cen-

To represent a 3-D contour parametrically and uniquely, troid and scale normalization. We generalize the normal-
higher-order differential invariants, such as torsion [2, 5] ization of the major axes of planar shapes to the align-
or Gaussian curvature, need to be used. Accurate meament of the two FD coefficients corresponding to the lowest
surements of these differential quantities usually require non-zero frequencies. Indeed, these coefficients capture the
the construction of a fourth-order B-spline approximation most dominant component of the overall shape.
of the sampled contour. Although B-splines offer local We show that our normalization problem reduces to the
control, they are sensitive to quantization or measurementalignment of two pairs of 3-D vector&y;, v;) and(us, va),
noise, and a pre-smoothing step using explicit energy mini- under vertex shift and rotation. We make the key observa-
mization is often necessary [2]. tion that the plane spanned by andv;, i = 1,2, is in-

Data noise can be conveniently filtered out using trun- variant under vertex shift. Aligning these two planes first
cated sets of FDs. Since noise contributes only to FD coef-has a nice geometric interpretation, and it reduces the com-
ficients corresponding to high frequencies, they can simply putational cost greatly. The remaining matching task only
be ignored in shape matching. But to be able to match 3-Dinvolves vertex shift and rotation about theixis; we show
contours using FDs, current 2-D techniques [11, 12, 19, 21]how this can be carried out efficiently.
have to be generalized to handle the extra degrees of free- The complexity of our algorithm i€ (kn), wheren is
dom in the rigid transformations allowed. the number of point samples along the contour, And n

A crucial difference caused by the increase in dimension is the number of FD coefficients needed to measure the sim-
lies in FD normalization. Existing 2-D methods [12, 19] ilarity distance. Note that in practice, not many FD coeffi-
rely on the fact that the major axis of a planar shape is char-cients are need for shape discrimination; this is especially
acterized by aingle2-D vector. After proper normalization true if the number of samples is large. We also point out the
with respect to centroid and scale, the major axes of two pla-possibility of reducing the complexity of our algorithm to
nar shapes can be alignedactlyby a rotation. However, an optimalO(n logn).
the major axis of a 3-D contour is characterizedwg 3-D To the extent of our knowledge, our approach is the first
vectors, and there rarely is a set of rotations which would generalization of NFDs to handle 3-D contours. The choice
align the major axes of two 3-D contours exactly. of eigen-decomposition over traditional Fourier transform



formulations not only offers a great deal of geometric intu- contribution. For simplicity, we use uniform weighing in
ition, it also lays some groundwork for the generalization of our experiments, i.ey; = ... = w, = 1. In either case,
this kind of techniques to handle 3-D meshes. our similarity distance is indeedraetrig since it is equiv-
Without an appropriate functional representation for a alent to an Euclidean distance measure between points in
mesh with irregular connectivity, a Fourier transform cannot R™ for some positive integen.
be constructed. But various discrete smoothing operators  Our similarity distance is a trivial generalization of the
have natural 3-D generalizations. Eigen-decompositions ofone used by Wallace and Wintz [19] to 3-D, and with the
a mesh with respect to such operators can be quite usefuaddition of the square root to obtain a metric. Usinglan
in a number of mesh processing tasks. The best example ofneasure instead df, appears to make little difference [19].
this work in computer graphics is Taubin’s signal process- On the other hand, the variance measure of Rui et al. [12]
ing approach for mesh smoothing [16]. does not appear to have an easy 3-D generalization.
Finally, as we have mentioned, an efficient matching  Finally, a measurgi(4, B) = >7_,(|Ax|? — |Bx|?)?
technique for 3-D curves alone can be used in the analy-that is invariant under both rigid transformation and vertex
sis and recognition of surface models, provided that a set ofshift has been used for the recognition of hand-written char-
characteristic curves have been identified. acters [9]. But observe that for general contours in 3-D, this
1.3. Organization of the paper measure would produce_ many false positives. For e_xample,
a contoura can look quite different from one that is ob-

In the next section, we briefly recall the traditional for- tajned froma by shifting only they coordinates, while the
mulation of FDs, and define the similarity measure we use. distance reported by would be zero.

