
/288

www.ietdl.org
Published in IET Microwaves, Antennas & Propagation
Received on 20th May 2007
Revised on 9th October 2007
doi: 10.1049/iet-map:20070118

ISSN 1751-8725

Graphics hardware accelerated
multiresolution time-domain technique:
development, evaluation and applications
G.S. Baron1 E. Fiume1,2 C.D. Sarris1
1Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
2Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4
E-mail: cds@waves.utoronto.ca

Abstract: Recently, the use of graphics processing units as a means of achieving the hardware acceleration of
the finite-difference time-domain (FDTD) technique has attracted significant interest in the computational
electromagnetics community. However, the large memory requirements of the FDTD, compounded by the
limited memory resources available in graphics processing units, compromise the efficiency of this
approach. Alternatively, the authors show how the implementation of the multiresolution time-domain
technique in a graphics processing unit can optimally utilise the memory resources of the latter and achieve
unprecedented acceleration rates, significantly higher than those achievable by the FDTD. A detailed
description of the proposed implementation is provided, followed by rigorous numerical error and
performance evaluation studies that conclusively verify the advantages of the graphics accelerated
multiresolution time domain. Finally, the potential of this technique as a fast microwave wireless channel
modelling tool is demonstrated.
1 Introduction

The application of the finite-difference time-domain
(FDTD) technique [1] to practical electromagnetic
analysis and design problems is facilitated by its
simplicity and versatility, but limited by the large
computational resources needed for achieving
convergent results, as a consequence of its pronounced
numerical dispersion. Almost 10 years ago, a
systematic way to formulate time-domain numerical
methods with improved dispersion properties was
presented with the introduction of the multiresolution
time-domain technique [2]. Through homogeneous
and inhomogeneous cavity numerical experiments,
along with a Fourier dispersion analysis, [2] showed
the potential of this technique to achieve relatively
small dispersion errors, at coarse discretisation rates
approaching the Nyquist limit of l/2 (l being the
smallest simulated wavelength). On the other hand,
although the use of multiresolution time domain
IET Microw. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–3
doi: 10.1049/iet-map:20070118
allowed for the reduction in the number of cells
within a given domain, it also led to increased
operations per cell compared with the FDTD. As a
result, the former has been understood to offer
modest savings in simulation time compared with the
latter. Still, a widely accepted advantage of the
technique is its ability to yield accurate results even at
coarse meshes, potentially reducing the number of
required cells by almost two orders of magnitude in
three-dimensional problems [2].

Within the computer graphics community, the area
of general-purpose computing on computer graphics
cards, formally referred to as graphics processing
units, has emerged [3–5]. Originally designed for
the specialised task of accelerating video games,
modern graphics cards can also be employed for the
execution of numerical operations, as long as the
latter can be disguised as image processing
transformations, such as shading or texturing. The
01 & The Institution of Engineering and Technology 2008

& T

www.ietdl.org
idea of utilising graphics processing units for scientific
computing has gained significant momentum, attracting
wide research and commercial interest across multiple
disciplines. In computational electromagnetics, this
concept was introduced in [6, 7], where a two-
dimensional FDTD scheme equipped with periodic
and absorbing boundary conditions, was
implemented, achieving acceleration rates of a factor
close to 10, compared with the central processing
unit implementation of the same technique. Larger
acceleration rates were demonstrated when a uniaxial
perfectly matched layer [8] set of equations was
considered in [9], accompanied by an error analysis
indicating that the numerical errors produced were
within acceptable limits. Such a conclusion is
reassuring for scientific computing applications,
bearing in mind that graphics cards are intended to
support visually convincing object rendering, rather
than numerical accuracy. Also, Inman and Elsherbeni
[10] introduced a high-level programming language
implementation of the three-dimensional FDTD basic
update equations (excluding boundary conditions) in
a graphics card.

It is worth mentioning that the hardware acceleration
of the FDTD has been successfully pursued in the past,
using custom-made hardware [11–15]. What makes the
case of graphics hardware-based scientific computing
particularly attractive is that graphics cards are very
fast, very cheap, and continue to be enriched at rates
that continue to outstrip those of general purpose
central processing units and field-programmable gate
arrays. However, graphics hardware-based scientific
computing is currently limited by the fixed amount of
memory available in graphics cards.

This paper investigates the graphics card
implementation of the scaling multiresolution time-
domain technique of [2], extending previous work
reported by the authors in [16]. Thus, the issue of the
limited memory resources available in a graphics card
is addressed by replacing the FDTD scheme with a
much more memory efficient one. Furthermore, the
numerical results of this paper suggest that the
graphics processing unit performance actually
improves with the arithmetic complexity of the
programming involved. Therefore techniques invoking
higher-order finite-difference approximations of spatial
partial derivatives are shown to be ideally suited to
graphics processor acceleration, precisely because they
employ more arithmetic operations per cell. Hence,
what has long been considered as a drawback of this
technique becomes an advantage, as far as graphics
processor acceleration is concerned, leading to
unprecedented sustained acceleration rates, close to a
factor of 30. Such rates are much greater than those
previously reported for the FDTD.
he Institution of Engineering and Technology 2008 IET M
The paper is organised as follows: Section 2 presents
a brief overview of the scaling multiresolution time-
domain field update equations. The concepts that
were employed for the implementation of these
update equations on a graphics processing unit are
presented (for the first time in detail) in Section 3,
where an analogy between time-domain simulations
and image processing operations is outlined. In
particular, the finite-difference equations describing a
generic uniaxial perfectly matched layer medium are
interpreted as discrete spatial convolutions that are
routinely invoked in the functions performed by a
graphics card. By virtue of this analogy, the card can
be instructed to execute these update equations.
Section 4 presents a detailed error characterisation
analysis which conclusively verifies that the
numerical imprecision apparent in the graphics card-
based scaling multiresolution time-domain
computations is practically negligible. The advantages
of the proposed approach, compared with its FDTD
counterpart, are most clearly demonstrated by
jointly considering performance and accuracy of the
two simulators. Such a study was performed for the
first time and its results appear in Section 4. Finally,
Section 5 demonstrates how this paper’s technique
can realise the simulation of electrically large
problems that would not be solvable via a graphics
accelerated FDTD implementation, because of
memory limitations. To this end, a microwave
indoor wireless channel time-domain simulation is
shown to operate accurately two orders of
magnitude faster on a graphics than a central
processing unit. Section 5 summarises our
contributions and alludes to future work.

