
A Temporal Scripting Language for

Object-Oriented Animation

E. Fiume1

D.Tsichritzis
L. Dami

Centre Universitaire d’Informatique
Université de Genève

12 rue du Lac
CH-1207, Genève, Switzerland

Abstract

Object orientation and concurrency are inherent to computer ani-
mation. Since the pieces of an animation can come from various media
such as computer-generated imagery, video, and sound, the case for
object orientation is all the stronger. However, languages for express-
ing the temporal co-ordination of animated objects have been slow in
coming. We present such a language in this paper. Since the move-
ments that an animated object can perform are also encapsulated
as objects in our system, the scripting language can also be used to
specify motion co-ordination. Such “motion objects” can be applied
to any animated object. The syntax, semantics, and implementation
of this language will be described, and we shall show how to specify
device-independent computer animation.

1The financial assistance of an FNRS grant from the Swiss Federal Government is
gratefully acknowledged. The first author also wishes to acknowledge the financial support
of the Natural Sciences and Engineering Research Council of Canada. Address of first
author as of 1 September, 1987: Department of Computer Science, University of Toronto,
10 King’s College Road, Toronto, M5S 1A4, Canada.

1

1 Introduction

The term “object” has become a very popular buzzword. Interpretations
vary as to what precisely constitutes an object-oriented system. We view an
object as being an encapsulation of activities and data. Its basic properties
are inherited from a prototype, of which the object is an instance. An object
executes independently of other objects, and communicates with them ac-
cording to a (message-passing) protocol. Rather than viewing an application
as a single large piece of code, the object-oriented approach favours viewing
it as a set of communicating capsules of activity, perhaps executing concur-
rently. The general belief, with which we concur, is that this approach facili-
tates structuring a system in a manner that clearly reflects its conceptual de-
sign. Applications from several areas of computer science, including database
systems, office information systems, and simulation, have been successfully
modelled by object-oriented approaches. Surprisingly, computer graphics has
yielded comparatively slowly to object orientation. In this paper, we shall
show how one application, computer animation, benefits from object orien-
tation. In particular, we outline an environment in which animated objects
are fashioned into complex animations using a concise, directly-executable
specification language. The uniform encapsulation as objects of activities in
animation allows one to extend both the expressive range of the language,
and the repertoire of output media on which animation can be depicted.

Computer animation is inherently object-oriented. This view is not new
[Reyn82; Berg83; MaTF85]. Reynolds’ well-known ASAS language, which
is an extension of a Lisp-based Actor system, is essentially object-oriented
[Reyn82]. Moreover, languages such as BGRAF2 have been proposed which
attempt to capture the temporal aspects of computer animation [BeKa76,77].
In BGRAF2, time is a quantity that can be directly sampled, and can thus
be used to drive an animation. In this manner, it is possible to separate the
static representation of a graphic object from how it is animated. However,
it can be difficult to comprehend the global temporal behaviour of a system
from many local views of time, or from a set of asynchronous events. Our view
is to specify a global temporal behaviour, and to constrain local temporal
behaviour to meet the specification.

To construct an animation in our system, an animator begins with a library
of animated objects. Each object has its own autonomous spatiotemporal be-

2

haviour. One can then globally co-ordinate several such activities by means
of a temporal scripting language. A parser/scheduler interprets temporal
expressions and, according to their semantics, causes the animated objects
to generate a sequence of graphics commands which satisfy the specifica-
tion. This approach differs from others in that it is primarily concerned with
global temporal behaviour, it treats animated objects and motion uniformly,
thereby making it easy to reuse objects, and in that the language has a well-
defined semantics, allowing one to do temporal reasoning about a system. It
has the additional benefit of being extensible to specifying the co-ordination
of animation encapsulated by different media. Our strategy in developing
such a language is motivated by several potential applications:

• To specify (and transmit) device-independent computer animation. Since
objects are active, they can customise their behaviour to the specific
environment in which they are to be viewed. The notion of “infor-
mation hiding” is helpful for separating essential temporal aspects of
object activities from device-specific aspects of their representation or
display.

