
1073

Accelerated Implementation of the S-MRTD Technique Using
Graphics Processor Units

G.Baron, E.Fiume, and C.D.Sarris
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, ON, M5S 3G4, Canada
E-mail: gerard.baron@utoronto.ca, elf@dgp.toronto.edu, cds@waves.utoronto.ca

Abstract- A Time-Domain electromagnetic modeling tech-
nique, namely a high-order Scaling Function based MRTD
(S-MRTD), can be dramatically accelerated, through its im-
plementation in commodity graphics hardware. This imple-
mentation is achieved by mapping the numerical operations
of S-MRTD to graphics operations, optimally executed by a
graphics card, along the lines of previous work in the area
of general purpose computing in computer graphics. The
sustained speed-ups achieved, for two-dimensional problems,
reach a factor of 30, significantly higher than any speed-ups
reported for FDTD so far.

I. INTRODUCTION
Almost ten years ago, the Multi-resolution Time-

Domain (MRTD) technique was introduced in [1], [2],
as a means of alleviating the limitations imposed by
numerical dispersion on the choice of the cell size of the
Finite-Difference Time-Domain (FDTD) method. Through
homogeneous and inhomogeneous cavity numerical exper-
iments and a Fourier dispersion analysis, [1], [2] showed
the potential of this technique to achieve relatively small
dispersion errors, at coarse discretization rates approaching
the Nyquist limit of A/2 (A being the smallest simulated
wavelength). However, this feature was not associated
with the ability of the technique to support a multi-
resolution grid, but with the choice of cubic spline (Battle-
Lemarie) functions as a field expansion basis. In turn,
the use of the latter resulted in update equations of
added complexity and computational cost, compared to
FDTD. Therefore, although the use of MRTD allowed
for the reduction in the number of cells within a given
domain, it increased the operations per cell compared to
FDTD, partially counterbalancing the advantages it offered
in the first place, in terms of simulation time. Still, a
widely accepted advantage of the technique is its ability
to yield accurate results even at coarse meshes, potentially
reducing the number of required cells by almost two orders
of magnitude in three-dimensional problems.
More recently, within the computer graphics community,

the area of general-purpose computing has emerged [3],
[4]. Although originally designed for the specialized task
of accelerating video games, modern Graphics Processing
Units (GPUs) can also be employed for the execution of
numerical operations, as long as the latter can be disguised
as image processing transformations, such as shading or

texturing. The idea of utilizing GPUs for scientific com-
puting has gained significant momentum, attracting wide
research interest across multiple disciplines. In computa-
tional electromagnetics, this concept was introduced in [5],
[6], which implemented a two-dimensional FDTD scheme
equipped with periodic and Mur's absorbing boundary
conditions, achieving acceleration rates of a factor close
to 10. Larger acceleration rates were demonstrated when
a Uniaxial Perfectly Matched Layer (UPML) set of equa-
tions was considered in [7], accompanied by an error anal-
ysis indicating that the errors produced by the GPU were
within acceptable limits. Such a conclusion is reassuring
for scientific computing applications, bearing in mind that
graphics cards are intended to support visually convincing
object rendering, rather than numerical accuracy.
The hardware acceleration of FDTD has been success-

fully pursued in the past, using custom made hardware
such as FPGAs [8]. What makes the case of GPU-based
scientific computing particularly attractive is that graphics
hardware is very fast, very cheap, and continues to be
enriched at rates that outstrip those of general purpose
CPUs and FPGAs. However, it is currently limited by the
fixed amount of memory available in a GPU.

This paper investigates the implementation of the
MRTD technique on a GPU. This direction of research
addresses the issue of the GPU memory limitation, by
replacing the FDTD scheme with a much more memory ef-
ficient one. Furthermore, the numerical results of this paper
suggest that the GPU performance actually improves with
the arithmetic complexity of the programming involved
and therefore, MRTD techniques are shown to be ideally
suited to GPU acceleration, precisely because they employ
more arithmetic operations per cell. Thus, what has long
been considered as a drawback of this technique becomes
an advantage as far as GPU acceleration is concerned.
It is finally noted that the basis used for the MRTD
field expansions is the Deslauriers-Dubuc bi-orthogonal
interpolating basis [9]. As noted in [9], the use of this basis
facilitates the application of localized boundary conditions
(such as perfect electric conductors) and inhomogeneous
media (such as a UPML), effectively addressing one more
shortcoming of MRTD. Since no wavelets are involved,
this scheme belongs to the S-MRTD class, under the

0-7803-9542-5/06/$20.00 C2006 IEEE

terminology of [1].