In Section 3, we present the smoothing operator, its eigen-

properties, and a theorem concerning its limit behavior. In 3 Ei d iti d iated ED
Section 4, we describe our matching algorithm using the ** Igen-decomposiiion and assoclate S

NFDs we develop. Expenmental_ results are shown in Sec-  |n this section, we prepare the necessary theory for our
tion 5 to support our approach. Finally, we conclude in Sec- matching algorithm. We derive the FDs of a 3-D contour
tion 6 with some suggestions for future work. through a decomposition using the eigenvectors ofid-
point smoothingoperator. We analyze the eigenproperties

2. Traditional FDs and our similarity distance and the limit behavior of midpoint smoothing, with empha-
sis on the underlying geometric intuition. We show that
with a uniform dilation, repeated applications of the mid-
point smoothing operator force a 3-D contour to converge
to a limit plane. In particular, two spanning vectors of this
limit plane correspond to the dominant FD coefficient of the
original contour.

In what follows, the letteri is reserved for/—1, the

Let a andb be two 3-D contours. The tradition&Ds imaginary unit. Then-th roots of unity are denoted by

25
A (and B) of a (andb) are defined using the usual discrete #1- - ,zn,jwherezj e Clearly, we haver, = 1
Fourier transform. Specifically, eachy, is a vector inC? andz; = 21, j = L,... ,n. Finally, we denote the trans-
given by 4, = 3" a.e—ZE \wherek = 1 n. The pose of a matrix\ by M7, the conjugate byM/, and the

c j=1% y =L ..., n. . N
set of A,.’s are referred to as tHeD coefficientf a. conjugate transpose by .

In this paper, we define themilarity distancebetween 3 1. The midpoint smoothing operator
a andb as theminimumof the following L, measure:

In this paper, each 3-D contouris characterized by a
sequence of sample points alomgwhich are its vertices
and are denoted by, ao, . .. , a, in order. We represerat
by ann x 3 coordinate matrixa, consisting of an ordered
list of vertex coordinates. Note thais simply a closed 3-D
polygon, and for convenience, we often address it using its
coordinate matrix.

Let a be the original 3-D contour, i.e., a closed poly-
" 3 gon, withn vertices. Themidpoint polygora’ of a is the
u(A, B) = Zwk Z Ar; — Bijl?|, ) polygon obtained by connecting the midpoints of all the line
=1 segments oh in order. The midpoint smoothing operation
can be captured by the-th order midpoint smoothing op-
under arbitrary translation, scale, rotation of the contours, erator S,,, with a’ = S,a. The operatolS,, is ann x n
and vertex shifts, where | denotes the norm of a complex matrix whoseij-th entry is 1/2 ifj = ¢ or j = i 4+ 1 modn,
number. Of course, the FD coefficients will be derived in a and 0 otherwise.

j=1

different way using our NFD approach. It is interesting to note tha$,, is invertible if and only
The weightsw, can be chosen in a variety of ways. For if n is odd. For any odd number, S, ! has 1's all along
example, noise tolerance can be achieved by setting 0 its main diagonal, and all along the diagonal below. In all

whenever thé:-th FD coefficient captures a high frequency other diagonals, the entries alternate between 1 and -1. So



it makes sense to call these midpoint polygonsntiidpoint 3.3. FDs with respect to our smoothing operator
signatures at different smoothness levels, of the original

