
Butterworth Filtering and Implicit Fairing of Irregular Meshes

Hao Zhang
School of Computing Science

Simon Fraser University, Canada

Eugene Fiume
Department of Computer Science

University of Toronto, Canada

Abstract

In this paper, we propose efficient numerical techniques
for Butterworth filtering and implicit fairing of large ir-
regular triangle meshes, where the corresponding filters
are rational polynomials and the resulting large linear sys-
tems need to be solved iteratively. We show that significant
speed-up can be achieved for Butterworth filtering by fac-
torizing the linear system in the complex domain. As for
implicit fairing, with our estimate of the optimal extrapo-
lation parameterω, successive overrelaxation (SOR) offers
great improvements, both in speed and space usage, over
the more familiar conjugate gradient type solvers.

1. Introduction

Large and complex mesh models are often obtained from
points sampled over real-world 3D objects. But due to the
inevitable physical noise added by a scanning device, these
point samples often do not reflect their correct locations,
resulting in meshes containing undesirable rough features.
Mesh fairing (smoothing or denoising) is a process dedi-
cated to the removal of such rough features. Our ultimate
goal is to produce highly smooth meshes efficiently, for ren-
dering, modeling, and visualization, while preserving the
basic shape and/or features of the original model.

A signal processing approach to mesh fairing was first
proposed by Taubin [8], where the mesh geometry is rep-
resented as a 3D signal defined over the vertices of the un-
derlying mesh graph. Compared to traditional techniques
relying on nonlinear geometric optimization [5], Taubin’s
application ofpolynomial low-pass filters [8, 9] is known
for its simplicity and efficiency. Such an approach builds
upon the premise that the geometric irregularities over a
mesh have an intuitive frequency-domain characterization.
For the ideal low-pass filter, all frequencies higher than a
tunablecut-off frequency, are eliminated from the signal,
while all other frequencies, ones within thepass-band, are
left unchanged. Thus its impulse response is a step function.
Since computing the frequency spectrum of large irregular
meshes is impractical, we typically use either polynomials
or rational polynomials to approximate the ideal filter.

The well-known Laplacian smoothing [3] applies a poly-
nomial filter which attenuates all but the zero frequency,
causing severe shrinkage and shape distortion. Taubin [8]
remedies this with theλ-µ filter, where pass-band frequen-
cies are amplified with increasing degree of theλ-µ poly-
nomial. However,λ-µ filters have relatively low smoothing
speed [2, 4], and frequency amplification may create rip-
ples over the mesh surface. Taubin et al. [9] then combine
Chebyshev polynomial approximation with the classical fil-
ter design using windows [6] to derive much better approx-
imations of the ideal low-pass filter, where five to ten-fold
speed-up overλ-µ filtering can be obtained easily.

While polynomial filters have finite impulse responses
(FIR), infinite impulse response (IIR) filters usingrational
polynomialsare also common in digital filter design [6].
Desbrun et al. [2] appear to have been the first to consider
IIR filters for mesh fairing. They pose the problem in the
context of solving a diffusion PDE, and use implicit integra-
tion, calledimplicit fairing, to achieve efficiency, stability,
and large time-steps. Implicit fairing of large meshes re-
quires the iterative solution of a large, sparse linear system.
Desbrun et al. [2] report that using the biconjugate gradient
(BCG) solver with a diagonal preconditioner results in sig-
nificant savings, in terms ofiteration count, against Lapla-
cian smoothing or explicit integration. We have observed
however that in terms of execution time, the improvement
would hardly be obvious since one BCG iteration is about
three times as costly as one explicit integration step [1].

Desbrun et al. [2] also suggests that filtering results may
be improved by increasing the degree of the denominator
of the IIR filter for implicit fairing (we call it theIF filter in
this paper) with a significant increase in computational cost.
It turns out that these filters are the well-knownButterworth
filters [6]. Higher-order Butterworth filters approximate the
ideal low-pass filter better and often result in less shape dis-
tortion and better mesh quality up to a certain point, since
an overly sharp transition about the cut-off frequency may
introduceringing [7]. On the other hand, although the IF
filter is not really low-pass, as it attenuates all but the zero
frequency, it is comparatively more efficient to implement
and suitable to use when aggressive fairing is required.