2 Overview of the Deslauriers-
Dubuc scaling multiresolution
time-domain technique
The technique of [2] is formulated for a two-dimensional
system of Maxwell’s equations with respect to (Hx, Ey,
Hz), employing Deslauriers–Dubuc bi-orthogonal
scaling functions [17] for the expansion of field
components in space. These basis functions are
distinguished for being smooth, symmetric, compactly
supported and exactly ‘interpolating’ (their value is
zero at all non-zero integers). Hence, they facilitate
the application of localised boundary conditions (such
as perfect electric conductors) and the modelling of
inhomogeneous media (such as perfectly matched
layers).

According to the procedure outlined in [2], the field
components are expanded in the Deslauriers–Dubuc
basis functions f in space and rectangular pulse
icrow. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–301/
doi: 10.1049/iet-map:20070118

289

290

www.ietdl.org
functions h in time. For example, the Ey-expansion reads

Ey ¼
X
i,J,k

kEi,jfi(x)fj(z)hk(t) (1)

with fp(j) ¼ f(j/Dj2 p), where Dj, j ¼ x,z, is the
cellsize in the j-direction and hk(t) ¼ h(t/Dt2 k),
where Dt is the time step. The corresponding scaling
multiresolution time-domain scheme is readily derived
via the Galerkin method. Consider, for example, the y-
component of Ampere’s law

e
@Ey
@t

¼
@Hx

@z
�
@Hz

@x
(2)

Following the notation of [2], the finite-difference form
of (2), corresponding to the update equation of the
electric-field component Ey at the node (iDx, jDz) at
the time step n þ 1, is

nþ1E
y
i,j ¼ nE

y
i,j

þ
Dt

eDz

Xp0�1

p¼�p0

a(p)nþ1=2H
x
i,jþ1=2

�
Dt

eDx

Xp0�1

p¼�p0

a(p)nþ1=2H
z
iþ1=2þp,jþ1=2 (3)

In (3), the spatial partial derivatives of (2) are
approximated by finite differences, represented by
weighted distributed sums. The weight coefficients
a(p) are the so-called connection coefficients, given
by the formula [2]

a(p) ¼
1

2p

ðþ1

�1

ljf̂(l)j2 sin (l(pþ 0:5))dl (4)

Their numerical values are available in [18]. For these
coefficients, a(2p) ¼ 2a(p 2 1). The number of
non-zero connection coefficients, 2p0, is related to the
order of the Deslauriers-Dubuc function q, since
p0 ¼ 2q2 l.

Another notable relation is that the Deslauriers–
Dubuc functions of order 2k2 1 are produced by the
autocorrelation of, and share identical connection
coefficients a(l) with, the Daubechies scaling basis
functions of k vanishing moments [18]. As a result,
the order of accuracy of their corresponding finite-
difference operators [the distributed sums of (3)] is 2k
[19]. This paper focuses on Deslauries–Dubuc
functions of orders 3, 5 and 7 (depicted in Fig. 1)
which result in higher-order spatial finite-difference
operators (of orders 4, 6 and 8) compared with the
second-order ones of the FDTD. The higher order of
/IET Microw. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–3
doi: 10.1049/iet-map:20070118
accuracy of the spatial finite differences produces the
superior numerical dispersion properties featured by
the scaling multiresolution time-domain.

3 Scaling multiresolution time-
domain technique as image
processing and its graphics
processing unit implementation
3.1 Introduction

Modern graphics processing units realise a so-called
stream co-processor, a device that excels at
computational problems involving large collections of
data requiring complex, unordered and largely identical
processing. These collections are termed streams and
they are operated on by kernels. We call the
application of a particular kernel to a stream a pass.
Each pass involves its kernel being executed once for
each input element, in one or more parallel pipelines,
to produce a single corresponding output element.

On graphics cards, kernels are realised by so-called
fragment shaders operating on input streams of pixel
coordinates. These shaders support a floating-point
vector instruction set [20] and have native constructs
for spatially addressing two-and three-dimensional
floating-point arrays (uniforms). The graphics
terminology for those constructs and arrays are
samplers and textures. Fragment shaders operate on
every pixel of a rendered image, and their resulting
output can be written back to the texture for reuse in
subsequent passes. Fragment shaders as kernels are
particularly well suited to two-and three-dimensional
discrete spatial convolutions, heavily involved with the
image processing operations carried out by the cards.

Figure 1 Deslauriers-Dubuc interpolating basis functions of
order 3, 5 and 7; DDk denotes a Deslauriers-Debuc scaling
function of order 2k 21
01 & The Institution of Engineering and Technology 2008

& T

www.ietdl.org
Given an input stream of texture coordinates, fragment
shaders can sample corresponding and neighbouring
pixels in read-only textures by appropriate off-setting.

In the following, our approach on how these inherent
functional features of a graphics card can be employed
towards the hardware implementation of a finite-
difference method, such as the scaling multiresolution
time-domain, is explained.