Since the eigenvectors,,... ,z, form a basis, any
polygon.. o _ polygona has areigen-decomposition
Midpoint smoothing is closely related tmiform Lapla-
cian smoothind16]. After one step of Laplacian smoothing a— Z 2 A 3)
of the polygoma, we yield the vertex transformation - 1 7
iz
1 1 1 - idooi i
a; = Ca;y+ca;+ay. @) with respect to our r_mdpomt smogthlng operatgr, where
74 2 4 eachA;, an FD coefficient, is a uniquely determined 3-D
. . . . . i 3 — i
Itis easily seen that two steps of midpoint smoothing corre- VEctor inC”. To eval*uateélk, fork=1,2,...,n, multiply
sponds to one step of Laplacian smoothing. This connectionP®th sides of (3) by /n. We have
helps us obtain a geometric interpretation of the frequencies n _ n y
. . . . . ]- * 1 — kj ]. 72'2?’&‘]
associated with the FD coefficients we derive later. Ay = o A= Z Za = Z aje”"", (4)
We choose to use the midpoint smoothing operator to j=1 j=1

construct an eigen-decomposition since, as we shall see ifhich is precisely the traditional discrete Fourier transform
the following sections, the eigenvectors of our smoothing of a. Note that if the Laplacian smoothing operator [16]

operator has a simpler form, and it corresponds exactly tojs ysed instead, we would arrive at a different form for the
the traditional discrete Fourier transform. transform.

3.2. Eigenproperties of the smoothing operator Whenk = n, we haved, = 377 a; € R giving

) S ] the centroid of all the vertices. Faér < n, we can view

The behavior of midpoint smoothing can be analyzed 5, Fp coefficientdy, = [ry + go i, 7y + gy 4, s + g 1]
according to the eigenproperties of the smoothing opera-5¢ 5 pair of 3-D vector&r,, r,, )’ ar?id (g yg’ g). Later
. Ty 'yt z Ty JdYs Jz)-

tor. We now state some of the properties we need for Iateron, we shall reduce the problem of normalizing FDs to the
development, and leave out their proofs, since they fairly problem of aligning these 3-D vectors.
straightforward.

Let us first assume that, the number of vertices in the 3.4. Frequencies associated with FD coefficients

polygona, is odd, and recall that, . .. , z, denote then- Consider a non-degenerate polygofor which there is
th roots of unity. Then the eigenvalues of theh order a scalan such tha{7 — S2)a = \a, wherel is the identity
midpoint smoothing operatd;, are matrix. Such a polygon is called aigenpolygonand the
. . ) , scalar) is said to be its frequency. By (2), we hava;, =
Aj = Hizj = C082 J7 + isin E cos E = cos Eei%, ay — S?Lak = a — a§c. It follows that‘ak; — a§€| = |A‘ . |ak|.
2 n n n n The distance between, andaj, is a discrete approximation
for j = 1,...,n. For eachj, an eigenvector of,, corre-  of the Laplacian ahy, as shown in Figure 2.

sponding ta\; is

. Lo i
z; =z z; ... "= ° ... "
Foralll < j, k < n, the eigenvectors,, ... , z, satisfy
z;z, =0, ifj#k :
=mn, otherwise k-1

Therefore, they form a basis of the complexlimensional Figure 2. Discrete Laplacian at a vertex — ay.
space. Furthermore, if we usg, to denote the matrix of
eigenvectorsZ,, = [z1 22 ... z,], then the inverse of,, Geometrically, the higher the frequengythe larger the
is given byZ,-1 = Z*/n. If the eigenvectors areormal- discrete Laplacians at the vertices, and the larger the oscil-
ized thenZ,, becomeaunitary. lation along the polygon. l& is a polygon with the eigen-

If n is even, then we havg; = (1 — z;)/2 and the cor-  decomposition (3), thefy — S2)z;A; = (1 — A\3)z;4;,
responding eigenvectar, = |z; —zf- zf —z;L]T, with for eachj. It follows that the real part ok;A; gives

the signs of the vector entries alternating. It turns out that an eigenpolygon, and the larger the magnitude\ pfthe

the parity ofn does not affect any of our results or the way lower its corresponding frequency. Therefore, the lowest
our matching algorithm works. In particular, the unitarity frequency zero corresponds to the eigenvalje= 1, and

of the matrixZ,, still holds if n is even. So in the rest of our the next two lowest frequencies correspond to the eigenval-
discussions, let us assume thas odd. uesA; = cos Ze'w andA,_; = cos Ze 'n.



