Wavelet Based Texture Resampling

Silviu Borac*t
Eugene Fiume™*

+ Alias|Wavefront and *University of Toronto®

Abstract

The integral equation arising from space variant 2-D texture res-
ampling is reformulated through wavelet analysis. We transform the
standard convolution integral in texture space into an inner product
over sparse representations for both the texture and the warped filter
function. This yields an algorithm that operates in constant time in
the area of the domain of convolution, and that is sensitive to the fre-
quency content of both the filter and the texture. The reformulation
admits further acceleration for space-invariant resampling.

1 Issues

The problem of efficiently processing two-dimensional textures that undergo space
variant warps is both important and technically challenging. In most rendering
situations, textures are differentially mapped onto surfaces through parameterisa-
tion and they are viewed through a perspective projection. Both mappings in
principle require texture resampling operations at a cost that can vary signific-
antly from pixel to pixel. The constant-time space variant resampling problem is
to compute filtered pixel values in image space at a cost that is independent of
the area of the texture involved in the computation. The importance of efficient
resampling algorithms is increasing with the advent of image-based rendering [11].

Most practical approaches use fast but lower quality space invariant algorithms
such as those based on MIP mapping [15]. An important design criterion of a gen-
eral space variant resampler is that it should readily specialise to and accelerate
space invariant resampling. Even if the problem of constant-time resampling is
solved theoretically, there remains the nagging problem of making the constant
as small as possible. Indeed, few “constant-time” resampling techniques are prac-
tical, with perhaps the only exception being clamped elliptical weighted average
(EWA) filtering on a pyramid [9]. Lansdale demonstrated that with suitable
clamping (which itself restricts the degree of space variance), remarkably better

LContact address for either author: Alias|Wavefront, 110 Richmond Street East, Toronto,
Canada, M5C 1P1; {silviu|elf}@aw.sgi.com.

visual results than can be achieved than using space-invariant resampling, at only
a small additional cost [6]. But truncated gaussians over ellipses are not optimal
low-pass filters, and other classes of filters may be desirable. We thus require
a technique that is practically efficient in both space and time over filters more
general than the gaussians and over filter domains more general than ellipses.

All filtering computations ultimately must perform a convolution operation
for each pixel in image space. This involves numerically integrating the product
of a filter function with a texture over a potentially large domain. A major source
of inefficiency in current schemes is that this integral does not take into account
the “information content” of the filter or of the texture: there is in principle no
gain if the filter is smooth or if the texture is constant-valued. We would like a
representation for the texture and filter that permits a sparse encoding of both
so as to minimise the space and time required for computing convolutions.

We shall present a method for texture filtering that is based on a wavelet
representation of the texture and of the filter. The approach exploits the or-
thonormality relations between the wavelet basis functions in order to evaluate
the result of the convolution integral of the texture with the filter. The method
allows the use of arbitrary filters and the filter shape may vary over the texture
domain. We use a wavelet representation to encode the texture, and we approx-
imate the warped filter by a carefully chosen interpolating basis function. This
approximation is then itself decomposed into a sparse wavelet representation. A
convolution algorithm that operates directly on the sparse representations will
then be presented.

The case for a wavelet representation can be made stronger by noting that
there is strong evidence that they are excellent for compression. Indeed an easy
and effective compression strategy is to use the k wavelet coefficients that are
largest in magnitude. This has the advantage of compressing across scales, and it
appears to be optimal with respect to RMS error [13]. Such a scheme provides an
excellent way for user to specify quite naturally a cost budget for the computation
and storage of textures and filters.

The remainder of the paper outlines prior work in the area, a more precise
explanation of the problem, a definition of the space-variant resampling problem,
a mathematical formulation of our solution, and a suggested set of algorithms.

2 Problem Formulation and Prior Work

The texture resampling problem is that of reconstructing a value I(z,y) at any
point (z,y) in the image plane through the convolution of a filter function F ,
centred at (z,y) and texture function T. When all F, , are all identical up to
translation by (z,y) to a prototypical filter function F, then the operation over
all (z,y) can be written as shift-invariant convolution operator,

I(z,y) = (F+T)(=,y).

Depending on whether our domain is discrete or continuous, convolution reduces
either to

I(z,y) = ZT(U,’U)F(.’L’ —u,y —v),

or to
I(z,y) = / T(u,v)F(x — u,y — v) du dv.

