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Abstract

In this paper, we develop a simple, eigen-space matching
algorithm for closed 3-D contours. Our algorithm relies on
a novel method which normalizes the Fourier descriptors
(FDs) of a 3-D contour with respect to two of its FD co-
efficients corresponding to the lowest non-zero frequencies.
The remaining matching task only involves vertex shift and
rotation about thez-axis. Our approach is inspired by the
observation that the traditional Fourier transform of a 1-D
signal is equivalent to the decomposition of the signal into
a linear combination of the eigenvectors of a smoothing op-
erator. It turns out that our FD normalization is equivalent
to aligning the limit plane approached by the sequence of
progressively smoothed 3-D contour with thexy-plane.

1. Introduction

Shape matching and the measurement of shape similarity
are essential tasks in several computer vision problems, in-
cluding model-based object recognition, classification, and
retrieval. Earlier work on the topic focus primarily on pla-
nar shapes [7, 12, 13, 14, 17, 19, 21]. For an extended in-
troduction of these techniques, please refer to any of the
several survey papers [6, 9, 18]. Matching of 3-D surface
models is considerably more difficult [1, 15], and is just
starting to receive more attention [4, 8, 20].

Planar shapes are usually characterized by, and com-
pared with respect to, their 2-D contours [7, 12, 13, 19, 21].
One of the main reasons for the popularity of contour-based
shape analysis techniques is that edge detection constitutes
an important aspect of shape recognition by the human vi-
sual system and by psycho-visual experiments studying eye
movements [9].

Contour-based methods also tend to be more efficient
and intuitive than those based on moment integrals [17] or
structural information [14]. In particular, it is difficult to
correlate high-order moments with shape features [6], and

structural methods, especially those using graph-like repre-
sentations [14], usually lead to variants of the computation-
intensive graph isomorphism algorithm [9].

In this paper, we study the problem of matching3-D
contours, which are closed curves embedded inR3. This
is more difficult than the 2-D problem, but more manage-
able than general surface matching, since generalization of
known 2-D techniques is possible. On the other hand, effi-
cient matching techniques for 3-D contours are quite useful
in the surface case, if appropriate characteristic contours can
be extracted from the surface models [1].

1.1. Related work and motivation

The first notable matching technique for 2-D contours
is due to Zahn and Roskies [21], where a contour is repre-
sented by a 1-D, arc-length parameterized signal of cumu-
lative turning angles. The Fourier transform, or theFourier
descriptors(FDs), of the signal are used to represent the
curve. Other measures, such as curvature [13] and mo-
ments [7], can also be used to define the signal.

A problem with such descriptors is that a closed curve is
not always closed when it is reconstructed from a truncated
set of FDs. Persoon and Fu [11] remedies this by treating
a 2-D contour as acomplex-valuedsignal, and the FDs are
still defined as its Fourier transform.

In both cases, the similarity distance between two con-
tours is defined as thesmallestpossible sum of component-
wise differences between the corresponding FDs; the con-
tours are free to undergo any rigid transformation, and the
choice of the starting point on the contour can be arbitrary.
Finding the best way to match two contours is possible
through non-linear optimization [11], but the computational
cost is formidable when interactivity is desired.

Wallace and Wintz [19], and more recently, Rui et
al. [12], propose the use ofnormalized Fourier descrip-
tors (NFDs) to match 2-D contours more efficiently. The
average position, i.e., the centroid, of the contour vertices
are aligned with the origin. Scale normalization is accom-



plished by dividing all vertices by the magnitude of the
largest FD coefficient. Finally, theorientation of the ma-
jor axesof the shapes are aligned exactly before a much
simplified shape matching step is performed.

The price to pay for efficiency is that these approaches
using NFDs are not guaranteed to find the optimal match-
ing. But if the two contours are sufficiently close to each
other, which is often the case in applications such as image
classification and retrieval, the distance found will generally
be very close to the optimum [19].

Let us now turn our attention to the matching of 3-D con-
tours. We first argue that current 1-D or 2-D techniques do
not work for 3-D contours as is. For example, the trans-
formation of a 3-D contour into a 1-D signal of curvature
would lose too much information, as shown in Figure 1.

(a) (b)

Figure 1. Two very different contours can
have the same arc-length parameterized cur-
vature distribution.