• To specify the co-ordination of both animated and sonic objects into
so-called multimedia electronic messages [FiTs87]. We wish to be able
to construct easily electronic messages which are composed of computer
animation, sound, and video segments.

• To understand the issues underlying the specification and enforcement
of real-time constraints in general object-oriented applications. This
problem is extremely difficult, and we hope that working on a nontriv-
ial subproblem such as computer animation will help us to gain some
insight into the general problem.

• To depict the operation of concurrent systems. In the object-oriented
environments we are constructing, an application may be composed of
many objects which execute concurrently. [Nier85; TFGN87]. While
we believe this will result in extremely powerful modelling tools, it can
also be difficult to understand the behaviour of applications constructed
in this manner. Consequently, it will be helpful to have the ability to
animate the behaviour of objects [Baec81; FoMa86; Myer83].

3

To accommodate these applications, we have developed an object-oriented
animation testbed. The testbed contains two major software components:
an animated object-creation environment, and a scripting environment.

The object-creation environment provides a means of interactively defining
new animated objects and their motion. Once defined, animated objects
are placed in a library for use as basic elements for constructing computer
animations. The library embodies an open-ended store of object prototypes
that can be instantiated as desired within a script, in the same way as the
data type int (or integer) can be instantiated within a C (or PASCAL)
program. Moreover, the motion of objects can be defined separately and also
placed in a library. Such basic motions are then available to animate any
graphic object. We are currently developing a keyframe animation module
for this environment [KoBa84; Reev81]. Moreover, we hope to extend this
environment to objects which produce sound rather than pictures. The use of
an object-oriented approach is important for being able to deal with dynamic
activities which can operate over a diverse set of output media.

The focus of this paper is on the scripting environment, in which a complex
animation may be fashioned, using temporal operators, from a set of ani-
mated objects. Many animated objects can execute concurrently. We have
built a parser for the language in which expressions are directly executable.
This facilitates quick prototyping and editing. Moreover, animation can be
triggered by the execution of other objects. Thus, for example, objects will
be capable of depicting their behaviour graphically. Motion specification is
also encapsulated in terms of objects. The scripting language can there-
fore be used to co-ordinate complex motion, as well as co-ordinating object
execution. We find that this homogeneity facilitates concise specifications,
re-usability, and open-ended design. Since the language is based on a formal
syntax and semantics, it provides us with the ability to specify, experiment
with, and evaluate new temporal connectives. We shall discuss the current
syntax, semantics, and implementation of our language, as well as presenting
several examples.

4

2 Language Description

An expression in our scripting language states a temporal relationship among
instances of animated objects. An animated object is simply an active entity
which knows its duration in abstract units of time called ticks, and knows its
behaviour from tick to tick. It can report this information when a message

is sent to it. Our animated objects are actually defined over a continuous
time model. Consequently, when asked for its behaviour at a specific time,
an object may interpret the request as “what are you doing now?”, or it
may interpret it as “what have you done since I last called?”. Moreover,
a continuous internal time model makes it easy to scale the speed of an
object’s activities. In general, when asked for its behaviour for a particular
time, an object produces a set of graphic commands resulting from internally
sampling its temporal behaviour. Ultimately, an animation scheduler will
“tick” regularly every 1/30 seconds. However, as will be seen, objects can be
sampled more or less frequently.

More formally, an animated object O responds to the messages “O.t” and
“O.duration”, defined as follows.2

O.duration ∈ ℜ ∪ {∞}

O.t =

{

{graphics commands for time t} if t ∈ [0, O.duration)
otherwise

The duration of an object can be infinite. We shall now define the semantics
of temporal operators in terms of defining new animated objects. That is,
if ⊙ is a temporal operator, and E1 and E2 are scripting expressions (i.e.
are themselves objects), then E1 ⊙E2 specifies an object whose semantics is
synthesised from that of E1, E2, and ⊙. Throughout the following discussion,
let E1 and E2 be arbitrary, well-formed expressions in the scripting language.
We shall occasionally abbreviate “.duration” by “.d”.