In either case, the homogeneity of convolution admits a dual operation in fre-
quency domain that is just the product of the (discrete or continuous) Fourier
transforms of the texture and filter. Except for special situations such as textures
derived from spectral noise synthesis, or special classes of band limited filters,
frequency domain analysis is usually not feasible.

Most generally (and preferably), we can recognise from the outset that the
filters may well vary even within image space. We write the global filtering oper-
ation as an integral equation in the form of an inner product:

I(z,y) = (T, Fyy). (1)

Texture resampling is complicated by the fact that the viewing operation in-
volves projecting textures from their parametric mapping on surfaces in R? back
into screen space. In the common case of a perspective projection, the area of the
texture projected onto a pixel can vary substantially with position. Because the
support of the filter is generally much smaller than the resolution of the texture, it
is preferable to project the filter through a pixel, leaving the texture invariant, and
performing the resampling operation in texture space. Thus what may have been
a space-invariant resampling operation in screen space becomes space-variant in
texture space. The mechanics of this process is nicely covered by Heckbert in [9]
and is summarised in [8, 5]. The early work on texturing and filtering in com-
puter graphics is surveyed in [10]. Notationally, we can account for this process
by making explicit the domain of the space variant inner product in Eq. 1:

I(z,y) = (TaFu,v> | Qu,v, (2)

where (2, , is the warped domain of the inner product in texture space that derives
from the original domain), , in the image plane, and F, , is the warped filter
in texture space corresponding to the original filter F; , in screen space. The
notation O | S restricts operation O to domain S.

The EWA filter by Greene and Heckbert presumes that ,,, is elliptical (got
through the projection of circular filter supports in screen space), and F, , is
presumed to be gaussian [8]. The technique is not constant-time unless the ec-
centricity or area of the ellipse is clamped. When combined with MIP mapping
[15] and clamping, EWA filtering yields a practical constant-time space variant
resampler [6]. Gotsman proposed an alternative constant-time approach, again
using gaussians and elliptical extents, that through an SVD analysis steers a filter
domain and matches the filter to the local characterisitics of the warp [7].

The most general and most “expensive” of the constant time approaches is NIL
by Fournier and Fiume [5]. It is general in that it supports arbitrary filters and
domains, and it is expensive due to its storage cost and relatively high constant
of proportionality at runtime. It is, however, the main point of departure for our
technique, so we briefly review its main attributes.

In NIL, an approximate multiresolution representation for arbitrary warped
filter surfaces is constructed. For any chosen level of detail, a specific F, , is
approximated as a bivariate piecewise (polynomial) surface

Fuv & Y) Biu) bij, (3)
patch P 4,5
where B; and B; are basis functions and the b;; are samples of the filter. Thus

for a specific position in screen space, the convolution integral can be written as

I(z,y) = / FouoT(u,v) dudv

= / Z ZB v) bi; T'(u,v) du dv

Qu,o patch P 4,5

Z Z bij/ B;(u) Bj(v) T'(u,v) du dv

patch P i,j Qu,o|P
= E E bij C”
patch P 4,5

For a given patch spacing, the set of the C;; defines a quadrature rule for con-
volution. Once the texture and basis functions are known, this set can be pre-
computed. Furthermore, a different patch spacing can be used, giving rise to a
multiresolution construction for the convolution integral. Fournier and Fiume also
present an adaptive quadrature rule derived from recursive patch subdivision.

There are several points of similarity between our proposed technique and NIL.
As with NIL, we will approximate a filter surface, this time using an interpolating
non-polynomial basis function. However, we decompose both the texture and
the filter approximation over an orthogonal wavelet basis. The inner product
computation given in Eq. 2 can then accelerated, taking into account both the
sparseness of the representation and the orthogonality of the basis.

The NIL construction is storage intensive. The storage required is

(Z %) M?RS, (4)

=0

where M is the order of the basis functions B; and B; in Eq. 3, R is the number
of bytes for a Cj;, S is the number of texels and p is the number of levels in the
multiresolution representation. In contrast, our wavelet representation requires
at most RS space, and less if the matrices of the coefficients at different levels are
stored in a sparse format. The cost of the convolution operation depends on both
the smoothness of the warped prefilter and the smoothness of the texture. NIL
does not take advantage of texture regions having low frequency content, but NIL
is not alone in this. Using sparse representations for the wavelet decompositions
of the texture and the filter actually improves the efficiency of the computation
instead of introducing an overhead. The convolution cost is given by the number of
pairs of non-zero coefficients of the same type and at the same scale and position.