To represent a 3-D contour parametrically and uniquely,
higher-order differential invariants, such as torsion [2, 5]
or Gaussian curvature, need to be used. Accurate mea-
surements of these differential quantities usually require
the construction of a fourth-order B-spline approximation
of the sampled contour. Although B-splines offer local
control, they are sensitive to quantization or measurement
noise, and a pre-smoothing step using explicit energy mini-
mization is often necessary [2].

Data noise can be conveniently filtered out using trun-
cated sets of FDs. Since noise contributes only to FD coef-
ficients corresponding to high frequencies, they can simply
be ignored in shape matching. But to be able to match 3-D
contours using FDs, current 2-D techniques [11, 12, 19, 21]
have to be generalized to handle the extra degrees of free-
dom in the rigid transformations allowed.

A crucial difference caused by the increase in dimension
lies in FD normalization. Existing 2-D methods [12, 19]
rely on the fact that the major axis of a planar shape is char-
acterized by asingle2-D vector. After proper normalization
with respect to centroid and scale, the major axes of two pla-
nar shapes can be alignedexactlyby a rotation. However,
the major axis of a 3-D contour is characterized bytwo3-D
vectors, and there rarely is a set of rotations which would
align the major axes of two 3-D contours exactly.

Previous matching methods for 3-D curves [2, 5] com-
bine polygonal pre-smoothing, B-spline approximation, and
geometric hashing [20] to locate maximum matchablecurve
portionsbetween a test curve and a model curve. Matching
is based on estimated differential quantities invariant under
rigid transformation. Since a curve segment is defined us-
ing asequenceof control points, there is no need to handle
different choices of the starting point for the parameteriza-
tion. To achieve better robustness, Pajdla and van Gool [10]
propose the use of semi-differential invariants.

In this paper, we are concerned with matching the shape
of 3-D contoursglobally. For many practical applications,
the matching of overall shapes is more essential than that of
local features. This, along with the inevitable presence of
noise in the raw data, warrants the use of FDs. We general-
ize the notion ofNFDs[19, 12] to handle 3-D contours, and
develop a matching algorithm that is simple, efficient, and
easy to implement. We demonstrate the effectiveness of our
approach both theoretically and empirically.

1.2. Overview of approach and contribution

We formulate the discrete Fourier transform of a 3-D
contour as a decomposition with respect to the eigenvec-
tors of asmoothing operator. Each FD coefficient obtained
is a complex 3-D vector. Separating the real and imaginary
parts of the complex numbers, we can view an FD coeffi-
cient as being characterized by two real 3-D vectors.

To match two contours, we obtain their FDs after cen-
troid and scale normalization. We generalize the normal-
ization of the major axes of planar shapes to the align-
ment of the two FD coefficients corresponding to the lowest
non-zero frequencies. Indeed, these coefficients capture the
most dominant component of the overall shape.

We show that our normalization problem reduces to the
alignment of two pairs of 3-D vectors,(u1, v1) and(u2, v2),
under vertex shift and rotation. We make the key observa-
tion that the plane spanned byui andvi, i = 1, 2, is in-
variant under vertex shift. Aligning these two planes first
has a nice geometric interpretation, and it reduces the com-
putational cost greatly. The remaining matching task only
involves vertex shift and rotation about thez-axis; we show
how this can be carried out efficiently.

The complexity of our algorithm isO(kn), wheren is
the number of point samples along the contour, andk ≤ n
is the number of FD coefficients needed to measure the sim-
ilarity distance. Note that in practice, not many FD coeffi-
cients are need for shape discrimination; this is especially
true if the number of samples is large. We also point out the
possibility of reducing the complexity of our algorithm to
an optimalO(n log n).

To the extent of our knowledge, our approach is the first
generalization of NFDs to handle 3-D contours. The choice
of eigen-decomposition over traditional Fourier transform



formulations not only offers a great deal of geometric intu-
ition, it also lays some groundwork for the generalization of
this kind of techniques to handle 3-D meshes.

Without an appropriate functional representation for a
mesh with irregular connectivity, a Fourier transform cannot
be constructed. But various discrete smoothing operators
have natural 3-D generalizations. Eigen-decompositions of
a mesh with respect to such operators can be quite useful
in a number of mesh processing tasks. The best example of
this work in computer graphics is Taubin’s signal process-
ing approach for mesh smoothing [16].