Chronological Sequencing.

The statement E1; E2 expresses the well-known idea that E1 is followed by

E2. Formally,

(E1; E2).duration = E1.duration + E2.duration

2We plan to generalise the system to a full message-passing model. At present these
are the only two message types permitted in the system.

5

(E1; E2).t =

{

E1.t if t ∈ [0, E1.duration)
E2.(t−E1.duration) otherwise

Observe that E2.t = for any t 6∈ [0, E2.duration), so it is not necessary to de-
fine explicitly the semantics of E1; E2 outside the range t ∈ [0, E1.duration+
E2.duration). If either expression denotes an animation of infinite duration,
then the standard rules apply:

i +∞ =∞+ i =∞+∞ =∞.

It is easy to show that “;” is associative. That is, E1; (E2; E3) ≡ (E1; E2); E3.
However, “;” is not commutative.

Simultaneous Activation.

The expression E1&E2 denotes the intuitive notion that E1 and E2 are to
commence simultaneously. Formally,

(E1&E2).duration = max{E1.duration, E2.duration}

(E1&E2).t = E1.t ∪ E2.t.

It is easily seen that “&” is associative and commutative.

Simultaneous Termination

A surprisingly useful operator is the converse of “&”: E1 ≀ E2 indicates that
E1 and E2 must terminate simultaneously. Its semantics is slightly more
complicated than simultaneous activation:

(E1 ≀E2).d = max{E1.d, E2.d}

(E1 ≀ E2).t =

{

E1.t ∪ E2.(t− (E1.d− E2.d)) if E1.d ≥ E2.d
E2.t ∪ E1.(t− (E2.d− E1.d)) otherwise

As with simultaneous activation, “≀” is associative and commutative.

Delayed Activation.

It is sometimes desirable to specify a pause in an animation or to delay the
activity of one object relative to another. The expression delay n specifies
a object with the following semantics.

(delay n).duration = n

∀t ∈ ℜ.(delay n).t =

The value of a delay can be an arbitrary arithmetic expression.

Some Simple Examples.

6

1. “A & (delay 5; B)” causes B to be activated 5 ticks after A.

2. “A ≀ (B; delay 5)” causes B to terminate 5 ticks before A.

3. “A & delay 5 & B” is equivalent to “A & B” if A and B both have
duration greater than 5.

4. if A.d = B.d then A≀B ≡ A&B.

5. delay n; (A & B) ≡ (delay n; A) & (delay n; B).

A General Synchronisation Operator

All binary temporal synchronisation operators can be expressed in terms of
a general synchronisation operator. It is very useful for specifying precise
synchronisation conditions, and it is important to our implementation, since
it allows us to reduce all temporal expressions to expressions involving just
this operator. However, in general, the above operators have a simpler, more
intuitive semantics. The general synchronisation operator is of the following
form: A[ta] ≍ B[tb]. This expression states that A’s notion of the time ta
is to be synchronised with B’s notion of time tb. Its semantics is somewhat
complicated.

(E1[t1] ≍ E2[t2]).d = max{E1.d, E2.d, E1.d + t2 − t1, E2.d + t1 − t2}

(E1[t1] ≍ E2[t2]).t =

{

E2.t ∪ E1.(t−∆t)) if t1 ≤ t2
E1.t ∪ E2.(t−∆t)) otherwise

Observe that t1 and t2 need not specify times during which E1 or E2 are
active. For example, if A and B are objects each with a duration of 100
ticks, then A[5000] ≍ B[200] specifies that A is to begin 4800 ticks before B.

Arbitrary arithmetic expressions may appear within “[]”. The symbol “$”
stands for the duration of the expression to the left of the brackets. For
example,

(E1[$/2] ≍ E2[$/2])[$/4] ≍ E3[0]

states that the halfway points of animations E1 and E2 must coincide, one-
quarter of the way into which the animation E3 must begin.

Equivalences.