The sparse matrix format allows to identify this pairs without making comparisons
against zero or storing and testing flags.

The method is not limited to the space variant setting. It can be used also as
an alternative to prefiltering methods that are less accurate and less costly than
NIL, such as trilinear interpolation on a MIP-map pyramid.

3 Choice of Wavelet

There is a bewildering array of wavelet bases to choose from, and the choice must
be carefully considered. It is important for the wavelet basis to be orthogonal.
The convolution integral is expressed as a sum of dot products of basis functions;
choosing an orthogonal basis minimises the number of non-zero terms. It is also
desirable to have a small support for the reference wavelet since this economises
the computation required to obtain wavelet decompositions.

Some degree of regularity of the basis function is also important. When ap-
proximating a smooth function, having smooth wavelets makes the approximation
error decay rapidly with the number of basis functions employed. This means
that the approximation within some prescribed error bounds will have a smaller
number of coefficients. The smoothness and the small support requirements are
contradictory. The trade-off we make is to choose the smallest-support ortho-
gonal wavelet that has a continuous derivative. This is the Daubechies wavelet
with three vanishing moments, which has two-scale filters of length six. This func-
tion is Holder continuous with an exponent of at least 1.0878 [3] and therefore its
derivative is continuous, albeit with a very small Hélder exponent.

An alternative is the spline wavelets introduced by Chui [1]. Since these wave-
lets can be directly interpolating, they would appear to be well suited to our
interpolation problem, obviating the need for the two-step process we described
above. However, spline wavelets are only semi-orthogonal, meaning that they are
orthogonal across but not within scales. Furthermore, their dual wavelets have
non-compact support. Because our two-step process works rapidly and accurately,
the small extra overhead is amortised against the economies of orthogonality.

Another alternative is the biorthogonal B-spline wavelets of Cohen, Daubech-
ies and Feauveau [2, 3]. For the special choice of a piecewise linear scaling function
we obtain an interpolating function for the filter approximation. However, to be
able to perform the convolution by using the orthogonality relations, we need to
expand the texture in the basis formed by the dual functions. In the biortho-
gonal B-spline approach one needs significantly longer filter lengths for the dual
functions in order to attain a prescribed amount of regularity: for example C*
continuity is first reached with a filter length of 13 (see [3], Section 8.3, the spline
example with N =2 and N = 6).

4 Texture Representation

The first step of the ideal resampling process as formulated by [9] is the recon-
struction of the continous texture function 7'(u) from discrete samples T'(k). We
achieve this in the first stage of the construction of the wavelet representation by
expressing the reconstructed texture in the basis of wavelet scaling functions at
the finest scale. We use a standard tensor product 2-D wavelet representation:

i) = @ik (W)Bjrs(u2) Vi (u) = i (u1)@jk, (u2)
() = @ik (W)Vik, (u2) T (u) = Pk, (w1)P)k, (u2)
where ; ' ; '
Djk=2"2¢ (2_].'L' — k) Vjk =272 (2_133 - k) (5)

Here, h,v,d are labels for the three detail signals at a given scale, standing for
horizontal, vertical and diagonal; further, k = (k1, k2), and u = (u1,u2). Letting
A € {h,v,d}, the orthonormality relations between the basis functions are:

(®jpe, Tjrpe) = 0, for j' < j.
<‘P3Ak"1’3\k> = 8jjrbrrrban- (6)

We use the indexing convention of [3]: a larger scale index corresponds to a
coarser resolution level. The largest scale index is denoted by J. The multiresol-
ution ladder is V; C Vj_y C --- C Vo C V; C Vp, where

1 1 1 1 1
Vo=VieW)=---=V;eW;eW;_ 10 ---6 W;.