Contribution: In this paper, we address the computational
difficulties involved with the realization of both IF and But-
terworth filters for large irregular triangle meshes. Our con-
tributions can be summarized as follows:

• We propose an estimation of the optimal extrapolation
parameterω for SOR to be used for the IF filters in im-
plicit mesh fairing. This results in abouttwo to three-
fold speed-upover implementations using conjugate
gradient type solvers for typical smoothing tasks.

• With a factorization of the linear system involved in
the complex domain, a2N -th order Butterworth fil-
ter may be computed as a series ofN first-order fil-
ters. We demonstrate that the biconjugate gradient sta-
bilized (BCGS) method [1] is suitable to use for the
resulting complex systems. For second-order filters,
we can already obtain aboutfour to five-fold speed-up
over the same solver which does not use factorization.

The result of our comparison between Butterworth filter-
ing and Taubin’s Chebyshev polynomial approximation [9]
is not as conclusive. With the current implementation,
our experiments show that to produce meshes of similar
smoothness quality, the execution times for the two ap-
proaches are comparable. In terms of iteration counts how-
ever, Butterworth filtering should definitely be preferred.
Due to lack of space, we report these findings in detail in
an extended version of this paper [12].

Notations: We represent an irregular triangle meshM with
n vertices by its coordinate signalx ∈ Rn×3, where the
k-th row of x gives the 3D coordinates of vertexk. The
centroid matrixC of M is such thatCjk = 1/|N1(j)| if
(j, k) is an edge andCjk = 0 otherwise, whereN1(j) =
{k|(j, k) is an edge} is the set of neighbors ofj. We re-
serve the letteri for the imaginary unit, andI for identity
matrices. Eigenvalues (frequencies) are denoted byσ with
subscripts. Thespectrumof a matrixA, i.e., the set of eigen-
values ofA, is denoted byσ(A). Thespectral radiusρ(A)
of A is the largest magnitude of the elements inσ(A).

2. Mesh fairing through IIR filtering

The signal processing approach to mesh fairing relies on
a shape decomposition of a mesh with respect to a suitably
defined discrete Laplacian operatorL. If the eigenvectors
e1, . . . , en of L are linearly independent, then any meshx
can be expressed as a linear sumx =

∑n
j=1 ejXj , called

an eigenvalue decomposition, where the set of weights
X1, . . . , Xn form the mesh signal transform, mimicking the
effect of Fourier transform of mesh geometry [9].

In this paper, we consider only the discrete uniform
Laplacian operatorU = I−C, a natural choice for discrete
fairing purposes [4, 8]. It can be shown that the eigenvalues
of C andU are all real, withσ(C) ⊆ [−1, 1], ρ(C) = 1,

andσ(U) ⊆ [0, 2]. Also, the eigenvectors ofU are linearly
independent. One can regard the eigenvalues ofU as the
naturalvibration frequenciesof a mesh, and the eigenvec-
tors as itsvibration modes[8].

Mesh fairing can be achieved through rapid attenua-
tion of the high-frequency contributions in the mesh sig-
nal through filtering. Applying a filterf(σ) to the mesh
x results in the meshf(U)x. For example, the (polyno-
mial) Laplacian smoothing filter is of the formf LAP (σ) =
(1 − λσ)N , where0 < λ < 1 is a time-step parame-
ter [2] controlling the degree of smoothing. So one step
of Laplacian smoothing corresponds to multiplying the ma-
trix I − λU to x. If the filter f is a rational polynomial
f = g/h, then to obtainf(U)x, we need to solve the linear
systemh(U)y = g(U)x for y.