We stated above that the general synchronisation operator can be used to
rewrite other binary temporal operators. The reader may wish to verify the
following propositions:

7

1. E1; E2 ≡ E2[0] ≍ E1[$].

2. E1&E2 ≡ E1[0] ≍ E2[0].

3. E1 ≀E2 ≡ E1[$] ≍ E2[$].

The general operator is commutative but not associative (because expressions
of the form (A[ta] ≍ B[tb]) ≍ C[tc] are not defined–that is, a bracketed
expression should itself have a synchronisation time as in the example above).

Repetition.

The repeat operation provides a straightforward way to specify repetition
of an animated expression. Its semantics is straightforward:

repeat n E1 =

{

delay 0 if n = 0
repeat (n− 1) E1; E1 if n > 0

Asynchronous Execution.

It is sometimes desirable to specify animations independently, and introduce
them into another animation in an asynchronous manner. This is especially
useful if some animations must occur at some specific “absolute” time point
in an animation. The at operation is used to express this idea. We define its
semantics structurally as follows.

at t E1 S ≡ (delay t; E1)&S,

where S refers to the remainder of the script. Observe that the specified time
point is truly absolute only if the statement occurs at the beginning of the
script before any synchronous operations are specified.

Temporal Scaling.

It is useful to have the ability to redefine the length of time between an
object’s “ticks”. This is particularly handy when attempting to describe mo-
tion co-ordination (see below). The following operation changes an object’s
duration and scales its temporal behaviour in proportion to the change.

E1〈n〉.d = n (n ≥ 0)

E1〈n〉.t = E1.
(

tn

E1.d

)

8

Note that we allow temporal behaviour to be defined over ℜ. One may instead
wish to change the semantics to round to the nearest natural number, for
example.

The next two operations are somewhat more experimental than the others,
in that we wish to explore some issues of nondeterminism and randomness
in specifying computer animation (and object activities in a more general
setting).

Nondeterminism

To add variety to an animation, one could specify that one expression or
another is to be chosen randomly to execute. The expression E1 | E2 has the
following semantics:

(E1 | E2).duration = E1.duration ∧ (E1 | E2).t = E1.t
⊕

(E1 | E2).duration = E2.duration ∧ (E1 | E2).t = E2.t.

We have chosen to view the alternatives as being mutually exclusive. How-
ever, it would be useful to specify a desired distribution of choices, and more-
over to know which alternative is chosen. The latter is particularly useful if
one wishes to define an animation based on a nondeterministic “shuffling” of
several animated sequences (such as video clips). However, this appears to
require saving a state, and then formulating a boolean condition on such a
state.3 We are beginning to experiment with notations for these functions,
but introducing state variables and conditions complicate matters, since one
may then have to consider issues such as mutual exclusion–in short, one gets
a full parallel programming language.

Temporal Overlap

Another way to add variety is to specify simply that the execution of two
expressions must overlap in time, but that their duration of overlap, and
their order of execution is left unspecified. This is captured by the notation
E1 ⋆ E2, which has the following semantics:

E1 ⋆ E2 ≡ (E2&(delay ξ2; E1)) | (E1&(delay ξ1; E2))

3Clearly, to solve the problem at hand, it suffices to define an n-ary shuffle operator,
but this begs the basic question of the desirability of states and conditions.

9

where ξ1 ∈ [0, E1.duration) and ξ2 ∈ [0, E2.duration) are uniformly dis-
tributed random variables over their respective ranges.

The following is a basic property of temporal overlap that the reader may
wish to prove:

(A ⋆ B) ⋆ C ⇒ (A ⋆ C) ∨ (B ⋆ C).

It states simply that if two overlapping activities overlap with a third, then
one of the first two activities must also overlap with the third. The converse
is not necessarily true.

3 Instantiation, Motion, and Relative Time

Animated objects can be instantiated from prototypes in a library. Proto-
types typically encapsulate a graphic object (defined in terms of polygons and
free-form surfaces) and a default dynamic behaviour.4 However, if permit-
ted by the prototype, much of the default behaviour can be changed when
instances of the object are created. The general form of an instantiation
command is:

InstanceName: ObjectPrototype(parameters) {DynamicsScript}.