We build the wavelet representation by first decomposing the reconstructed
texture in the basis of wavelet scaling functions at the finest resolution level:

Vos T(u)= Y T0°8). (7)
k

Here s indicates a scaling function coefficient and Ty are the wavelet coefficients
of the texture. The coeflicients Tl((]’s can be estimated by using a band-limiting
argument (e.g. Prop. 2.1 of [14]): if the functions T'(u) and ¢(u) are band-limited
o (—K, K), (i.e. the Fourier transforms T'(¢€) and ¢(¢) are zero for |¢| > K) then

(T,¢) = 2K Z (n/2K) ¢(n/2K).

n=—oo

This results in the following formula for the coefficients in the decomposition in
terms of texture samples and values for the scaling function at integer arguments:

T® = (T, o) ZT) ok (n ZTn+k (8)

The value of K is determined by the texture-sample spacing. The band-limited
assumption certainly holds for the reconstructed texture. The wavelet scaling
function will have some higher frequency content which decreases with increased
regularity. This is a good reason for choosing more regular wavelets.

By applying the standard wavelet decomposition algorithm, we obtain

J
T(u) =Y Tl () + ZZZT,{’MIJJ{I((II). 9)
j=1 k

k

At level j every array Tli’ consists of at most 537 S+ elements, but the representation
is expected to contain a high proportion of zero valued elements.

We use a sparse matrix storage format called the Compressed Row Storage
(CRS) format for the coefficients Tﬂ’)‘ so as to reduce both storage and the con-
volution time [4]. In the CRS format, the non-zero elements of the matrix are
stored as a vector vals. Two other vectors of indices are used to access the matrix
elements: collnd, which has the same length as vals and contains the index of
the column, and rowPtr, which has one entry per matrix row and indicates the
position in the vals and collnd vectors in which a row starts. We use the addi-
tional integers startRow and endRow to indicate the first matrix row containing
non-zero elements. This is important especially for the filter representation since
the filter can have its support at an arbitrary position in texture space.

As an example, the matrix

1 20 0 3
4 56 0 O
0 78 0 9
0 0 0 10 O
1. 0 0 0 12
has the following CRS representation (indices are zero-based):
startRow | 0
endRow | 4
rowPtr |0 3 6 9 10
colnd |0 1 4 0 1 2 1 2 4 3 0 4
vals 1 2 3 4 5 6 7 8 9 10 11 12

Note that even when the matrix is not “very” sparse, the added cache coher-
ence afforded by the vals array makes it a suitable structure. When we applied a
wavelet transform to several common textures, sparse representations of 5%—30%
non-zero elements were achieved before noticeable artifacts were introduced.

5 Resampling

We adopt Heckbert’s resampling notation [9]: the prefilter in screen space is
denoted h(x) (a slight change from Section 2); the texture to screen mapping is
x = 7(u); the warped preﬁlter 1s glven by F(u) = |4Z|h(r(u)); the prefiltering
operation is f(xo) = [F (7~ u) T(u)du . The corresponding wavelet
representation of F' is

J
F(r—! ZF“@k + EZZF@ T2 (). (10)
7j=1 k

Using the orthonormality relations (6) the convolutlon integral may be written as

f() ZFJSTJS + ZZZF]/\T]A (11)

j=1 A k

A term in the second sum is non-zero only when both F' and T are non-zero.
These wavelet coefficients will be non-zero when detail exists at scale 27.

proc sparseConvolve(filter, texture)
for row := filter.startRow to filter.endRow do
fitColPtr := filter.rowPtr[row];
flitLastColPtr := filter.rowPtr[row + 1] — 1;
txtColPtr := texture.rowPtr[row];
txtLastColPtr := texture.rowPtr[row + 1] — 1;
while fitColPtr < fltLastColPtr A txtColPtr < txtLastColPtr do
if filter.collnd[fltColPtr] < texture.collnd[txtColPtr]
fitColPtr := fltColPtr + 1;
elsif texture.collnd[txtColPtr] < filter.collnd[fltcolPtr]
txtColPtr := txtColPtr + 1;
else
Found a match. Add a term to the convolution result.
fitColPtr := fltColPtr + 1;
txtColPtr := txtColPtr + 1;

Figure 1: The convolution iterator.

The coefficients for F' are also stored in a sparse format. We use an enhanced
Compressed Row Storage format. In the space variant situation, the sparse rep-
resentation for F' must be dynamic because it is generated through a refinement
procedure that does insertions of coefficients in an arbitrary order. An iterator
is used which identifies non-zero pairs in 7" and F' without testing against zero
or using flags. For every scale and h, v, d matrix of coefficients for which we have
non-zero coefficients in both the texture and filter representation, we traverse the
CRS representations and identify the non-zero products of (11). An outline of
the convolution procedure that illustrates how we take advantage of both sparse
representations is given in Figure 1.