3.2 Time–domain simulations as state-
space processes

Any linear time-invariant system of explicit difference
equations can be interpreted in state-space form. The
update equations governing time-domain simulations
are no exception. In fact, the simulation’s two-step
leap-frog process, whereby a present state is
determined from a linear combination of its two
immediately preceding states [as in (3)], is
characteristic of all explicit numerical solutions to
second-order partial differential equations. The
iterative application of this process is illustrated as a
state-space simulation diagram in Fig. 2a. In this
figure, the rectangular blocks depict state variables
which characteristically constitute the nodes of the
diagram. Circles alternatively represent state transition
transfer functions and particularly linear operators on
multiple inputs (e.g. collections of convolutions and
their sums), required to affect only one state variable.
By mapping electric and magnetic fields to the
complementary grey and white blocks in Fig. 2a, their
update equations are thus examples of such multi-
input transfer functions. Such a simulation diagram
captures the main idea behind the realisation of finite
differences in a graphics card. This realisation entails
defining an object for every state variable, and
implementing a separate kernel program for each
transfer function. The insight to implement update
equations of the form of (3) as kernels is recognising
them as discrete spatial convolutions. When disguised
as such, they can be executed by the fragment shaders
of a card.

3.3 Update equations as discrete spatial
convolutions

Discrete spatial convolutions are independent linear
operators on multi-dimensional arrays of previous
state, and spatial refers to how these arrays are
indexed. When applied, they independently determine
a new value for every element by way of a weighted
linear combination of neighbouring values. Given the
canonical spatial indexing of field and material property
meshes, the second and third term of (3) are discrete
spatial convolutions weighted by connection
coefficients, a(l). Even the first term can be interpreted
he Institution of Engineering and Technology 2008 IET M
as a convolution with an impulse, so that, in general,
all update equations amount to sums of these
convolutions. This concept is illustrated in Fig. 2b,
which depicts the update of a magnetic field array
(upper grey blocks) through the execution of
convolution operations involving the array itself and an
electric field array (white blocks). The output is the
next state of the magnetic field array (lower grey blocks).

In our approach, we realise (3) by defining two-
dimensional floating-point arrays Efield and Hfield for
present electric and magnetic field states, and
implementing a kernel to update the former while
using the latter as a constant. In particular, these
arrays would support a two-dimensional spatial
addressing whereby the kernel would operate on an
input stream comprising the unique addresses
of individual electric field cells (that is, f(i,j), for all
i, jg). Upon conclusion, the resulting output stream
would overwrite the Efield array in such a way to
preserve that addressing for subsequent passes.
A similar process is followed for the magnetic field
update equations.

For the two-dimensional case, a very pertinent
analogy with image processing emerges. Discrete
spatial convolutions, and subsequently update
equations, amount to image processing filters. The
specific mapping of the update equations to graphics
card functions involves the following three steps.
First, we map the spatial dimensions of the simulation
region to the dimensions of the textures processed by
the cards. For our two-dimensional simulation region,
we map the width of the image to the x-direction and
the height of a two-dimensional texture to the
z-direction, and define the lower left corner of the
image as the origin.

The second step involves appropriately packing field
values and material properties into separate textures
and their colour channels. Textures in graphics are
arrays of four-component colour values (white, black,
grey and alpha or transparency). A summary of our
six textures and their formats is illustrated in Fig. 3a.
The values in each channel can be represented by a
single-precision floating-point value. Design goals
include minimising the memory footprint of images,
and grouping values in a way that minimises the
number of inputs used by the fragment shaders.

The final step is implementing fragment shaders for
procedurally updating the Efield and Hfield textures. We
implemented three shaders: UpdateE, SourceE,
and UpdateH. In particular, an individual pair of
UpdateE/UpdateH shaders were implemented for each
of the Deslauriers–Dubuc-based schemes, whereas
SourceE masks the Efield texture with a transparent
source excitation [1]. Internal to these shaders, perfect
icrow. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–301/
doi: 10.1049/iet-map:20070118

291

/292

www.ietdl.org
Figure 2 Representation of operations involved with an electromagnetic time–domain simulation as digital signal
processing functions

a Time-marching as a state-space process
b Update equations as discrete spatial convolutions
electric conductor boundaries were modelled by a custom
texture wrap mode (image processing boundary
condition). Namely, out-of-bound cell coordinates,
which occur in the multiresolution time-domain method
when perfect electric boundaries are implemented via
image theory [2], were procedurally scaled and
reflected. The sequence at which the shaders are applied
is illustrated in Fig. 3b. Note also, that tensorial values
for the dielectric permittivity and conductivity of the
computational domain are stored, since a generic
uniaxial perfectly matched layer medium is modelled [8].
IET Microw. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–3
doi: 10.1049/iet-map:20070118
3.4 Time-to-frequency domain
transformations

In several applications, such as dispersion and eigenmode
analysis, the calculation of the discrete Fourier
transform of the field time series, extracted by time-
domain techniques, is required. To this end, a feature
that enables the on-the-fly calculation of the Fourier
transform of field components at a specified
frequency, can readily be added to the proposed
implementation of the scaling multiresolution time
01 & The Institution of Engineering and Technology 2008

& T

www.ietdl.org
Figure 3 Implementation of the scaling multiresolution time–domain technique for a two-dimensional uniaxial perfectly
matched layer medium on a graphics processing unit

a Texture format definitions
b Sequence of kernel passes for advancing the simulation in a single time step
domain, leveraging the performance of our graphics
card accelerated simulator. Consider the Fourier
transform 1y of the electric field component Ey at
frequency f, approximated by the following expression
that uses its discrete-time samples