Finally, as we have mentioned, an efficient matching
technique for 3-D curves alone can be used in the analy-
sis and recognition of surface models, provided that a set of
characteristic curves have been identified.

1.3. Organization of the paper

In the next section, we briefly recall the traditional for-
mulation of FDs, and define the similarity measure we use.
In Section 3, we present the smoothing operator, its eigen-
properties, and a theorem concerning its limit behavior. In
Section 4, we describe our matching algorithm using the
NFDs we develop. Experimental results are shown in Sec-
tion 5 to support our approach. Finally, we conclude in Sec-
tion 6 with some suggestions for future work.

2. Traditional FDs and our similarity distance

In this paper, each 3-D contoura is characterized by a
sequence of sample points alonga, which are its vertices
and are denoted bya1, a2, . . . , an in order. We representa
by ann × 3 coordinate matrixa, consisting of an ordered
list of vertex coordinates. Note thata is simply a closed 3-D
polygon, and for convenience, we often address it using its
coordinate matrix.

Let a andb be two 3-D contours. The traditionalFDs
A (andB) of a (andb) are defined using the usual discrete
Fourier transform. Specifically, eachAk is a vector inC3

given byAk =
∑n

j=1 aje
−i 2πjk

n , wherek = 1, . . . , n. The
set ofAk ’s are referred to as theFD coefficientsof a.

In this paper, we define thesimilarity distancebetween
a andb as theminimumof the followingL2 measure:

µ(A,B) =

√√√√√
n∑

k=1

wk




3∑

j=1

|Ak,j −Bk,j |2

, (1)

under arbitrary translation, scale, rotation of the contours,
and vertex shifts, where| · | denotes the norm of a complex
number. Of course, the FD coefficients will be derived in a
different way using our NFD approach.

The weightswk can be chosen in a variety of ways. For
example, noise tolerance can be achieved by settingwk = 0
whenever thek-th FD coefficient captures a high frequency

contribution. For simplicity, we use uniform weighing in
our experiments, i.e.,w1 = . . . = wn = 1. In either case,
our similarity distance is indeed ametric, since it is equiv-
alent to an Euclidean distance measure between points in
Rm for some positive integerm.

Our similarity distance is a trivial generalization of the
one used by Wallace and Wintz [19] to 3-D, and with the
addition of the square root to obtain a metric. Using anL∞
measure instead ofL2 appears to make little difference [19].
On the other hand, the variance measure of Rui et al. [12]
does not appear to have an easy 3-D generalization.

Finally, a measurêµ(A,B) =
∑n

k=1(|Ak|2 − |Bk|2)2
that is invariant under both rigid transformation and vertex
shift has been used for the recognition of hand-written char-
acters [9]. But observe that for general contours in 3-D, this
measure would produce many false positives. For example,
a contoura can look quite different from one that is ob-
tained froma by shifting only they coordinates, while the
distance reported bŷµ would be zero.

3. Eigen-decomposition and associated FDs

In this section, we prepare the necessary theory for our
matching algorithm. We derive the FDs of a 3-D contour
through a decomposition using the eigenvectors of amid-
point smoothingoperator. We analyze the eigenproperties
and the limit behavior of midpoint smoothing, with empha-
sis on the underlying geometric intuition. We show that
with a uniform dilation, repeated applications of the mid-
point smoothing operator force a 3-D contour to converge
to a limit plane. In particular, two spanning vectors of this
limit plane correspond to the dominant FD coefficient of the
original contour.

In what follows, the letteri is reserved for
√−1, the

imaginary unit. Then-th roots of unity are denoted by
z1, . . . , zn, wherezj = ei 2jπ

n . Clearly, we havezn = 1
andzj = zj

1, j = 1, . . . , n. Finally, we denote the trans-
pose of a matrixM by MT , the conjugate byM , and the
conjugate transpose byM∗.

3.1. The midpoint smoothing operator

Let a be the original 3-D contour, i.e., a closed poly-
gon, withn vertices. Themidpoint polygona′ of a is the
polygon obtained by connecting the midpoints of all the line
segments ofa in order. The midpoint smoothing operation
can be captured by then-th order midpoint smoothing op-
erator Sn, with a′ = Sna. The operatorSn is ann × n
matrix whoseij-th entry is 1/2 ifj = i or j = i + 1 modn,
and 0 otherwise.