3.5. Convergence to planarity

It can be shown that even with a uniform dilation, the
vertices of the midpoint polygons reach planarity. A precise
statement of this is given by the following theorem. Due to
a lack of space, we are not able to include the proof [22] of
the theorem in this paper. For simplicity, let us assume that
A, = 0in (3); that is, the centroid of the polygon vertices
remains at the origin.

Theorem: If, after each iteration of midpoint smoothing,
the new polygon vertices are dilated away from the origin
by a factor of1/cos T, then the vertices of the midpoint
polygons approach the plane spanned by the 3-D vectors

n . n -

25 . 2w

= E a;jcos — and q= E a;sin —.
’ = " ! =

As we can see, the limit plane is completely determined
by the original polygon. The key observation we make is
that the directions op andq coincide with that of the two
3-D vectors corresponding to the dominant FD coefficient

1 .
A== a,
1= : 2174
j=1
1 — 2jm 1 & 2T .
= |—= a;jcos——| — | — i -
nz j n nza]SHl n 1
j=1 j=1
_pb—ai
—

The same holds fad,,_1, with A,,_; = (p+qi)/n. Recall
that 4, and A,,_; are associated with the lowest non-zero

Ay = (p—qi)/nandA,_; = (p + qi)/n, the normal-
ization problem can be reduced to the alignment of the two

vectorsp andq to some reference frame. In the context of
shape matching, we are given two contousndb having

the spanning vectorp,, q. } and{ps, g, } of their respec-
tive limit plane, we need to align the two pairs of vectors
optimallyunder vertex shift and rotation.

An obvious optimality criterion is to minimize the sim-
ilarity distance (1). But even with the vertex orders fixed,

finding the optimal rotation is a complex non-linear prob-

lem. To solve the alignment problem efficiently, we observe
that although the spanning vectors are not preserved under
vertex shift, the limit plane is! Regardless of the vertex or-
dering, midpoint smoothing produces the same sequence of
midpoint polygons. Therefore, we complete the normaliza-
tion by aligning both limit planes with they-plane.

Since the limit plane represents an “average plane” for
the contour vertices, our approach also has a nice geometric
interpretation. Limit plane alignment is accomplished by
finding a rotation which aligns the plane normal with the
z-axis exactly. This is a standard practice in vector algebra,
and can be done in constant time [22].

4.2. The matching algorithm

The input to our algorithm consists of two closed 3-D
polygons with the same number of vertices. In practice,
if two curves to be matched do not have the same number
of sample points, or the noise in the samples is too great,
appropriate preprocessing steps may be applied. We shall
discuss this in Section 4.2.2.

4.2.1 Overview of the algorithm

frequency, and together, they quantify the dominant shapeThe matching algorithm can be summarized as follows,

characteristic of the polygon. We shall use this fact for our
FD normalization.

4. Matching 3D contours using NFDs

In this section, we first describe our notion of normalized
Fourier descriptors, or NFDs, for 3-D contours. We perform
normalization with respect to centroid, scale, and more cru-
cially, the two dominant FD coefficients. Then we present
our shape matching algorithm, analyze its complexity, and
reason about its effectiveness.

4.1. Normalized FDs for 3-D contours

Normalization with respect to centroid and scale is
straightforward [19]. This is accomplished by first translat-
ing the polygon so that the centroid of the vertices is at the
origin, i.e., transformd,, to 0. Next, the coordinates of the
vertices are divided by the magnitude 4f, the dominant
FD coefficient, to normalize scale.

Then, we normalize with respect to the next dominant
shape characteristics, captured Hy and 4,,_;. Since

wherea andb are the input polygons, each havingver-
tices, andk is the number of FD coefficients used for mea-
suring similarity.

1. ComputeA and B, the FDs ofa andb. [O(kn), or
O(nlogn) with Fast Fourier Transform (FFT).]

2. Centroid and scale normalizatio®(n)]

. Apply rotations to align the limit planes with thgy-
plane. P(1); note that the spanning vectors are avail-
able fromA; and By, which are already computed.]