1y ¼ F{Ey} ’
XN
n¼1

Ey(nDt)e
j2pfnDtDt ¼ FN (5)

where

F n ¼ F n�1 þ Ey(nDt)e
j2pfnDt

Dt (6)

Note that the iterative discrete Fourier transform of (6)
is functionally similar to updating a field state in the
scaling multiresolution time-domain method. Hence,
it can be realised similarly to the field update
equations, as shown in Fig. 3b. Therein, EfieldFT is a
texture constituting the present cumulative sum Fn.
For our particular analysis’ parameterisation, it is
updated once per time step and is of the same
dimensions as the field textures. In relation, the
iterative Fourier transform shader, denoted as IDFT in
Fig. 3(b), implements the right-hand side of (6). It is
responsible for evaluating Ey(nDt)ej2pfnDtDt at the
present time step and blending the ensuing value with
the EfieldFT texture. The layout for our resulting
EfieldTex texture object, including the real and
imaginary part of 1y, is presented in Fig. 3a.
he Institution of Engineering and Technology 2008 IET M
Akin to the scaling multiresolution time domain, this
realisation of the Fourier transform achieves optimal
memory utilisation (introducing a scant one variable
per cell) at the cost of increased computational
processing per cell. By extension, it constitutes an
excellent example of computation that can compound
the performance advantage of graphics accelerated
simulators.

4 Accuracy and performance
analysis of the graphics processing
unit-based scaling multiresolution
time-domain technique
The accuracy and performance of our graphics
accelerated simulator was evaluated against a
functionally identical reference implementation. Both
simulators were designed to support exactly the same
inputs, outputs, data structures and operation (the
number and sequence of arithmetic instructions in the
implementation of update equations notwithstanding).
Both were coded in C/Cþþ (the accelerated
simulator with OpenGL and Cg, whereas the
reference simulator as single threaded executable with
standard libraries), and differed only in supported
arithmetic precision. That is, while the accelerated
simulator could only support an aberrant arithmetic
for single-precision floating point (by virtue of
hardware constraints), our reference simulator was
coded to support all four IEEE 754 arithmetic round
modes [21] (e.g. round nearest, truncate chop, round
icrow. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–301/
doi: 10.1049/iet-map:20070118

293

294

www.ietdl.org
to positive infinity and round to negative infinity) for
both single- and double-precision floating points.
Round modes dictate how arithmetic results, so small
that they fall outside the available floating-point range,
are handled. Note that the standard in scientific
computing is the round-nearest arithmetic round mode.

All the results presented in this section were derived
on an Intel Pentium 4 2.4 GHz central processing unit
with 512 MB random access memory and NVIDIA
GeForce 6800 (NV40 [22]) Ultra/PCIe with 256 MB
video memory. Note that, for the graphics card
simulations, all memory used was on the card; there
was no transfer of data to external memory involved.

4.1 Accuracy results

Under consideration was a square computational domain
on the xz-plane (Fig. 4) excited by a centred transparent
point source of a Gaussian pulse of the form exp
(2(t2 to)

2/Ts
2), with Ts ¼ 1/2fmax and fmax ¼

1 GHz (referred to, for brevity, as a 1 GHz Gaussian
pulse). It was terminated in a perfect electric
conductor backed uniaxial perfectly matched layer
absorber and set to a fixed size of 1.28� 1.28 m2.
The mesh consisted of 512 � 512 cells (Dx ¼ Dz ¼
0.0025 m) and 16 384 time steps were executed with
the FDTD and Deslauriers–Dubuc schemes of orders
3, 5 and 7. The time step was chosen as

Dt ¼ s
1

c
ffi
1=Dx2 þ 1=Dz2

p (7)

where s ¼ 0.5 is the well-known Courant stability
factor.

A measure of accuracy was identified in the
normalised Euclidean distance between the test and
reference values of Ey throughout the mesh at a

Figure 4 Two-dimensional computational domain used for
performance and accuracy tests of the graphics
accelerated scaling multiresolution time–domain method
/IET Microw. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–3
doi: 10.1049/iet-map:20070118
particular time step. This calculation is governed by
(8) and involves treating each cell in an N � M mesh
as an independent component of an N � M-
dimensional vector

Errorn ¼

ffiPN�1
i¼0

PM�1
k¼0 nE

ytest
i,k � nE

yref
i,k

� �2r
ffiPN�1

i¼0

PM�1
k¼0 nE

yref
i,k

� �2r (8)

Fig. 5 includes accuracy plots for FDTD and
Deslauriers–Dubuc schemes of orders 3, 5 and 7, as
a function of time steps. In each plot, the results for
graphics processing unit, as well as central processing
unit single-precision truncate-chop, and single-
precision round-nearest simulations are depicted in
white, black, and grey, respectively. Error was
calculated, with respect to a central processing unit
double-precision round-nearest simulation, every 16
time steps for a total of 1024 data points.

Our results show the graphics accelerated simulator
exhibiting a high degree of correlation with, and
consistently accruing error at a greater rate than, an
equivalent single-precision round-nearest simulation.
However, this error is shown to be very small, largely
independent of scheme and per-time step on the order
of imprecision because of an apparent arithmetic
round mode. In particular, this error is closely
approximated by the truncate-chop round mode.