It is interesting to note thatSn is invertible if and only
if n is odd. For any odd numbern, S−1

n has 1’s all along
its main diagonal, and all along the diagonal below. In all
other diagonals, the entries alternate between 1 and -1. So



it makes sense to call these midpoint polygons themidpoint
signatures, at different smoothness levels, of the original
polygon.

Midpoint smoothing is closely related touniform Lapla-
cian smoothing[16]. After one step of Laplacian smoothing
of the polygona, we yield the vertex transformation

a′j =
1
4
aj−1 +

1
2
aj +

1
4
aj+1. (2)

It is easily seen that two steps of midpoint smoothing corre-
sponds to one step of Laplacian smoothing. This connection
helps us obtain a geometric interpretation of the frequencies
associated with the FD coefficients we derive later.

We choose to use the midpoint smoothing operator to
construct an eigen-decomposition since, as we shall see in
the following sections, the eigenvectors of our smoothing
operator has a simpler form, and it corresponds exactly to
the traditional discrete Fourier transform.

3.2. Eigenproperties of the smoothing operator

The behavior of midpoint smoothing can be analyzed
according to the eigenproperties of the smoothing opera-
tor. We now state some of the properties we need for later
development, and leave out their proofs, since they fairly
straightforward.

Let us first assume thatn, the number of vertices in the
polygona, is odd, and recall thatz1, . . . , zn denote then-
th roots of unity. Then the eigenvalues of then-th order
midpoint smoothing operatorSn are

λj =
1 + zj

2
= cos2

jπ

n
+ i sin

jπ

n
cos

jπ

n
= cos

jπ

n
ei jπ

n ,

for j = 1, . . . , n. For eachj, an eigenvector ofSn corre-
sponding toλj is

zj = [zj z2
j . . . zn

j ]T = [zj
1 z2j

1 . . . znj
1 ]T .

For all1 ≤ j, k ≤ n, the eigenvectorsz1, . . . , zn satisfy

z∗jzk = 0, if j 6= k

= n, otherwise.

Therefore, they form a basis of the complexn-dimensional
space. Furthermore, if we useZn to denote the matrix of
eigenvectors,Zn = [z1 z2 . . . zn], then the inverse ofZn

is given byZ−1
n = Z∗/n. If the eigenvectors arenormal-

ized, thenZn becomesunitary.
If n is even, then we haveλj = (1 − zj)/2 and the cor-

responding eigenvectorzj = [zj −z2
j z3

j . . . −zn
j ]T , with

the signs of the vector entries alternating. It turns out that
the parity ofn does not affect any of our results or the way
our matching algorithm works. In particular, the unitarity
of the matrixZn still holds if n is even. So in the rest of our
discussions, let us assume thatn is odd.

3.3. FDs with respect to our smoothing operator

Since the eigenvectorsz1, . . . , zn form a basis, any
polygona has aneigen-decomposition

a =
n∑

j=1

zjAj (3)

with respect to our midpoint smoothing operator, where
eachAj , an FD coefficient, is a uniquely determined 3-D
vector inC3. To evaluateAk, for k = 1, 2, . . . , n, multiply
both sides of (3) byz∗k/n. We have

Ak =
1
n

z∗ka =
1
n

n∑

j=1

z kj
1 aj =

1
n

n∑

j=1

aje
−i 2πkj

n , (4)

which is precisely the traditional discrete Fourier transform
of a. Note that if the Laplacian smoothing operator [16]
is used instead, we would arrive at a different form for the
transform.

Whenk = n, we haveAn = 1
n

∑n
j=1 aj ∈ R3, giving

the centroid of all the vertices. Fork < n, we can view
an FD coefficientAk = [rx + gx i, ry + gy i, rz + gz i],
as a pair of 3-D vectors(rx, ry, rz) and(gx, gy, gz). Later
on, we shall reduce the problem of normalizing FDs to the
problem of aligning these 3-D vectors.

3.4. Frequencies associated with FD coefficients

Consider a non-degenerate polygona for which there is
a scalarλ such that(I−S2

n)a = λa, whereI is the identity
matrix. Such a polygon is called aneigenpolygon, and the
scalarλ is said to be its frequency. By (2), we haveλak =
ak−S2

nak = ak−a′k. It follows that|ak−a′k| = |λ| · |ak|.
The distance betweenak anda′k is a discrete approximation
of the Laplacian atak, as shown in Figure 2.

a

a

a

k

a’

k-1

k
k+1

Figure 2. Discrete Laplacian at a vertex ak.