II. S-MRTD AS IMAGE PROCESSING AND GPU
IMPLEMENTATION

The GPU implementation of S-MRTD is achieved fol-
lowing the same concepts that guided the previous imple-
mentations of FDTD [5]-[7]. The S-MRTD time marching
procedure can be converted to a state-space form, whereby
a present state is determined from its immediately pre-

ceding values. Time-marching subsequently relates to the
resources of stream computing by first, organizing present
electric and magnetic field state and update-equations, into
separate uniform variables and kernels respectively; and
second, defining an input stream whose elements corre-

spond uniquely to cells of a simulated mesh. Advancing a

simulation a full time-step, by the so-called leap-frogging,
involves two passes, where each sub-pass determines either
a new electric or magnetic field state by applying the
corresponding kernel. Upon conclusion of each sub-pass,
the resulting output-stream contains either the present
electric or magnetic field state and is used in subsequent
updates. As for the efficacy of update-equations as stream-
computing kernels, that is realized by recognizing update-
equations as discrete spatial convolutions. For example,
consider a 2-D S-MRTD electric field update-equation for
simple media:

At PO- 1

n+1 EY+10 k=nEYX+1 +~ Ja?(P) n+ 2Ht + 0+
2 EAz Z2(2k±

P=-Po

At P a1

P=-Po

where a(p) are the so-called connection (or stencil) co-

efficients over a stencil po. Evidently, these coefficients
provide the weights for the discrete spatial convolutions,
that the second and third terms on the right hand-side
can be interpreted as. In general, even the first term can

be interpreted as a discrete spatial convolution with an

impulse, so that all update-equations amount to sums

of these convolutions. Hence, an analogy with image-
processing emerges for the update-equations, by which
the latter amount to image-processing filters. Then, the
implementation of S-MRTD on a GPU boils down to
mapping the spatial dimensions of the simulation region
to the dimensions of the image files processed by the
graphics card, packing field values and material properties
into separate texture objects and their color channels and
finally, designing Pixel-shaders that procedurally update
electric and magnetic field components.

III. GPU-AcCELERATED S-MRTD: PERFORMANCE
RESULTS

In this section, the relative performance of our GPU-
accelerated and CPU-reference simulations is estimated

74
through numerical experiments. Under consideration were
square resonant free-space cavities with perfect electric
conducting boundaries excited by a 1.0 GHz Gaussian
pulse at their center. To evaluate the burden of mesh
size on performance, four cavities of progressively larger
dimensions of {64 x 64}, {128 x 128}, {256 x 256},
{512 x 512}, and {1024 x 1024} cells of dimensions
{0.0025 x 0.0025} m2 progressively represented fourfold
increases in memory overhead. To evaluate the relative
performance of different order S-MRTD schemes, these
meshes were simulated with FDTD and S-MRTD based on
the Deslauriers-Dubuc functions. It is noted that the latter
are produced via an autocorrelation of the Daubechies
functions and their connection coefficients are exactly
those of the Daubechies S-MRTD [10]. In this paper's
notation a Dk S-MRTD is produced by the coefficients
of a Daubechies scaling function q5k, with k vanishing
moments and corresponds to a 2k -1 order Deslauriers-
Dubuc scheme. For all schemes, a time step equal of 0.5 of
the FDTD stability limit was used. Finally, to evaluate the
effect of simulation length, execution times were measured
from start to 512, 1024, 2048, 4096, 8192, and 16384 time
steps.

Figs. l(a), l(b) are logarithmic plots of measured GPU
and CPU execution times for FDTD, D2, D3, and D4
schemes in red and blue respectively, as a function of sim-
ulation length and mesh size. Recall that in log-log plots
slope is indicative of an exponential tendency, whereas
the relative separation of similar trends is indicative of
a multiplicative factor between trends. All plots illustrate
overwhelmingly linear relationships; a dashed black line
of slope 1.0 (i.e. exponent zero) is included for reference
in the upper left corner plot. Using the execution times
of the CPU as baseline, Fig. 2 is derived, depicting the
relative speed-up of GPU. The latter shows how FDTD and
S-MRTD schemes asymptotically approach 10 and 30x
speed-up per time-step per cell, respectively. This trend,
and the relatively high-performance of S-MRTD schemes
are explained by the fact that operations involved with the
spatial convolutions that the update equations are mapped
to, are pipelined in parallel in a GPU. As a result, scheme
complexity, in terms of stencil size costs considerably less
on the GPU. Furthermore, the GPU exhibits a comparative
latency before beginning to process data. Since longer run-
ning simulations amortize this latency, it is most evident as
a function of mesh size for our shortest length simulation
(512 time steps). Less apparent for large meshes, the effect
is on the order of the tens-to-hundreds of milliseconds and
appears constant with respect to simulation scheme. With
respect to Fig. 2, the latency dominates the performance of
smaller meshes and accounts for their lower initial speed-
ups.