A Butterworth filter of order2N is of the form

f BUT (σ) =
1

1 + (σ/σ̂)2N
=

1
1 + (λσ)2N

, (1)

whereσ̂ > 0 gives the cut-off frequency. The IF filter for
implicit fairing1 [2] happens to be a degenerate case of the
Butterworth filters with2N = 1. Since this is typically
not classified as a Butterworth filter [6], we shall make a
distinction by insisting thatN be a positive integer for (1)
to be a Butterworth filter. For convenience however, we use
λ = 1/σ̂, the time-step parameter for implicit integration,
to define both the Butterworth and IF filters.

Butterworth filters have several desirable properties.
Sincef BUT (0) = 1, the DC value of a mesh signal is pre-
served. As0 ≤ f BUT (σ) ≤ 1 for all σ ≥ 0, there is no over-
or under-shooting. In the pass-band,f BUT (σ) is maximally
flat [6] in that its first2N − 1 derivatives are zero atσ = 0.
Also, its approximation to the ideal low-pass filter is mono-
tonic and asN grows, it gets progressively better. Note that
Taubin’s Chebyshev polynomial approximations only pos-
sess the last of these properties. The IF filter, on the other
hand, behaves more like the Laplacian smoothing filter.

3. Numerical techniques for IIR filtering

When applying the IIR filters we have seen so far to mesh
fairing, we need to solve the linear system

BNx = [I + (U/σ̂)N]x = [I + (λU)N]x = b, (2)

whereU is our Laplacian operator, andb is the initial mesh.
SinceU is not symmetric in general, neither is the linear
system. Let us refer to (2) withN = 1 as theIF system, and
theN -th order Butterworth system, if N ≥ 2 is even.

1Desbrun et al. [2] consider the diffusion PDE∂x/∂t = −η∆(x),
wherex is a time-dependent signal defined over the mesh and the Lapla-
cian ∆ is taken to beU . By integrating the PDE implicitly, we have
(I + ηdtU)x(n+1) = x(n), whereλ = ηdt is the time step. Given
x(n), this is equivalent to applying an IIR filter1/(1 + λσ) to x(n).

3.1. Solving IF systems via SOR

Let us first consider the simpler IF system

B1x = (I + λU) x = b. (3)

When measuring execution times, we only account forCPU
time spent on solving the systems. Since for a typical mesh,
the number of non-zero entries per row inB1 is about seven,
we storeB1 in an adjacency-list structure to save storage.

We have experimented with twenty mesh models on a
1.8GHz Pentium IV with 256MB RAM. The face count of
these meshes range from 23,000 to over 375,000. Seven of
them, including the well-known horse, bunny, Igea, and Isis
models, are obtained from public-domain mesh libraries,
while the rest are generated through decimation.

BCG vs. BCGS (BCG stabilized):Biconjugate gradient,
or BCG, is a variant of the conjugate gradient method to
handle nonsymmetric systems. Its convergence is often ob-
served for a variety of problems, but few theoretical results
are available. Experiments show that the convergence pat-
terns of BCG may be quite irregular and can even break
down. The BCGS, or BCG stabilized, method is quite effec-
tive in avoiding such pitfalls, but at a slightly higher compu-
tational costs per iteration [1]. Our experimental results for
IF filtering confirm the above assessments. Compared with
BCG with a diagonal preconditioner, as in [2], BCGS ex-
hibits much smoother convergence and achieves abouttwo-
fold speed-upover BCG quite consistently.

SOR for IF filtering: The SOR method uses an extrapola-
tion parameterω to accelerate Gauss-Seidel iterations [10].
It is trivial to implement SOR so that its per-iteration cost is
only about1/3 and memory requirement about1/2 (assum-
ing that the average mesh vertex degree is about six) of that
of the BCG type solvers [1]. Also, SOR is much preferred
in a parallel environment over BCG and its variants since it
does not require the computation of inner products, which
are communication-intensive [1].

The success of SOR depends critically on the choice
of the relaxation parameterω. In the classical work of
Young [11], the optimalω, one which achieves the fastest
convergence, for the so-calledconsistently orderedsystems
is derived. Although the IF system (3) is not consistently
ordered, we can show [12] that it belongs to the closely re-
lated class ofgeneralized consistently orderedsystems [10].
Note that here we need to assume that the mesh is a man-
ifold. In addition, the spectral radius of theblock Jacobi
matrix2 J(B1) of B1 can be computed analytically, as we
show below. We are thus motivated to adopt Young’s results
to estimate the optimalω for IF filtering.