Geometrically, the higher the frequencyλ, the larger the
discrete Laplacians at the vertices, and the larger the oscil-
lation along the polygon. Ifa is a polygon with the eigen-
decomposition (3), then(I − S2

n)zjAj = (1 − λ2
j )zjAj ,

for each j. It follows that the real part ofzjAj gives
an eigenpolygon, and the larger the magnitude ofλj , the
lower its corresponding frequency. Therefore, the lowest
frequency zero corresponds to the eigenvalueλn = 1, and
the next two lowest frequencies correspond to the eigenval-
uesλ1 = cos π

nei π
n andλn−1 = cos π

ne−i π
n .



3.5. Convergence to planarity

It can be shown that even with a uniform dilation, the
vertices of the midpoint polygons reach planarity. A precise
statement of this is given by the following theorem. Due to
a lack of space, we are not able to include the proof [22] of
the theorem in this paper. For simplicity, let us assume that
An = 0 in (3); that is, the centroid of the polygon vertices
remains at the origin.

Theorem: If, after each iteration of midpoint smoothing,
the new polygon vertices are dilated away from the origin
by a factor of1/ cos π

n , then the vertices of the midpoint
polygons approach the plane spanned by the 3-D vectors

p =
n∑

j=1

aj cos
2jπ

n
and q =

n∑

j=1

aj sin
2jπ

n
.

As we can see, the limit plane is completely determined
by the original polygon. The key observation we make is
that the directions ofp andq coincide with that of the two
3-D vectors corresponding to the dominant FD coefficient

A1 =
1
n

n∑

j=1

z−j
1 aj

=


 1

n

n∑

j=1

aj cos
2jπ

n


−


 1

n

n∑

j=1

aj sin
2jπ

n


 i

=
p− qi

n
.

The same holds forAn−1, with An−1 = (p+qi)/n. Recall
thatA1 andAn−1 are associated with the lowest non-zero
frequency, and together, they quantify the dominant shape
characteristic of the polygon. We shall use this fact for our
FD normalization.

4. Matching 3D contours using NFDs

In this section, we first describe our notion of normalized
Fourier descriptors, or NFDs, for 3-D contours. We perform
normalization with respect to centroid, scale, and more cru-
cially, the two dominant FD coefficients. Then we present
our shape matching algorithm, analyze its complexity, and
reason about its effectiveness.

4.1. Normalized FDs for 3-D contours

Normalization with respect to centroid and scale is
straightforward [19]. This is accomplished by first translat-
ing the polygon so that the centroid of the vertices is at the
origin, i.e., transformAn to 0. Next, the coordinates of the
vertices are divided by the magnitude ofA1, the dominant
FD coefficient, to normalize scale.

Then, we normalize with respect to the next dominant
shape characteristics, captured byA1 and An−1. Since

A1 = (p − qi)/n andAn−1 = (p + qi)/n, the normal-
ization problem can be reduced to the alignment of the two
vectorsp andq to some reference frame. In the context of
shape matching, we are given two contoursa andb having
the spanning vectors{pa,qa} and{pb,qb} of their respec-
tive limit plane, we need to align the two pairs of vectors
optimallyunder vertex shift and rotation.

An obvious optimality criterion is to minimize the sim-
ilarity distance (1). But even with the vertex orders fixed,
finding the optimal rotation is a complex non-linear prob-
lem. To solve the alignment problem efficiently, we observe
that although the spanning vectors are not preserved under
vertex shift, the limit plane is! Regardless of the vertex or-
dering, midpoint smoothing produces the same sequence of
midpoint polygons. Therefore, we complete the normaliza-
tion by aligning both limit planes with thexy-plane.

Since the limit plane represents an “average plane” for
the contour vertices, our approach also has a nice geometric
interpretation. Limit plane alignment is accomplished by
finding a rotation which aligns the plane normal with the
z-axis exactly. This is a standard practice in vector algebra,
and can be done in constant time [22].