6 Building the Wavelet Filter Representation

We obtain the wavelet representation of the warped filter in two stages. First an
approximation of the filter function is constructed from samples that are taken
using an adaptive subdivision algorithm. As in [5], adaptive subdivision affords
the approximation of the filter with a bounded number of elements. Then, the
wavelet representation of this approximation of the filter is computed. This two-
step process seems warranted because the problem of obtaining a representation
of a function in a basis of orthonormal wavelets from non-uniform samples is open.

The adaptive subdivision is done with a quadtree algorithm. The nodes of the
quadtree are squares with corners at points with dyadic coordinates. For every
internal node in the quadtree of an approximation there corresponds a bell shaped
interpolating function that takes the value one at the centre of the square and zero
on the boundary. The restriction on the corners to having dyadic values for the
coordinates is useful because it allows the following important optimization: the
wavelet coefficients of the approximating element of a node in the quadtree can be
easily obtained by rescaling and translating a precomputed wavelet representation
of the unit interpolating function.

0.004+

0.002+

-0.002+

-0.004+

-1’5 -1 <05 [} 0.5 1 15

Figure 2: The absolute error for the approximation of p by its wavelet decompos-
ition truncated to the first three scale levels.

6.1 Choice of Interpolant

The 2-D interpolant used is the tensor product of a 1-D interpolant: P(u) =
p(u)p(v) where

_J 0 for u € (0o,—1)U[1, 0]
o { 4 cos(ra)] we 11) (12)

The reason for preferring the function p(u) over the standard tent function is the
fact that smoother functions can be approximated with less error by a truncated
wavelet decomposition. Low order discontinuities of the function appear with
large coefficients over many scales. The function p(u) has a continuous first order
derivative and second order discontinuities at u = —1 and 1. Using (8), the wavelet
decomposition of p(u) is computed. When limiting it to only three scales we obtain
low approximation error with peaks at the points of discontinuity (Figure 2).
The function p has also the partition of unity property: >, ., p(k) = 1. This
ensures that at least the constant function is represented correctly by a sum of
integer translates. This property translates to the 2-D case: D, .52 P(k) = 1.

6.2 Refinement

The process of building an approximation for the warped filter starts by consider-
ing the natural grids of the wavelet decomposition, i.e. those grids with vertices
at 2'k for scale I. We find the scale and position of the smallest grid cell in texture
space that covers completely the filter’s support. This minimal cell will be the
root of the quadtree in the refinement algorithm.

At each refinement level we add a patch of the size of the node in the quadtree
and whose shape is given by the 2-D interpolant P. The amplitude of the patch
is given by the difference between the value of the warped filter at the centre
of the patch and the approximation from the previous refinement levels. The
interpolation property of P ensures that patches at the same refinement level do
not influence each other. The approximation obtained this way is continuous.

0 1 0 T 3

Figure 3: Apf)roximation of the warped filter after 1-4 refinement levels.

The decision to refine a node in the subdivision tree can be based on grid points
as in [5], possibly enhanced by using in addition peripheral grid points as in [6].

Figure 3 illustrates the refinement algorithm for a 1-D case gaussian filter
warped through a perspective projection. The viewpoint is at unit distance from
the line coinciding with texture space. The line of sight makes an angle of 45
degrees with the texture line. The perspective map is u = x/(v/2 —z), the inverse
perspective map is x = % and the jacobian is |% = ﬁ

Since the refinement quadtree matches at every scale the natural grids of the
wavelet representation, we may rescale and translate the precomputed wavelet
representation of P by reindexing and then adding it to the representation of the
filter. At this point the filter representation is still not suitable for convolution
since it may contain scaling function coefficients at various scales and positions.
This is a result of the fact that the representation of P contains scaling function
coefficients at the coarsest level. A final convolve-downsample [3] sweep from the
fine to the coarse levels must be done in order to compute the contribution of
these terms to the wavelet representation.