Recall thatB1 = I + λU = (1 + λ)I − λC. It follows
that J(B1) = λC/(1 + λ) and sinceρ(C) = 1, we have

2LetAD , AL, andAU be the diagonal, strictly lower and strictly upper
part of a square matrixA, thenJ(A) = −A−1

D (AL + AU).

ρ(J(B1)) = λ/(1 + λ). We propose to solve the IF system
(3) using SOR, where the relaxation parameterω∗ chosen
is given by the optimalωb for consistently ordered systems:
ωb = 2/(1 +

√
1− ρ2(J(B1)). It follows that

ω∗ =
2 + 2λ

1 + λ +
√

1 + 2λ
. (4)

Remarkably, our extensive tests show thatω∗ is indeed very
close to optimal consistently.

Experimental results: In Table 1, we report the perfor-
mance of SOR and BCGS for six of the twenty mesh models
— these are fairly representative of the general trend. We
use a stopping criterion which stops the iterations when no
apparent progress is being made [12]. This is fairly common
for iterative solvers exhibiting a regular convergence behav-
ior [1], as is the case for SOR and BCGS. We set the error
toleranceε = 3 × 10−3. The SOR parameterω∗ = 1.412
for λ = 10 andω∗ = 1.754 for λ = 100; both are obtained
from (4). As we can see, SOR achieves about50 − 65%
gain in execution times over BCGS for typically smoothing
tasks, which translate to a two to three-fold speed-up.

Mesh Horse Bunny Bone Teeth Igea Isis
Faces 30K 70K 137K 200K 250K 375K
BCGS 0.55 1.25 2.35 3.40 2.74 6.62
SOR 0.28 0.72 1.01 1.49 1.23 2.30
Gain% 49% 42% 57% 56% 55% 65%

BCGS 2.25 3.69 7.10 9.55 7.34 16.02
SOR 0.87 2.14 2.67 3.71 3.15 6.34
Gain% 61% 42% 62% 61% 57% 60%

Table 1. Execution time in seconds and gain
for SOR. Top block: λ = 10. Bottom: λ = 100.

As pointed out by Desbrun et al. [2],bλc steps of Lapla-
cian smoothing (explicit integration) produces about the
same smoothness result as implicit fairing usingλ as the
time step. For small values ofλ, e.g.,λ ≤ 15, bλc steps
of Laplacian smoothing generally takes less time than even
SOR. This is because the per-iteration cost of explicit in-
tegration is slightly less than that of SOR. For largerλ’s
however, IF filtering using SOR starts to outperform explicit
integration, and this is more so asλ increases.

3.2. Solving Butterworth systems via factorization

Factorization: Observe that for any positive integerN , the
coefficient matrixBN of the N -th order Butterworth sys-
tem (2) can be factorized in thecomplex domain: BN =∏N

j=1(λU−γjI), whereγ1, . . . , γN are theN distinct com-
plex roots of−1. WhenN = 2m, the factorization has a
particularly simple form of expression,

B2m(λ,U) =
2m−1∏

j=0

(
I + ei

(2j+1)π
2m λU

)
.

Since in most cases, it suffices to use Butterworth filters of
these orders to achieve various degrees of mesh smoothing,
we shall only consider this particular case in this paper.

In general, the solution ofBNx = b can be reduced to
the solution ofN sparse linear systems in complex num-
bers. Each system, which we call afirst-order complex But-
terworth system, is more sparse than the original. It turns
out that we may reduce the amount of work further by a
half. To see this, consider the second-order system,

(I + λ2U2)x = b, (5)

which is equivalent to(I + i λU) (I − i λU) x = b, where
U,x,b are real. We show that it suffices to solve

(I + i λU) y = b, (6)

for y ∈ Cn. Let y′ andy′′ be the real and imaginary parts
of y. Since bothx andU are real, we have(I − iλU)x =
y = y′ + iy′′ if and only if x = y′ and−λUx = y′′. Note
that the second condition is redundant, as it can be implied
from x = y′ and (6). Therefore,y′, the real part ofy is
exactly the solution to the second-order system (5).