Figure 5 Error as a function of time step for finite-
difference time–domain (FDTD) and Deslauriers–Dubuc
schemes of orders 2k2 1, k ¼ 2, 3, 4 (DDk) against a
reference round-nearest double-precision simulation
01 & The Institution of Engineering and Technology 2008

& T

www.ietdl.org
Table 1 Graphics processing unit (GPU), truncate-chop and round-nearest error accumulation rates (per time step, per cell)
for finite-difference time–domain (FDTD) and Deslauriers–Dubuc schemes of orders 2k2 1, k ¼ 2, 3, 4 (DDk)

FDTD DD2 DD3 DD4

GPU 2.8623 � 10213 2.9090 � 10213 2.9216 � 10213 2.9293 � 10213

truncate-chop 2.5734 � 10213 2.6138 � 10213 2.6347 � 10213 2.6299 � 10213

round-nearest 9.2228 � 10214 1.0449 � 10213 1.0985 � 10213 1.1251 � 10213

Table 2 graphics processing unit (GPU) and truncate-chop relative error accumulations rates against round-nearest for
finite-difference time–domain (FDTD) and Deslauriers–Dubuc schemes of orders 2k2 1, k ¼ 2, 3, 4 (DDk)

FDTD DD2 DD3 DD4

GPU/round-nearest
truncate-chop/round-nearest

3.1036
2.7902

2.7839
2.5014

2.6596
2.3984

2.6037
2.3375
Error accumulation rates are presented in Tables 1
and 2. The absolute rates (error per time step per
cell) in Table 1 were determined by linear regressions
for slope on the plots of Fig. 5, whereas the relative
rates in Table 2 are the absolute rates in Table 1
normalised with respect to the rates of single-
precision round-nearest simulations. These tables
demonstrate how the inaccuracy of the graphics
accelerated scaling multiresolution time-domain
technique is very small and, for all intents and
purposes, equivalent to an atypical round mode. In
absolute terms, Table 1 shows how, as expected, the
higher-order schemes universally accrue error at
higher rates reflecting their increased arithmetic
intensity per cell. In relation, Table 2 reveals how on
average the graphics card accrues errors 2.8x faster
than an equivalent single-precision round-nearest
simulation; and how this rate is closely approximated
by a single-precision truncate-chop simulation. These
observations are entirely consistent with our card’s
floating-point profile introduced in [23].

Finally, and of particular note, the higher-order
techniques are evidently more tolerant to floating-point
imprecision than their lower-order counterparts. Table 2
shows the relative error accumulation rates decreasing
with increased scheme complexity. This observation
implies an interesting accuracy-based case for higher-
order finite-difference schemes on graphics processing units.

4.2 Speed-up results
Under consideration was the same square domain employed
in our preceding evaluation of accuracy. To evaluate the
burden of mesh size on performance, here the domain
was set to progressively larger dimensions of
0.16 � 0.16, 0.32 � 0.32, 0.64 � 0.64, 1.28 � 1.28,
and 2.56 � 2.56 m2, spatially discretised at a constant
rate of Dx ¼ Dz ¼ 0.0025 m. The resulting meshes of
he Institution of Engineering and Technology 2008 IET M
64 � 64, 128 � 128, 256 � 256, 512 � 512 and
1024 � 1024 cells progressively represent four-fold
increases in memory overhead. To evaluate the relative
performance of different ordered scaling multiresolution
time-domain schemes, these meshes were simulated with
FDTD and three Deslauriers–Dubuc schemes (of orders
3, 5 and 7) at a stability factor of s ¼ 0.5. To evaluate the
effect of simulation length, execution times were
measured from start to 512, 1024, 2048, 4096, 8192 and
16 384 time steps.

Using the execution times of the central processing
unit as baselines, we derive Fig. 6 depicting the
relative speed-up achieved by the graphics processing
unit. This figure shows how FDTD and scaling
multiresolution time-domain schemes as a class
asymptotically approach 10 � and 30 � speed-up per
time step per cell. Furthermore, the graphics card

Figure 6 Graphics processing unit speed-up for finite-
difference time–domain (FDTD) and Deslauriers–Dubuc
schemes of orders 2k2 1, k ¼ 2, 3, 4 (DDk)
icrow. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–301/
doi: 10.1049/iet-map:20070118

295

296

www.ietdl.org
Table 3 Spatial Resolution Nl and resulting Dx, Dz, Mesh Size, Dt, and number of simulation steps parameterising the square
computational domain simulations up to t ¼ 7.55 ns with s ¼ 0.25

Nl Dx ¼ Dz, m Mesh size Dt, ps #Steps

coarse 3 0.1 64 � 64 58.93 128

medium 6 0.05 128 � 128 29.46 256

fine 12 0.025 256 � 256 14.73 512

very fine 24 0.0125 512 � 512 7.37 1024

reference 48 0.00625 1024 � 1024 3.68 2024
/

exhibits a comparative latency before beginning to
process data. Since longer running simulations
amortise this latency, it is most evident as a function
of mesh size for our shortest length simulation (512
time steps). Less apparent for large meshes, the effect
is on the order of the tens-to-hundreds of milliseconds
and appears constant with respect to simulation
scheme. With respect to Fig. 6, the latency dominates
the performance of smaller meshes and accounts for
their lower initial speed-ups.

4.3 Effective speed-up

Now, we simultaneously consider both performance and
accuracy when the dispersion characteristics of different
simulation schemes are taken into account. We confirm
that the Deslauriers–Dubuc schemes enable the optimal
utilisation of available memory, and (by virtue of coarser
required time steps) entail fewer simulation steps to
model a given problem to a set accuracy than their
lower-order counterparts. Moreover, these qualities
have a greater net effect on the graphics card.

Our analysis involves applying all four simulation
schemes to model the same physical problem at
varying spatial discretisation. Here, we considered a
large 6.4 � 6.4 m2 square computational domain.
Again a centred 1.0 GHz Gaussian point source was
used to excite the domain and the Ey field at an
absolute time t ¼ 7.55 ns was determined. The
domain was discretised at the coarse, medium, fine,
and very-fine resolutions (Nl) listed in Table 3, and
IET Microw. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–3
doi: 10.1049/iet-map:20070118
again simulated with FDTD and Deslauriers–Dubuc
schemes at a constant stability factor of s ¼ 0.25. The
ensuing 16 trials (4 mesh sizes � 4 simulation
schemes) were then studied for relative performance
and accuracy.