4.2. The matching algorithm

The input to our algorithm consists of two closed 3-D
polygons with the same number of vertices. In practice,
if two curves to be matched do not have the same number
of sample points, or the noise in the samples is too great,
appropriate preprocessing steps may be applied. We shall
discuss this in Section 4.2.2.

4.2.1 Overview of the algorithm

The matching algorithm can be summarized as follows,
wherea andb are the input polygons, each havingn ver-
tices, andk is the number of FD coefficients used for mea-
suring similarity.

1. ComputeA andB, the FDs ofa and b. [O(kn), or
O(n log n) with Fast Fourier Transform (FFT).]

2. Centroid and scale normalization. [O(n)]

3. Apply rotations to align the limit planes with thexy-
plane. [O(1); note that the spanning vectors are avail-
able fromA1 andB1, which are already computed.]

4. For each shiftj of the vertices inb, 0 ≤ j ≤ n − 1,
computeBj , the FD ofb after the shift and a rotation
which aligns the major axes ofa andb optimally in the
xy-plane. [O(kn); we will explain this step in Sec-
tion 4.2.3.]

5. The similarity distance returned is the minimum of the
L2 metricµ(A,Bj), j = 0, . . . , n − 1, defined in (1)
with w1 = w2 = . . . = wn = 1.



4.2.2 Preprocessing

Like all other FD-based approaches for similarity compu-
tations [12, 19, 21], the result of our matching algorithm
could be sensitive to thesamplingof the input curves. A
similarity distance greater than zero may be reported for two
identical curves that are only sampled differently.

To remedy this problem, we propose the use ofuniform
resamplingbefore running the matching algorithm. We can
not only ensure that the input polygons have the same num-
ber of vertices, this number can also be chosen as a power of
2, so that FFT is applicable. Making the sampling uniform
should have an added advantage since midpoint smoothing
does assume a uniform parameterization.

Besides uniform resampling, a polygonal curve simplifi-
cation algorithm can also be applied to reduce quantization
or measurement noise. Obviously, the effectiveness of the
resampling or simplification algorithm should have a great
influence on the overall performance of our shape match-
ing algorithm. But discussions on choosing the appropri-
ate sampling rate or simplification criteria are beyond the
scope of this paper. We simply assume that after proper
preprocessing, the input polygons have the same number of
vertices, and they capture the shapes of the original input
curves sufficiently well.

4.2.3 The optimal shift and rotation combination

Given two closed polygonsa andb with their FDsA0 and
B0 normalized, we show how to find the optimal shift and
rotation combination forb to match its major axes witha in
time O(kn), wheren andk are as defined in the algorithm
in Section 4.2.1. Note that both major axes lie in thexy-
plane after normalization.

Suppose that we fix the vertex shiftj. Then it is sufficient
to show that computingBj , the FD ofb after the shift and
a rotation which aligns the major axes optimally in thexy-
plane, takes timeO(k).

By (4), the m-th FD coefficient of the polygonb is
B0,m =

∑n
l=1 ble

−i 2πml
n . After a vertex shift ofj, we have

the following with arithmetic modulon,

Bj,m =
n∑

l=1

bl+je
−i 2πml

n = ei 2πjm
n

n∑

l=1

bl+je
−i

2πm(l+j)
n

= ei 2πjm
n

n∑

l=1

ble
−i 2πml

n = B0,mei 2πjm
n .

Therefore, computing them-th FD coefficient of a shifted
polygonb is equivalent to scaling them-th FD coefficient
of the originalb, which takes timeO(1). Since there arek
FD coefficients to compute, the total time isO(k).

Let us denote the shifted version ofb by b(j). To align
the major axes ofa andb(j) optimally in thexy-plane, we
first obtain the major axis{p(j)

b ,q(j)
b } for b(j). Sincep(j)

b

andq(j)
b are embedded inBj,1, no extra computation is re-

quired. Similarly, the major axis{pa,qa} of a is already
computed inA0,1. We then find the vectorha which bisects
the angle betweenpa andqa in the xy-plane. The angle
bisectorh(j)

b is defined in the same way. It should be in-
tuitive to see that the optimal rotation angle is simply the
angle betweenha andh

(j)
b , as shown in Figure 3. All these

operations can be performed inO(1) time.

a

a

p
a

(j)
b h (j)

b

(j)

h

q

q

p
b

Figure 3. Aligning major axes in the xy-plane.