If, for example, Teapot is a prototype of an animated teapot, then a script
may contain some of the following declarations:

tea1: Teapot

tea2: Teapot(“origin=(7,4,3)”)
tea3: Teapot(“origin=(7,4,3)”){DynamicsScript}

In the first case, tea1 inherits the default teapot behaviour. In the second
case, tea2 inherits the dynamics of Teapot, but the default origin is over-
ridden.5 In the last case, tea3 redefines the dynamics of Teapot. We have
been careful to employ an object-oriented approach to motion specification in
the following sense: a particular motion (such as a trajectory) is encapsulated
as a motion object, and can be used by any graphic object. Since motion

4A reasonable default dynamic behaviour would be to not move at all, that is, to be a
prop.

5This does not necessarily mean that the animation will now function correctly, how-
ever. The prototype is not obliged to accept the new behaviour, nor to ensure consistency
if it does accept it.

10

objects have a duration and temporal behaviour as do animated objects,6 the
scripting language can be used to build complex motion behaviour from these
objects, in a manner that is identical to that of building complex animations
from animated objects. Consider the following example.

rot: RotateY(−180)
trajectory: FollowTrajectory (p0, p1, · · · , pn)
cup1: Cup(“origin=5,0,0”) {(repeat 2 trajectory)〈30〉 & rot〈30〉 }
cup2: Cup(“origin=3,0,0”) {trajectory〈45〉 & rot〈60〉 }
cup3: Cup(“origin=1,0,0”) {trajectory〈30〉 & (repeat 2 rot)〈30〉 }
tea: Teapot { repeat 3 (RotateY(360)〈30〉) }
eye: Eye(“origin=(0,0,-5)”, “lookAtPoint=(0,0,0)”, “up=(0,1,0)”)

Two implementations of the scripting language and environment have been
made on a network of Sun3 computers running UNIX 4.2 BSD.7 The compiler-
writing tools Lex and Yacc have been extremely helpful in allowing us to
modify in fairly arbitrary ways the syntax and semantics of temporal oper-
ators. We shall briefly outline both implementations, which are intended to
be complementary.

In the first implementation, all graphic and motion objects are realised as
shell scripts or C programs in the UNIX C-shell environment. This has the
advantage of being fairly portable (to most other UNIX systems, in any case),
while still remaining object oriented. A scheduler is built into the parser so
that scripting expressions can be directly executed. Animated objects are
invoked by the scheduler, which in turn produce device-independent graphics
commands. These commands are pipelined (or “piped” to use a familiar
UNIX expression) into a 3-D rendering system, which produces a sequence of
images corresponding to the animation. With simple changes to the animated
objects, the same animations can be ray-traced.

The above prototype system works well, but is somewhat inefficient, because
each object is essentially a UNIX process. We have therefore made a sec-
ond implementation of the scripting environment. The “second-generation”

6Indeed, a motion object may be viewed as an animated object composed of a null
set of graphic primitives, or alternatively as an animated object with the static graphical
model as a free variable.

7UNIX is a trademark of AT&T Bell Laboratories.

11

implementation is somewhat more programmer-oriented, in that scripts are
invoked from within a C program. Objects co-exist as separate processes
controlled by the scheduler. We have built a process-creation facility using
locally-developed software that manipulates run-time stacks, allowing one to
make many copies of object prototypes (which are now implemented as sets
of C procedures) at run-time. A profusion of pseudo-processes can therefore
run within the same UNIX process, with very little overhead. This has re-
sulted in much faster execution of the scripting expressions, at the cost of
more verbose animation specifications. The rendering of graphic images uses
the same pipeline as that described above. The next generation system will
go back to directly-executed scripting expressions, and will again look like
the expressions presented in this paper.