Numerical solution of Butterworth systems: As shown
above, to solve a2N -th order real Butterworth system, we
need to solve a series ofN first-order complex Butterworth
systems of the form

(I + λeiθU) x = b,

whereλ = 1/σ̂ with σ̂ being the cut-off frequency. Since
a complex multiplication is about three times as costly as a
real multiplication, we shall minimize the number of com-
plex numbers in the coefficient matrix by applying a precon-
ditionere−iθI/λ, and solve the following system instead,

B̃x = (e−iθI/λ + U) x = e−iθb/λ. (7)

Complex BCG and BCGS (BCG and BCGS in complex
numbers), or CBCG and CBCGS for short, can be imple-
mented in the same way as for the real case. But the irregu-
lar convergence patterns suffered by BCG appear to worsen
consistently for the complex systems, resulting in extremely
slow convergence. Thus we report results for BCGS only.

As for complex SOR, or CSOR for short, we could fol-
low the same approach we have taken for the real case. The
block Jacobi matrix for (7) isJ(B̃) = λC/(λ + e−iθ), and
ρ(J(B̃)) = λ/(λ + e−iθ). We could get an estimatẽω∗,
of the optimalω using (4) again. However, the convergence
results obtained are not satisfactory. In fact, the relaxation
parameters obtained this way are often not close to optimal.

Experimental results (second-order filters): We imple-
ment the second-order Butterworth filter with cut-off fre-
quencyσ̂ ≈ 0.033, or equivalently,λ = 30. The perfor-
mance of three methods are compared: direct solution of

the second-order filter using (real) BCGS without factoriza-
tion, which we call BCGS2, and CBCGS and CSOR applied
to the first-order complex system (7).

In Table 2, we report the execution times we obtain. The
error tolerance for both CBCGS and CSOR isε = 3×10−3,
as before. But we have chosen to use a smaller error toler-
ance,ε = 1 × 10−3, for BCGS2. This is because its con-
vergence appears to be significantly slower than that of the
other two methods. If we had chosen the same tolerance
for all three methods, then we would not have been able to
obtain similar mesh smoothness quality to make a fair com-
parison. Even with the current choice ofε’s, BCGS2 still
cannot achieve the same level of smoothness as CBCGS for
some models, as illustrated in Figure 1.

Mesh Horse Bunny Bone Teeth Igea Isis
Faces 30K 70K 137K 200K 250K 375K
BCGS2 25.5 31.8 82.4 68.0 170.6 98.7
CBCGS 2.3 6.5 19.0 17.4 27.2 32.6
Gain% 91% 80% 77% 74% 84% 67%
CSOR 4.8 8.9 15.6 26.5 36.1 52.4

Table 2. Execution time in seconds and % gain
for factorization (cut-off frequency σ̂ = 0.033).

(a) CBCGS. (b) BCGS2. (c) BCGS2.

Figure 1. Results of second-order Butter-
worth filtering with different error tolerances.
(a) and (b): ε = 3× 10−3. (c): ε = 1× 10−3.

The computational advantage achieved through factor-
ization is quite evident. We can generally observe about
four to five-fold speed-up of CBCGS over BCGS2 for typ-
ical smoothing tasks, and as the order of the Butterworth
filter increases, a higher percentage of gain is obtained. It
is also worth noting that the iteration count of CBCGS is
often about the same as the iteration count of BCGS for the
first-order IF system (3), which is highly desirable.

Higher-order Butterworth filters: Higher-order Butter-
worth filters (order2N ≥ 4) can be implemented using
factorization and CBCGS at a higher computational cost.
In Figure 2, we show the results of using first- and fourth-
order filters on the bunny. Observe that the accuracy of the

fourth-order filter, in approximating the ideal low-pass fil-
ter, translates to less shape distortion, as shown around the
neck, the body, and especially the ear of the bunny. This
would be impossible to achieve with lower-order filters, for
which visible shape distortion often appears.