. For each shiftj of the vertices i, 0 < j < n —1,
computeB;, the FD ofb after the shift and a rotation
which aligns the major axes afandb optimally in the
zy-plane. D(kn); we will explain this step in Sec-
tion 4.2.3.]

. The similarity distance returned is the minimum of the
L, metricu(A, B;), j = 0,... ,n — 1, defined in (1)
withw; =wy = ... =w, = 1.



4.2.2 Preprocessing andql(f) are embedded if8; 1, no extra computation is re-
quired. Similarly, the major axi$p.,q,} of a is already
computed in4, ;. We then find the vectdt,, which bisects
the angle betweep, andq, in the zy-plane. The angle
bisectorhl(f) is defined in the same way. It should be in-
tuitive to see that the optimal rotation angle is simply the

angle between,, andhb' , as shown in Figure 3. All these

Like all other FD-based approaches for similarity compu-
tations [12, 19, 21], the result of our matching algorithm
could be sensitive to theamplingof the input curves. A
similarity distance greater than zero may be reported for two
identical curves that are only sampled differently.

To remedy this problem, we propose the useimiform

resamplingbefore running the matching algorithm. We can OPerations can be performeddr(1) time.

CLG)

not only ensure that the input polygons have the same num-
ber of vertices, this number can also be chosen as a power of
2, so that FFT is applicable. Making the sampling uniform
should have an added advantage since midpoint smoothing
does assume a uniform parameterization.

Besides uniform resampling, a polygonal curve simplifi-
cation algorithm can also be applied to reduce quantization
or measurement noise. Obviously, the effectiveness of the
resampling or simplification algorithm should have a great
influence on the overall performance of our shape match-
ing algorithm. But discussions on choosing the appropri-
ate sampling rate or simplification criteria are beyond the  |et R denote the rotation matrix associated with the op-
scope of this paper. We simply assume that after propertimal rotation angle. By linearity of the Fourier transforms,
preprocessing, the input polygons have the same number ofhe FDs for a rotated polygon can be obtained from a ro-
vertices, and they capture the shapes of the original inputtated version of the FDs of the original polygon. Sirtés
curves sufficiently well. 3 x 3, computing the finaB; takes timeO(k).

Figure 3. Aligning major axes inthe  zy-plane.

4.2.3 The optimal shift and rotation combination 4.3. Summary

Our shape matching algorithm is invariant under transla-
tion, scale, rotation, and vertex shift; it returns zero if and
only if one input polygon is a transform of the other. Our
algorithm is efficient, simple to describe, and easy to imple-
ment, and the similarity distance computed is a metric.

The best time complexity for an FD-type matching algo-
rithm is O(nlogn), since computing the FDs using FFT
alone takes that much time. To achieve this, it is suffi-
cient to find an appropriate measure of the “aligned-ness”
between two pairs of 3-D vectors, where the length of the
spanning vectors and the subtended angles are both consid-
ered. Also, the measure should be correlated with the simi-
larity distance between the input contours, but much easier
to minimize. We are still working towards this goal.

Given two closed polygons andb with their FDs A, and
By normalized, we show how to find the optimal shift and
rotation combination fob to match its major axes witfin
time O(kn), wheren andk are as defined in the algorithm
in Section 4.2.1. Note that both major axes lie in the
plane after normalization.

Suppose that we fix the vertex shiftThen it is sufficient
to show that computing;, the FD ofb after the shift and
a rotation which aligns the major axes optimally in thg
plane, takes timé (k).

By (4), the m- th FD coefficient of the polygorb is
Bom = Zl L bie™ . After a vertex shift ofj, we have
the following with ar|thmet|c modula,

j2mml 21rgm PRLIN(ED))
E bl+_] n § bl—‘,—j ”

S27wgm _;2mml S2mjm
=e' n E bie™" " n = Byme' " .
=1

_7 m

5. Experimental results

In the first experiment, let us consider the shapes shown
in Figure 4. The polygons we are concerned with enclose
the respective shape, and the triangle faces are added only to

Therefore, computing thes-th FD coefficient of a shifted
polygonb is equivalent to scaling the:-th FD coefficient
of the originalb, which takes timeD(1). Since there aré
FD coefficients to compute, the total time(gk).