For a fixed mesh size, FDTD is consistently faster than

GPU speedup

40 -M 64.6440 _ _~~~~~~~~~~~~~~~~128x128_
D _~~~~~~~~~~~~~~~~~~~~~~T256x256

2....l _~~~~~~~~~~~~~~~~F512x5122L20 -_ 1024x1024
,2I ,0nni 'ii ... inn i0i .. 'Ox
0 512 1024 2048 4096 8192 16384

512 1024 2048 4096 8192 16384

lo'

8) 10'
a)

a)A

Ez 10°

i 2O' 10-2 10-2
1024 4096 16384 1024 4096 16384 1024 4096 16384

TimesteDs TimesteDs TimesteDs

(a) Execution time vs. number of time steps for
different mesh sizes.

512 1024

420-240 - 10lllli 1Fl l11 1ll 0

512 1024 2048 4096 8192 16384

Timesteps

Fig. 2. GPU speed-up for for Deslauriers-Dubuc-based S-MRTD
schemes; Dk implies a scheme of order 2k -1.

FDTD Very Fine D4 Medium

2048

512a)
a)

0

128
;112

16384
(a) FDTD; {512 x 512}
mesh.

(b) D4 S-MRTD; {128 x
128} mesh.

o 10

a)
Yz
a)

.Elo'

10` l10 j 10-21l6422562 1 0242 642 2562 1 0242 642 25621 0242
Mesh Size Mesh Size Mesh Size

(b) Execution time vs. mesh size for different
number of time steps.

Fig. 1. Dependence of execution time on mesh size and time steps.

S-MRTD. Note though that due to its superior dispersion
performance, S-MRTD can achieve similar accuracy with
FDTD, using a smaller mesh than FDTD. A factor of
two reduction in the discretization rate of FDTD has
been indicated as typically possible by previous S-MRTD
dispersion analyses [1], [2], [10]. A comparison of the
FDTD and D3 S-MRTD execution time in Fig. l(a), in
{512 x 512} and {256 x 256} meshes respectively shows
that the latter is faster than the former by a factor of 20. An
indication of the relative performance improvement of both
methods upon their GPU implementation is also provided
by inspection of the separation of the FDTD and S-MRTD
execution time curves (for the same mesh) for the CPU
and GPU case; the large separations observed for the CPU
implementations are greatly decreased for the GPU ones,

paving the way for the gradual domination of S-MRTD
over FDTD in terms of overall performance.

Fig. 3. Gaussian pulse propagation in a rectangular domain, modeled
by FDTD and S-MRTD.

Fig. 3 shows a relevant numerical experiment that
effectively reinforces this point. A {6.4 x 6.4} m2 domain,
excited by a transverse electric Gaussian pulse of f =ax

1 GHz, is discretized in {512 x 512} Yee's cells (A/24).
A radially propagating circular wavefront can be observed
in Fig. 3(a), stemming from a GPU-FDTD simulation.
Fig. 3(b) shows the same waveform at the same time,
resolved by D4 S-MRTD in a {128 x 128} mesh. Despite
the reduction in the discretization rate from A/24 to A/6,
the wavefront still largely preserves its shape. Relative
errors (in the Eucledian norm) compared to a reference
FDTD simulation conducted in a {1024 x 1024} mesh and
execution times of S-MRTD and FDTD are also reported
in Fig. 4, for a total simulation time window of 7.55
ns. These results confirm that the predictions of the S-
MRTD dispersion analysis are equally valid for GPU-
based versions of the technique.

IV. GPU-AccELERATED S-MRTD: ACCURACY
RESULTS

In this section, the net effect of inordinate floating
precision on the overall accuracy of a GPU-accelerated
time-domain simulation is considered. A {512 x 512} cell
rectangular mesh, discretizing an air-filled cavity, excited

64x64 128x128

1075

10lo

a)
A
a)

E lo'
10z

256x256 512x512 1024x1 024

4096 8196

10' CPU FDTD
.CPU D2
.CPU D3
.CPU D4
GPU FDTD
GPU D2
1GPU D3
GPU D',

lo'

lo'

0-2

10' lo'

102

10°

102

10°

10

N

x 10-' 2

16

14-

12-

10 k
8

6

4096 8192 16384

X lo-' D4

16

14

12

10

8

Fig. 4. Relative Errors compared to a reference FDTD simulation
({1024 x 1024} mesh) and execution times of {N x N} mesh FDTD
and S-MRTD simulations in a GPU.