For performance, we measured the execution times
of each trial as run on the graphics and central
processing unit. Observe that as a consequence of (7),
coarser/smaller meshes have the secondary benefit of
supporting larger time steps. That is, besides involving
fewer cells to update per simulation step, fewer steps
are thus required to advance a simulation a requisite
amount of time. Furthermore, on the graphics
processing unit, shorter simulation lengths afford a
means of mitigating its systemic floating-point
imprecision. The resultant mesh sizes time steps, and
simulation steps parameterising trials at different
spatial discretizations are summarized in Table 3.

For ameasure of relative dispersion error, we compared
each trial’s resulting Ey field mesh with a round-nearest
double-precision FDTD simulation at the reference
resolution listed in Table 3. To properly compare
different sized meshes, the trial meshes were up-sampled
to the reference resolution with their scheme’s
appropriate scaling basis functions; this is possible by
means of (1), which offers a continuous field
approximation, once the expansion coefficients have
been determined by the scaling multiresolution time-
domain iterations. Then, the error was, again, calculated
by the normalised Euclidean distance (8).
Table 4 Execution times (ms) observed for square computational domain simulations on the graphics processing unit,
performedwith the finite-difference time–domain (FDTD) and Deslauriers–Dubuc schemes of orders 2k2 1, k ¼ 2, 3, 4 (DDk)

FDTD DD2 DD3 DD4

coarse 26.33 239.67 635.33 929.5

medium 29.33 242.5 639.5 932.33

fine 340.4 807.33 1602.33 2403.33

very fine 6217.33 11200.83 17272.33 23962.33
01 & The Institution of Engineering and Technology 2008

& T

www.ietdl.org
Table 5 As in Table 4 for simulations on the central processing unit

FDTD DD2 DD3 DD4

coarse 182.33 920 1328.66 1750

medium 1326.33 7366 11054 14796

fine 9832 56279.33 87220.33 118535.33

very fine 73121 437155.33 683314.67 930166.33

Table 6 Dispersion error (mean normalised error per cell) evident in square computational domain simulations on the
graphics processing unit, for the finite-difference time–domain (FDTD) and Deslauriers–Dubuc schemes of orders 2k2 1,
k ¼ 2, 3, 4 (DDk)

FDTD DD2 DD3 DD4

coarse 0.846459 0.226759 0.266180 0.231539

medium 0.347350 0.069684 0.058343 0.052993

fine 0.124425 0.023564 0.022286 0.022157

very fine 0.042972 0.010024 0.009923 0.009920
Tables 4–6 comprise our results. Tables 4 and 5 list
the execution times observed on the graphics and central
processing unit, respectively. As expected, the former
consistently outperforms the latter. In Table 4, the
minimum set-up overhead of different schemes is
particularly apparent in the largely constant execution
times of coarse-and medium-sized meshes.

Table 6 summarises the dispersion error evident in
the graphics card simulations. These values are
identical, for all significant digits, to that of equivalent
central processing unit simulations. For any given
discretisation (across any row), error overwhelmingly
improves with scheme complexity, and similarly for
any given scheme (down any column), error always
improves with discretisation.

The most significant result is apparent when both
performance and accuracy results are considered
simultaneously. Observe that in Table 6, the error
evident in the medium DD4 trial is of the same order
as the very-fine FDTD trial. Thus, these trials achieve
largely comparable accuracy while differing in mesh
size by a factor of 16 and simulation length by a factor
of 4. Cross referencing these trials with the execution
times in Tables 4 and 5, a net speed-up of
78.43 � speed-up is evident for this particular
problem to achieve the same accuracy.

5 Application: microwave indoor
wireless channel modelling
This section presents the application of our graphics
accelerated scaling multiresolution time-domain
he Institution of Engineering and Technology 2008 IET M
simulator to the modelling of an indoor ultra-wideband
wireless channel. In particular, we modelled the
15.36 � 15.36 m2 floor plan illustrated in Fig. 7. Also
studied in [24], it is comprised of 6–8 cm thick walls
with isotropic conductivities of s ¼ 0.002 V21 and
dielectric permittivity of er ¼ 2.89 in an environment
otherwise composed of free space. The space was
discretised with Dx ¼ Dz ¼ 0.02 cm into a 768 � 768
cell square mesh. Sixteen layer perpendicular uniaxial
perfectly matched layer absorbing boundaries were
defined along all four edges and backed by perfect

Figure 7 A 15.36 � 15.36 m2 indoor floor plan

The source excitation and probe points, where channel impulse
responses are calculated, are shown with black and grey
crosses, respectively
icrow. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–301/
doi: 10.1049/iet-map:20070118

297

/298

www.ietdl.org
electric conductor walls. The absorber conductivity profile
was chosen to have a fourth-order polynomial scaling
(m ¼ 4) and reflection coefficient of e216. Excitation
IET Microw. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–3
doi: 10.1049/iet-map:20070118
was provided at t ¼ 0 by a centred 2.4 GHz transparent
Gaussian point source. Our graphics accelerated
simulation employed the seventh order Deslauriers–Dubuc
Figure 8 Apparent power-delay profiles at the four probe points in the indoor floor plan of Fig. 7

a 1.0 GHz ultra-wideband channel
b 2.4 GHz ultra-wideband channel
01 & The Institution of Engineering and Technology 2008

& T

www.ietdl.org
Table 7 Parameters of graphics hardware accelerated Deslauriers-Dubuc scaling multiresolution time–domain (GPU DD4)
and the central processing unit finite-difference time–domain (CPU FDTD) indoor floor plan simulations