Let R denote the rotation matrix associated with the op-
timal rotation angle. By linearity of the Fourier transforms,
the FDs for a rotated polygon can be obtained from a ro-
tated version of the FDs of the original polygon. SinceR is
3× 3, computing the finalBj takes timeO(k).

4.3. Summary

Our shape matching algorithm is invariant under transla-
tion, scale, rotation, and vertex shift; it returns zero if and
only if one input polygon is a transform of the other. Our
algorithm is efficient, simple to describe, and easy to imple-
ment, and the similarity distance computed is a metric.

The best time complexity for an FD-type matching algo-
rithm is O(n log n), since computing the FDs using FFT
alone takes that much time. To achieve this, it is suffi-
cient to find an appropriate measure of the “aligned-ness”
between two pairs of 3-D vectors, where the length of the
spanning vectors and the subtended angles are both consid-
ered. Also, the measure should be correlated with the simi-
larity distance between the input contours, but much easier
to minimize. We are still working towards this goal.

5. Experimental results

In the first experiment, let us consider the shapes shown
in Figure 4. The polygons we are concerned with enclose
the respective shape, and the triangle faces are added only to
help with the visualization. In each case, we gradually de-
form the polygon by rotating the vertexA about the center
O, as shown in the figure.

During each rotation, we record 100 uniformly spaced
samples. We apply a random translation, vertex shift, and
rotation to each sample polygon obtained, before compar-
ing it with the original polygon using our shape matching



algorithm. In Figure 5, we plot the similarity distances re-
ported. As we can see, the output of our algorithm does
match our intuition, regardless of the parity of the number
of vertices in the polygons.

(a) (b)

Figure 4. (a) A polygon with seven vertices.
(b) A polygon with eight vertices.
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Figure 5. Plots of similarity distances.

In our second experiment, we consider the test polygons
shown in Figure 6. In 6(a), we have a perturbed rectangular
polygon. From 6(b) to 6(f), the polygon is gradually chang-
ing into more of a triangular shape, with random perturba-
tion applied. In 6(g), we have an arrow shape. The polygon
in 6(h) is obtained from 6(g) after a significant “pulling” of
two of the vertices.

Our intuition tells us from 6(b) to 6(h), the polygons are
more and more different from 6(a), and the last polygon is
significantly different from all the other ones. Moreover,
the two pairs of polygons, 6(e)& 6(f) and 6(f)& 6(g), are
closer to each other than any other pairs.

In Figure 7, we show a shading plot of the matrix of
similarity distances between the eight polygons. Note that
the degree of darkness indicates the degree ofsimilarity be-
tween the polygons, and a similarity distance of 0 is shown
in perfect black. We observe again that the output of our al-
gorithm matches our intuition perfectly. Furthermore, these
good results are obtained despite of the highly nonuniform
samplings with some of the test contours, e.g., 6(f).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Test polygons for experiment 2.

6. Conclusion and future work

In this paper, we formulate a generalized notion of NFDs
for arbitrary 3-D contours. We develop anO(kn) shape
matching algorithm, which is invariant under rigid transfor-
mations and vertex shift. The algorithm is simple, efficient,
and easy to implement; it performs well in all our experi-
ments. The similarity distance computed is a metric, and it
is seen to match our intuition.

Like all other FD approaches, our matching algorithm
does not guarantee that an optimal matching is found for
any pair of 3-D polygons. We do believe that if two con-



Figure 7. Shading plot of similarity distances
for experiment 2.

tours are sufficiently close, the distance computed will be
very close to the optimum. On the other hand, let us note
that the use of geometric hashing [2, 10] is not guaranteed to
produce optimal matchings either. Several factors including
approximation errors, resulting from the use of the iterative
closest point algorithm [10], and hash table quantization in-
fluence the performance of the matching algorithms.

Besides the possible improvement mentioned in Sec-
tion 4.3, we are also looking at the possibility of extending
our technique to handle open curves, e.g., when there is oc-
clusion. Finally, many challenges still lay ahead when we
wish to apply the FD techniques to the matching of large
mesh models. We anticipate that the ultimate matching al-
gorithm for meshes will need to put together an intelligent
resampling technique, an efficient multiresolution method
for mesh spectrum construction, and an appropriate formu-
lation of NFDs in the irregular grid setting.
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