We shall briefly discuss how the scheduler works for both implementations.
When a well-formed scripting expression involving a number of temporal
operators is scanned, the temporal operators are rewritten in terms of the
general synchronisation operator. At this point, the required temporal scal-
ing operations are performed, so that the entire expression is defined relative
to regular ticks occurring at the desired sampling rate of 1/30 seconds.8 Ex-
pressions in this form are then placed in a binary expression tree, the nodes
of which indicate the displacement in ticks between the left subtree and the
right subtree. One exception is that the repeat operation is also encoded as
a node in the expression tree. Each at expression encountered results in the
creation of an independent expression tree which exists for the duration of its
execution (which may exceed that of any current synchronous expression).
The overall internal representation of the current “scene” in the animation
is that of a forest of expression trees, namely one synchronous expression
tree, together with all active asynchronous expression trees. The scheduler
then begins ticking for the duration of the expression (which is synthesised
from the semantics of the temporal operators). For each tick, the expression
forest is “aged”, and the timing information percolates down each tree, caus-
ing messages to be sent to the affected objects. These objects then generate
their animated behaviours for time instant specified by the scheduler.

8The choice of this rate is not fixed. It refers to the standard interlaced video rate
for North American television. Certainly, other durations such as the standard European
video rate of 1/25 seconds could just as easily be employed.

12

5 Extensions: Event-Driven Animation

Our experience with several implemented versions of the scripting language
has indicated to us the need for increased responsiveness of animated objects
to their environment. One particularly appropriate mechanism for doing so
within an object-oriented environment is to permit conditional or triggered
execution on the basis of events that may occur in a system. In this section we
briefly discuss our plans for extending the animation language in this direc-
tion. We have not as yet implemented the notation, although we have devel-
oped an implementation model based on the “overseer” concept [BBBF82],
and we are working on a formal semantics for event-driven animation. We
believe the implementation of the notation will be a fairly straightforward
extension of the process-management software we have already developed.

Suppose an object A has publicised the existence of events E1, E2, · · · , En.
The occurrence of an event is given by a predicate over time. Examples
of events include: pushing a button, a timeout, an external interrupt, the
completion of an activity, and so on. We extend the scripting notation to
make use of these events.

Triggered Expressions. The at command was used before to introduce a new
scripting expression into an otherwise synchronous set of expressions. The
following construct

[*]A.E → Expr

means that the scripting expression Expr is to be invoked when event E
within object A next occurs. The “*” is optional, and states that this trigger
is to be enforced for all occurrences of E. Note that A is not itself required
to be an animated object. It must only be able to inform a requesting object
whether or not an event has occurred.

Repetition. The repeat operation is augmented as follows.

repeat until A.E Expr

which simply states that Expr is to be repeatedly invoked until the event
E occurs. Although the event may occur in mid-execution, the expression
always receives an integral number of executions.

13

Asynchronous Termination. An arbitrary expression (including the expres-
sions introduced above) can be terminated asynchronously upon the occur-
rence of an event. We denote this by the following.

Expr ← A.E

To say, for example, that the first button push on a mouse is to invoke an
expression, and the second is to terminate it, one could write

Mouse.ButtonDown → (Expr ← Mouse.ButtonDown)

The use of parentheses is important, since

(E1 → Expr)← E2

states that the trigger E1 → Expr is to stay in effect until the occurrence of
E2.

6 Conclusions

We have presented a new, object-oriented approach to the temporal co-
ordination of computer animation. Individual objects encapsulate basic ani-
mation activities, and a temporal scripting language is used to synthesise an
overall animation from these parts. The language also extends to motion co-
ordination, since motion is also given an object-oriented encapsulation. This
approach has led to the ability to specify complex animation and motion in
a concise, device-independent manner.

There are several directions in which we would like to take this research:

• To implement event-driven animation. The advent of personal work-
stations with powerful processors is beginning to make feasible the
generation of animation in quasi-real time. Moreover, events can be
immediately applied to triggering precomputed animation.

• A general message-passing model for objects. Currently, animated ob-
jects only respond to two kinds of messages. This imposes a regular
interface for all objects, but it is not flexible.

14

• Extending our approach to incorporate “sound objects” as well as an-
imated objects. Preliminary investigation indicate that the scripting
language extends nicely to such objects. However, it is easy to change
the internal clock of an animated object. It is not as simple to tell a
piece of music that it must be sped up or slowed down, although there
are signal-theoretic mechanisms to do so.