6.3 Space-invariant filtering

The technique can be specialized to the space-invariant filtering case, the main
change being that the filter approximation step is no longer necessary. Since
we expect the filter approximation to be the most time intensive operation, this
would mean a significant increase in performance.

o o [e] [e] o o0 o o o ©O

Figure 4: Average and detail components of the approximated filter at four suc-
cessive scales. The zero entries in the matrix of wavelet coefficients are marked
with an empty circle

7 Conclusions and Future Work

This paper has presented a sound architecture for space variant wavelet based
texture resampling. The approach further accelerates space-invariant resampling.
Our next step is to implement these algorithms in a general-purpose renderer
and to study how the process can be further optimised. Special emphasis will
be put into improving the algorithm used for building the wavelet representation
of the filter. There is a possibility for better integrating the filter approximation
procedure with the convolution computation by making use of the auto-correlation
functions of compactly supported orthogonal wavelets [12]. These functions are
smooth and have the interpolating property; thus they are good candidates for
the filter representation. They are also closely related to the orthogonal wavelet
basis and therefore the convolution product of the filter represented in the auto-

correlation function basis with the texture represented in the orthogonal basis
could still be computed efficiently.

Acknowledgements

We happily acknowledge the rendering group at Alias|Wavefront for providing a
stimulating environment in which to work and do research. Research funding by
ITRC (Ontario) and NSERC (Canada) of the second author is greatly appreciated.
We are grateful to the reviewers for their comments and helpful suggestions.

References

[1] C. K. Chui, An Introduction to Wavelets, Academic Press 1992.

[2] A. Cohen, I. Daubechies, J.C. Feauveau, “Biorthogonal bases of compactly suppor-
ted wavelets”, Comm. Pure Appl. Math., 45 (1992), pp. 485-500.

[3] 1. Daubechies, Ten Lectures on Wavelets, STAM 1992.

[4] LS. Duff, A. M. Erisman, J.K. Reid, Direct methods for sparse matrices, Oxford
University Press, London, 1986.

[6] A. Fournier, E. Fiume, “Constant-Time Filtering with Space-Variant Kernels”,
ACM SIGGRAPH ’88 Conference Proceedings, also published as ACM Computer
Graphics 22, 4, (Aug. 1988), pp. 229-238.

[6] R. Lansdale, Texture-Mapping and Resampling for Computer Graphics, M.A.Sc.
Thesis, Department of Electrical Engineering, University of Toronto, October 1989.

[7] C. Gotsman, “Constant-time filtering by singular value decomposition”, Computer
Graphics Forum 13, 2 (March 1994), pp. 153-163.

[8] N. Greene, and P.S. Heckbert, “Creating raster omnimax images from multiple per-
spective views using the elliptical weighted average filter”, IEEE Computer Graph-
ics and Applications 6, 6 (June 1986), pp. 21-27.

[9] P.S. Heckbert, Fundamentals of Texture Mapping and Image Warping, M.Sc.
Thesis, Department of Computer Science and Electrical Engineering, University
of California, Berkeley, 1989.

[10] P.S. Heckbert, “Survey of texture mapping”, IEEE Computer Graphics and Ap-
plications 6, 11 (Nov. 1986), pp. 56-67.

[11] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-Based Rendering
System”, SIGGRAPH 95 Conference Proceedings (Aug., 1995), pp. 39-46; Annual
Conference Series, Addison Wesley.

[12] N. Saito, G. Beylkin, “Multiresolution Representations using the Auto-Correlation
Functions of Compactly Supported Wavelets”, IEEE Transactions on Signal Pro-
cessing, special issue on Wavelets and Signal Processing, 1992.

[13] W. Sweldens, “Wavelets, signal compression and image processing”, in Wavelets
and Their Applications in Computer Graphics, SIGGRAPH 95 Course Notes, 1995
(http://www.cs.ubc.ca/nest /imager/contributions/bobl/wvlt/download /notes.ps.Z.saveme).

[14] M.V. Wickerhauser, Lectures on Wavelet Packet Algorithms, INRIA /Rocquencourt
Minicourse Lecture Notes, 1991
(http://wuarchive.wustl.edu/doc/techreports/wustl.edu/math/papers/inria300.ps.Z)

[15] L. Williams, “Pyramidal Parametrics”, Computer Graphics (SIGGRAPH ’83 Pro-
ceedings) 17, 3 (July 1983), pp. 1-11.