Figure 2. Butterworth filtering with σ̂ = 0.02.
Left: first-order. Right: fourth-order.

However, as far as mesh fairing is concerned, filters with
a very sharp transition about the cut-off frequency, as is the
case for Butterworth filters with order2N ≥ 8, are not rec-
ommended because of possible emergence of the ringing
phenomenon [7], which is illustrated in Figure 3.

Figure 3. The ringing phenomenon. Left:
second-order. Right: sixteenth-order

4. Conclusion and future work

The IF system for implicit fairing appears to be highly
structured, as they belong to the class of generalized con-
sistently ordered systems [12]. In using SOR to solve
the IF systems, we exploit these structures to obtain sig-
nificant speed-up over the use of conjugate gradient type
solvers. Implicit fairing using SOR also outperforms Lapla-
cian smoothing when sufficient level of smoothing is re-
quested. For Butterworth filters, we show that by factor-
izing the linear system involved in the complex domain, the
computational work required can be greatly reduced.

As we have seen, a great deal of effort is needed to attain
the promised benefits of Butterworth filtering and implicit

fairing [2]. We would like to view our work presented in
this paper as a first attempt to tackle these important numer-
ical problems. An immediate improvement over our current
treatment of the problem is to utilize an objective measure
of fairness quality as the means of evaluation, rather than
using some fixed error tolerance determined by visual ex-
amination. We would also like to look into applying and/or
extending the techniques developed in this paper to other
Laplacian operators, such as the scale-dependent Laplacian
and the mean curvature flow operator [2], as well as to other
filters, such as band-pass and high-pass filters [7].

Another interesting variation of the IIR filtering ap-
proach is to incorporate weights or constraints, thus mak-
ing the diffusion equationanisotropic. Finally, we plan to
investigate the complex SOR problem further, and it would
also be nice to have some theoretical justification for the use
of ω∗ in (4) for real SOR.

Acknowledgment: We appreciate discussions with Gabriel
Taubin and Robert Russell on related topics and helpful
comments from the anonymous reviewers. This research
was in part supported by NSERC-262118. The mesh dis-
play software used is QVIS, developed by Michael Garland.

References

[1] R. Barrett, et al.,Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods,SIAM, 1994.

[2] M. Desbrun, M. Meyer, P. Schröder, and A. Barr, “Implicit
Fairing of Irregular Meshes using Diffusion and Curvature
Flow,” SIGGRAPH 99,pp. 317-324, 1999.

[3] D. Field, “Laplacian Smoothing and Delaunay Triangula-
tions,” Communications in Applied Numerical Methods,
Vol. 4, pp. 709-712, 1988.

[4] L. Kobbelt, S. Campagna, J. Vorsatz, and H-P. Seidel, “In-
teractive Multi-Resolution Modeling on Arbitrary Meshes,”
SIGGRAPH 98,pp. 105-115, 1998.

[5] H. Moreton and C. H. S’equin, “Functional Optimization for
Fair Surface Design,”SIGGRAPH 92,pp. 167-176, 1992.

[6] A. V. Oppenheim and R. W. Schafer,Digital Signal Process-
ing, Pretice Hall, 1975.

[7] W. K. Pratt,Digital Image Processing,2nd Ed., Wiley, 1991.

[8] G. Taubin, “A Signal Processing Approach to Fair Surface
Design,”SIGGRAPH 95,pp. 351-358, 1995.

[9] G. Taubin, “Optimal Surface Smoothing as Filter Design,”
IBM Research Report, 1996.

[10] R. S. Varga,Matrix Iterative Analysis, Second Edition,
Springer, 2000.

[11] D. M. Young, Iterative Solution of Large Linear Systems,
Academic Press, 1971.

[12] H. Zhang and E. Fiume, “Butterworth Filtering and Implicit
Fairing of Irregular Meshes,”Extended versionof current
paper at http://www.cs.sfu.ca/˜haoz/papers/butimp.pdf.