• Applying the scripting expression language to triggering video clips
from an optical disk. This would be a very straightforward application,
and one to which our expressions are perfectly suited.

• Adding more intelligent sampling behaviour. Animated objects can
make decisions regarding their rendering. For example, since they know
what their duration is, and since they are defined on a continuous time
model, they may wish to produce representations of themselves which
take into account problems such as temporal aliasing [KoBa83]. How-
ever, it is not clear that traditional global techniques can be applied.

References

[Baec81] Baecker, R., et al., “Sorting Out Sorting”, 16mm. film shown
at SIGGRAPH 1981, available from R. Baecker, Computer Sys-
tems Research Institute, University of Toronto, 10 King’s Col-
lege Road, Toronto, Canada, M5S 1A4.

[BBBF82] Beach, R.J., J.C. Beatty, K.S. Booth, E.L. Fiume, and D.A.
Plebon, “The message is the medium: multiprocess structuring
of an interactive paint program”, ACM SIGGRAPH 1982 Con-

ference Proceedings, also published as ACM Computer Graphics

16, 3 (July 1982), 277-287.

[Berg83] Bergeron, P., “A structured motion specification in 3D computer
animation”, Proceedings of Graphics Interface ’83 (May 1983),
215-222.

[BeKa76] Bergman, S., and A. Kaufman, “BGRAF2: A real-time graphics
language with modular objects and implicit dynamics” ACM

SIGGRAPH 1976 Conference Proceedings (July 1976), 133-138.

15

[BeKa77] Bergman, S., and A. Kaufman, “Association of graphic images
and dynamic attributes”, ACM SIGGRAPH 1977 Conference

Proceedings (July 1977), 18-23.

[FiTs87] Fiume, E., and D. Tsichritzis, “Multimedia objects”, IEEE Of-

fice Knowledge Engineering Newsletter (Feb. 1987).

[FoMa86] Foley, J.D., and C.F. McMath, “Dynamic Process Visualiza-
tion”, IEEE Computer Graphics and Applications 6, 2 (March
1986), 16-25.

[KoBa84] Kochanek, D.H., and R.H. Bartels, “Interpolating splines with
local tension, continuity, and bias control”, ACM SIGGRAPH

1984 Conference Proceedings, also published as ACM Computer

Graphics 18, 3 (July 1984), 33-41.

[KoBa83] Korein, J.D., and N.I. Badler, “Temporal anti-aliasing in com-
puter generated animation”, ACM SIGGRAPH 1983 Confer-

ence Proceedings, also published as ACM Computer Graphics

17, 3 (July 1983), 377-388.

[MaTF85] Magnenat-Thalmann, N., D. Thalmann, and M. Fortin, “Mi-
ranim: An extensible director-oriented system for the animation
of realistic images”, IEEE Computer Graphics and Applications

4, 3 (March 1985).

[Myer83] Myers, B., “Incense: a system for displaying data structures”,
ACM SIGGRAPH 1983 Conference Proceedings also published
as ACM Computer Graphics 17, 3 (July 1983), (July 1983), 115-
125.

[Nier85] Nierstrasz, O.M., “Hybrid: a unified object-oriented system”,
IEEE Database Engineering 8, 4 (Dec. 1985), 49-57.

[Reev81] Reeves, W.T., “Inbetweening for computer animation utilizing
moving point constraints”, ACM SIGGRAPH 1981 Conference

Proceedings also published as ACM Computer Graphics 15, 3
(Aug., 1981), 263-269.

16

[Reyn82] Reynolds, C., “Computer Animation with scripts and actors”,
ACM SIGGRAPH 1982 Conference Proceedings also published
as ACM Computer Graphics 16, 3 (July 1982).

[TFGN87] Tsichritzis, D., E. Fiume, S. Gibbs, O. Nierstrasz, “KNOs:
Knowledge acquisition, dissemination, and manipulation ob-
jects” ACM Transactions on Office Information Systems 5, 2
(April 1987).

17