Let us denote the shifted version by b). To align
the major axes of andb() optimally in thezy-plane, we

first obtain the major axigpy’’, q\’} for b4). Sincep|”’

help with the visualization. In each case, we gradually de-
form the polygon by rotating the vertex about the center
O, as shown in the figure.

During each rotation, we record 100 uniformly spaced
samples. We apply a random translation, vertex shift, and
rotation to each sample polygon obtained, before compar-
ing it with the original polygon using our shape matching



algorithm. In Figure 5, we plot the similarity distances re-

ported. As we can see, the output of our algorithm does
match our intuition, regardless of the parity of the number
of vertices in the polygons.

(b)

(d)

Odd number of vertices Even number of vertices

Similarity distance
Similarity distance

0 % % 4 s e 70 8 w10 10 W % % 4 s e W @ w10 1o
As vertex A rotates about O As vertex A rotates about O

() (b)

Figure 5. Plots of similarity distances.

In our second experiment, we consider the test polygons
shown in Figure 6. In 6(a), we have a perturbed rectangular
polygon. From 6(b) to 6(f), the polygon is gradually chang-
ing into more of a triangular shape, with random perturba-
tion applied. In 6(g), we have an arrow shape. The polygon
in 6(h) is obtained from 6(g) after a significant “pulling” of
two of the vertices. Figure 6. Test polygons for experiment 2.

Our intuition tells us from 6(b) to 6(h), the polygons are
more and more different from 6(a), and the last polygon is
significantly different from all the other ones. Moreover,
the two pairs of polygons, 6(&} 6(f) and 6(f)& 6(g), are In this paper, we formulate a generalized notion of NFDs
closer to each other than any other pairs. for arbitrary 3-D contours. We develop @ kn) shape

In Figure 7, we show a shading plot of the matrix of matching algorithm, which is invariant under rigid transfor-
similarity distances between the eight polygons. Note that mations and vertex shift. The algorithm is simple, efficient,
the degree of darkness indicates the degresgnoifarity be- and easy to implement; it performs well in all our experi-
tween the polygons, and a similarity distance of 0 is shown ments. The similarity distance computed is a metric, and it
in perfect black. We observe again that the output of our al- is seen to match our intuition.
gorithm matches our intuition perfectly. Furthermore, these Like all other FD approaches, our matching algorithm
good results are obtained despite of the highly nonuniform does not guarantee that an optimal matching is found for
samplings with some of the test contours, e.g., 6(f). any pair of 3-D polygons. We do believe that if two con-

@)
(@) (b)
Figure 4. (a) A polygon with seven vertices.
(b) A polygon with eight vertices.
(€)
(e)
(9)

(h)

6. Conclusion and future work



Figure 7. Shading plot of similarity distances
for experiment 2.

tours are sufficiently close, the distance computed will be

(5]

(6]

(7]

(8]

El

(10]

(11]

(12]

very close to the optimum. On the other hand, let us note[13]
that the use of geometric hashing [2, 10] is not guaranteed to

produce optimal matchings either. Several factors including
approximation errors, resulting from the use of the iterative

closest point algorithm [10], and hash table quantization in- [14]
fluence the performance of the matching algorithms.

Besides the possible improvement mentioned in Sec-

tion 4.3, we are also looking at the possibility of extending [15]
our technique to handle open curves, e.g., when there is oc-

clusion. Finally, many challenges still lay ahead when we

wish to apply the FD techniques to the matching of large [16]

mesh models. We anticipate that the ultimate matching al-
gorithm for meshes will need to put together an intelligent

resampling technique, an efficient multiresolution method [17]

for mesh spectrum construction, and an appropriate formu-

lation of NFDs in the irregular grid setting.
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