by a transverse electric field, with the temporal profile
of a 1.0 GHz Gaussian pulse, is simulated with FDTD,
D2, D3 and D4, for 16384 time steps, at a time step
corresponding to 0.5 of the FDTD stability limit. Fig. 5
includes plots of inaccuracy for FDTD, D2, D3, and D4
schemes as a function of time step. Errors were calculated
with respect to a double-precision round-nearest simula-
tion (in the Eucledian norm), every 16 time steps for a

total of 1024 data points. In each plot, numerical results for
GPU, single-precision truncate-chop, and single-precision,
CPU-equivalent, round-nearest simulations are depicted
in blue, green, and red respectively. Our results show
the GPU exhibiting a high-degree of correlation with,
and consistently accruing error at a greater rate than, an

equivalent single-precision CPU simulation. However, that
error is shown to be very small, largely independent of
scheme, and per-time step on the order of an inordinate
floating-precision round mode. In particular, that error is
closely approximated by the truncate-chop round-mode.
This behavior supports the supposition that the GPU inac-
curacy is rooted in an inordinate hardware implementation
of floating point arithmetic, and will improve with future
hardware generations.

V. CONCLUSIONS
Unprecedented sustained graphics hardware acceleration

rates (of a factor of 30) have been demonstrated for the
S-MRTD technique. These rates surpass the achievable
FDTD ones by a factor of three, indicating that high-order
spatial finite difference methods are optimally suited to
the rapidly developing area of general purpose computing
on graphics cards. The advantage of S-MRTD over FDTD
on GPUs is further enhanced by its superior dispersion
behavior, that allows for the use of coarse grids and con-

sequently for a better utilization of the memory available
in a graphics card. In addition, the large difference in the
achievable speed-ups of S-MRTD and FDTD implies that
the drawback of increased operations per cell associated

4096 8192
Timesteps

16384 4096 8192
Timesteps

16384

Fig. 5. Accuracy of GPU results with respect to a double precision CPU
simulation, compared to truncate-chop and round-nearest CPU simulation
results.

with CPU implementations of S-MRTD is effectively
eliminated in their GPU counterparts.

VI. ACKNOWLEDGMENT
This work was supported by the Natural Sciences and

Engineering Research Council of Canada, through a Dis-
covery Grant.

REFERENCES

[1] M. Krumpholz, L. P. B. Katehi, "New prospects for time domain
analysis, IEEE Microwave and Guided Wave Lett., vol.5, no.11,
pp.382-384, Nov. 1995.

[2] M. Krumpholz, L. P. B. Katehi, "MRTD: New Time-Domain
Schemes Based on Multiresolution Analysis," IEEE Trans. Mi-
crowave Theory Tech., vol.44, no.4, pp.555-561, Apr. 1996.

[3] General-Purpose Computing Using Graphics Hardware website,
[Online]. Available:www. gpgpu. org.

[4] M. Harris and D. Luebke, GPGPU: General-Purpose Computing on

Graphics Hardware, SIGGRAPH 2004 Course Notes, Aug. 2004.
[5] S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, "Graphics

processor unit (GPU) acceleration of finite-difference time-domain
(FDTD) algorithm,' Proc. 2004 International Symp. on Circuits and
Systems, vol. 5, pp. V-265 - v-268, May 2004.

[6] S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, "Acceler-
ation of Finite-Difference Time-Domain (FDTD) Using Graphics
Processor Units (GPU)," 2004 IEEE MTT-S International Microwave
Symposium Digest, vol. 2, pp. 1033 - 1036, Jun. 2004.

[7] G. S. Baron, C. D. Sarris, E. L. Fiume, "Acceleration of Finite-
Difference Time-Domain (FDTD) Using Graphics Processor Units
(GPU)," Proc. 2005 IEEE AP-S International Symposium on Anten-
nas Prop., Jul. 2005.

[8] R. N. Schneider, M. M. Okoniewski, L. E. Turner, "Custom hard-
ware implementation of the finite-difference time-domain (FDTD)
method," 2002 IEEE MTT-S International Microwave Symposium
Digest, vol. 2, pp. 875 - 878, Jun. 2002.

[9] M. Fujii, W. J. R. Hoefer, "Application of biorthogonal interpolating
wavelets to the Galerkin scheme of time dependent Maxwell's
equations, " IEEE Microwave Wireless Components Lett., vol. 11,
no. 1, pp. 22-24, Jan. 2001.

[10] M. Fujii, W.J.R. Hoefer, "Dispersion of time-domain wavelet
Galerkin method based on Daubechies compactly supported scaling
functions with three and four vanishing moments", IEEE Microwave
Guided Wave Lett., vol. 10, no. 4, pp. 125-127, Apr. 2000.

FDTD
D2
.D3
D4

lo'

10

103

v/ 105

8

t/ 104

X 10o -

Lu

10

1076
16

14

12

,5 10
a)
79 8

I)

24

x 10-' FDTD

GPU
Truncate Chop

-Round Nearest

9 8

4096 8192

10

10

16384

x 10

16

E 14

z 12
10

. 4-L I
2, j