Dx/Dz, m Mesh size UMPL cells Dt, ps Simulation steps Execution time

GPU DD4 (base) 0.02 768 � 768 16 23.59 16 384 17.25 min

CPU FDTD (reference) 0.005 3072 � 3072 64 5.897 65 536 38.53 h

Table 8 Correlation between power-delay profiles derived by the graphics hardware accelerated Deslauriers–Dubuc scaling
multiresolution time-domain (base) and the central processing unit finite-difference time–domain (reference) simulations of
the indoor ultra-wideband channels centred at 1.0 and 2.4 ghz

North South East West

1.0 GHz 0.98730 0.99189 0.98245 0.98660

2.4 GHz 0.91024 0.92665 0.90694 0.90831
scaling multiresolution time-domain scheme with a
stability factor of s ¼ 0.5. It was aimed at determining
time-invariant channel impulse responses [25] at the
four points illustrated in Fig. 7. Those probe points
were chosen to be at a distance 2.56 m from the source
(grey) at cardinal compass positions: North, South,
East and West. We sought channel impulse responses
for two ultra-wideband channels nominally centred at
1.0 and 2.4 GHz with bandwidths of 250 and 600 MHz
(i.e. 25% of the carrier frequency), respectively.

The responses were determined post simulation in a
three-step process. First, the received time-varying
signals were transformed to the frequency domain.
Those signals were sampled at a rate coinciding with the
underlying simulator’s time step Dt, over 16 364 steps,
for a period of 386.44 ns. Their spectra had an ensuing
2.588 MHz resolution. Second, the spectra were
normalised by the spectrum of the Gaussian source. This
resulted in channel transfer functions for each channel.
The ensuing transfer functions had 97 and 232
frequency–domain samples, respectively. Finally,
corresponding channel impulse responses were derived
by inverse Fourier transform. By extension, these had
the same number of time-domain samples with excess
delay bins of 4 and 1.667 ns. The channel impulse
responses apparent at each of the four probe points are
depicted in Figs. 8a and 8b for the 1.0 and 2.4 GHz
channels, respectively. Note that these are complex
valued, and their square magnitudes are termed power
delay profiles [26]. Results for our simulation at the base
discretisation of Dx ¼ Dz ¼ 0.02 cm are illustrated in
dark grey. This discretisation amounted to spatial
resolutions of Nl ¼ 15 and 6.25 points per wavelength
at 1.0 and 2.4 GHz, respectively.

For comparison, the results of a reference FDTD
simulation (executed on a central processing unit) at
4� the spatial resolution are shown in grey. Tables 7
he Institution of Engineering and Technology 2008 IET M
and 8 show how with a sixteenth as many cells, and a
fourth as many time steps, the graphics accelerated
simulation is able to determine the power-delay
profiles correlated to within 98% and 90% of the
central processing unit results in 1/134 the time. It is
important to note that the graphics card lacks the
memory to perform such a simulation with the FDTD
method, and that an equivalent scaling multiresoluton
time-domain simulation on the central processing unit
would only realise a 4.46� speed-up.

6 Conclusion
This paper has shown scaling multiresolution time-
domain techniques to be doubly effective for graphics
hardware accelerated time-domain simulations. Not
only do they optimally address memory utilisation,
but their classic shortcoming of increased processing
per cell becomes actually advantageous on graphics
hardware architectures. The dramatic sustained speed-
ups at negligible inaccuracy that were demonstrated
make for a very economical supercomputer, with a
potentially significant impact on microwave modelling
tools. In addition, the use of higher-order spatial finite
differences for the discretisation of Maxwell’s
equations by the scaling multiresolution time domain
allows for the extraction of accurate results at coarse
grids, drastically reducing the overall memory
requirements of large-scale problems (such as indoor
wireless channel studies). This enables the graphics
accelerated solution of such problems, which would
be limited by memory if the FDTD were to be
employed instead. The memory limitation of the
FDTD method becomes even more important in
three-dimensional applications, where the presented
methodology can be readily extended. The study of
achievable acceleration rates by the three-dimensional
scaling multiresolution time-domain technique on
graphics cards is a subject of ongoing work, as direct
icrow. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–301/
doi: 10.1049/iet-map:20070118

299

300

www.ietdl.org
extrapolation of these rates from their two-dimensional
counterparts is not possible. It is anticipated that the
same factors that led to the performance advantage of
this technique over the FDTD will also be even more
pronounced in the three-dimensional case.

The proposed implementation was achieved by
interpreting time-domain electromagnetic simulations
in terms of signal processing and their update
equations as discrete spatial convolution filters that
were readily realised in the context of graphics
processing operations. Several aspects of the
implementation and the performance of the proposed
technique were discussed in detail, while numerical
errors involved were rigorously characterised. Finally,
the simulation’s very coupling with a high-
performance visualisation engine inspires the
possibility of real-time/interactive microwave
computer-aided design and education suites [27].

7 Acknowledgment
This work has been supported by the Natural Sciences
and Engineering Research Council of Canada through
a Discovery Grant.

8 References

[1] TAFLOVE A., HAGNESS S.: ‘Computational electrodynamics:
the finite-difference time-domain method’ (Artech House,
Boston, MA, 2000, 2nd edn.)

[2] KRUMPHOLZ M., KATEHI L.P.: ‘MRTD: new time-domain
schemes based on multiresolution analysis’, IEEE Microw.
Theory Tech., 1996, 44, (4), pp. 555–561

[3] OWENS J.D., LUEBKE D., GOVINDARAJU N., ET AL.: ‘A survey of
general-purpose computation on graphics hardware’.
Eurographics 2005, State of the Art Reports, August 2005,
pp. 21–51

[4] General-purpose computing using graphics hardware
website, 2006 [Online]. Available at:www.gpgpu.org

[5] HARRIS M., LUEBKE D.: ‘GPGPU: general-purpose
computing on graphics hardware’. SIGGRAPH Course
Notes, August 2004

[6] KRAKIWSKY S.E., TURNER L.E., OKONIEWSKI M.M.: ‘Graphics
processor unit (GPU) acceleration of finite-difference
time-domain (FDTD) algorithim’. IEEE Int. Symp. Circuits
and Systems, May 2004

[7] KRAKIWSKY S.E., TURNER L.E., OKONIEWSKI M.M.: ‘Acceleration of
finite-difference time-domain (FDTD) using graphics
/IET Microw. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–3
doi: 10.1049/iet-map:20070118
processor units (GPU)’. IEEE MTT-S Int. Microwave Symp.,
June 2004

[8] GEDNEY S.D.: ‘An anisotropic perfectly matched layer-
absorbing medium for the truncation of FDTD lattices’,
IEEE Trans. Antennas Propag., 1996, 44, (12),
pp. 1630–1639

[9] BARON G.S., SARRIS C.D., FIUME E.: ‘Fast and accurate time-
domain simulation with commodity graphics hardware’.
Proc. Antennas and Propagation Society Int. Symp., July
2005

[10] INMAN M.J., ELSHERBENI A.Z.: ‘Programming video cards for
computational electromagnetics applications’, IEEE
Antennas Propag. Mag., 2005, 47, (6), pp. 71–78

[11] SCHNEIDER R.N., OKONIEWSKI M.M., TURNER L.E.: ‘Custom
hardware implementation of the finite-difference time-
domain (FDTD) method’. IEEE MTT-S Int. Microwave
Symp., June 2002

[12] SCHNEIDER R.N., OKONIEWSKI M.M., TURNER L.E.: ‘Finite-
difference time-domain method in custom hardware?’,
IEEE Microw. Guided Wave Lett., 2002, 12, (12),
pp. 488–490

[13] DURBANO J.P., ORTIZ F.E., HUMPHREY J.R., CURT P.F., PRATHER D.W.:
‘FPGA-based acceleration of the 3D finite-difference time-
domain method’. FCCM, 2004, pp. 156–163

[14] DURBANO J.P., ORTIZ F.E., HUMPHREY J.R., CURT P.F., PRATHER D.W.:
‘Hardware implementation of a three-dimensional finite-
difference time-domain algorithm’, IEEE Antennas Wirel.
Propag. Lett., 2003, 2, (1), pp. 54–57

[15] VERDUCCI L., PLACIDI P., CIAMPOLINI P., SCORZONI A., ROSELLI L.:
‘A standard cell hardware implementation for
finite-difference time domain (FDTD) calculation’.
Proc. IEEE MTT-S Int. Microwave Symp. Digest, 2003,
vol. 3

[16] BARON G.S., FIUME E., SARRIS C.D.: ‘Accelerated
implementation of the S-MRTD technique using
graphics processor units’. IEEE MTT-S Int. Microwave
Symp., 2006

[17] FUJII M., HOEFER W.J.R.: ‘Application of biorthogonal
interpolating wavelets to the Galerkin scheme of time
dependent Maxwell’s equations’, IEEE Microw. Wirel.
Compon. Lett., 2001, 11, (1), pp. 22–24

[18] FUJII M., HOEFER W.J.R.: ‘Dispersion of time
domain wavelet Galerkin method based on
Daubechies’ compactly supported scaling functions
with three and four vanishing moments’,
IEEE Microw. Guided Wave Lett., 2000, 4, (0),
pp. 125–127
01 & The Institution of Engineering and Technology 2008

& T

www.ietdl.org
[19] KOVVALI N., LIN W., CARIN L.: ‘Order of accuracy analysis for
multiresolution time-domain using daubechies bases’,
Microw. Opt. Tech. Lett., 2005, 45, (4), pp. 290–293

[20] SGI: ‘OpenGL Extension Registry’, 2006,
see: NV_fragment_program2, NV_float_buffer,
WGL_ATI_pixel_format_float, and WGL_ARB_pbuffer

[21] ANSI/IEEE : ‘IEEE Standard for Binary Floating-Point
Arithmetic’. ANSI/IEEE, August 1985, std pp. 754–1985

[22] NVIDIA: “GeForce 6800,’ Product Overiew, 2004
[Online]. Available at: www.nvidia.com/page/
geforce_6800.html

[23] HILLESLAND K., LASTRA A.: ‘GPU floating point paranoia’.
GP2: ACM Workshop on General Purpose Computing on
Graphics Processors, August 2004
he Institution of Engineering and Technology 2008 IET M
[24] ALIGHANBARI A., SARRIS C.D.: ‘Simulation of wireless
channels via biorthogonal interpolating function-based
high order S-MRTD time domain techniques’. Annual
Review of Progress in Applied Computational
Electrodynamics, March 2006

[25] HASHEMI H.: ‘The indoor radio propagation channel’,
Proc. IEEE, 1993, 81, (7), pp. 943–968

[26] RAPPAPORT T.S.: ‘Wireless communications: principles
and practice’ (Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2001)

[27] LEUNG M., LEUNG J., BARON G.S., SARRIS C.D.: ‘A fast time-
domain wireless channel simulation tool for radio-wave
propagation courses’. Proc. IEEE Int. Symp. Antennas
Propagation, 2006
icrow. Antennas Propag., 2008, Vol. 2, No. 3, pp. 288–301/
doi: 10.1049/iet-map:20070118

301

