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Abstract
One of the benefits of shading with linear light sources

is also one of its major challenges: generating soft shad-
ows. The primary difficulty in this task is determining the
discontinuities in the linear light source integrals that are
caused by occluding objects. We demonstrate in this pa-
per that the computed location of each discontinuity only
needs to be moderately accurate, provided that the ex-
pected value of this location is a continuous function of
the actual value of the location. We introduce Random
Seed Bisection (RSB), an algorithm that has this property.
We use this algorithm to efficiently find the approximate
location of a discontinuity, in order to partition the domain
of integration into subintervals (panels) over which the
integrand is naturally smooth, and approximate the inte-
gral efficiently over each panel using low-degree numeri-
cal quadratures. We demonstrate the effectiveness of this
solution for shadowing problems with at most 1 disconti-
nuity in the domain of integration. We also provide effi-
cient heuristics that take advantage of the coherence in a
scene to handle shadowing problems with at most 2 dis-
continuities in the domain of integration. This work is a
first step toward a comprehensive approach to efficiently
solving numerical integration problems for extended light
sources.

Résumé
L’un des bénéfices de l’utilisation de sources lumineuses
linéaires représente aussi son plus grand défi, soit le cal-
cul des ombres progressives. Pour résoudre ce problème,
on doit déterminer les discontinuités dans la fonction à
intégrer qui sont dues à une visibilité partielle de l’en-
vironnement. Nous démontrons qu’une approximation
modérément précise de ces discontinuités est suffisante,
à condition que la valeur calculée varie de façon con-
tinue en fonction de la valeur actuelle. Nous présentons
un algorithme avec cette caractéristique, soit le Ran-
dom Seed Bisection (RSB). Nous nous servons de cet
algorithme pour trouver d’une façon efficace l’endroit
approximatif d’une discontinuité, et pour ensuite sub-

diviser le domaine de l’intégrale en sous-domaines où
l’on peut évaluer l’intégrale rapidement en se servant
d’une méthode d’intégration à base d’interpolation poly-
nomiale de faible degré. Nous démontrons l’efficacité de
cette solution pour des problèmes d’ombres où l’intégrale
possède une seule discontinuité. Nous proposons aussi
des heuristiques pour les problèmes à 2 discontinuités qui
sont basées sur la cohérence inhérente d’une scène. Ce
travail constitue une première étape d’une nouvelle façon
de résoudre les problèmes d’ombres progressives dues
aux sources lumineuses étendues basée sur une approche
numérique efficace.

Key words: Numerical quadratures, integration, linear
light sources, soft shadows, random seed bisection.

1 Introduction

The process of determining the illumination provided by
an extended light source can be separated into two phases.
First, given a point to be shaded, we must determine the
visibility of the source, that is, the domain of the source
that is fully visible from the given point. Second, given
the visible portion of the source, we must compute the re-
flected light due to this portion. In environments where
sources emit light uniformly and surfaces reflect light dif-
fusely, the latter integration problem can either be solved
analytically — for example if the resulting area to inte-
grate is polygonal [9] — or quickly approximated using
low degree quadratures. In such cases, the limiting factor
in obtaining accurate penumbral shadows lies in the abil-
ity to solve the visibility problem.

In the general setting of extended light sources, three
main techniques have been used to handle the visibil-
ity of a source. The earliest techniques determined vis-
ibility of the source by either approximating it by point
light sources [1], or by point sampling the source itself
[4, 15]. This is prone to aliasing if an insufficient num-
ber of samples is used. Images of a higher quality can
be achieved using algorithms that use shadow volumes
and/or discontinuity meshing to determine the exact vis-



ibility of a source [11, 10, 2, 3, 7, 5, 14, 6]. Such tech-
niques are very expensive and have only been designed to
compute exact visibility for polygonal environments. Fi-
nally, shadow maps have also been used to approximate
soft shadows, most recently by convolving source and oc-
cluder images to produce a soft shadow texture[12, 13].
Such algorithms can produce convincing shadows for en-
vironments with arbitrary types of objects, but incorrect
shadows are sometimes produced, for example, if large
occluding objects touch the receiver. Most of these ex-
tended light source shadow algorithms have been devel-
oped for area light sources, and not specifically for linear
light sources, with some notable exceptions [11, 10].

Linear light sources, despite being useful illumina-
tion primitives, have often been neglected in computer
graphics, or simply approximated with point light sources
to avoid added rendering complexity. In this paper, we in-
troduce a novel approach for solving the visibility prob-
lem in the context of linear light sources. Consider the
problem of computing the reflectance at a given point on a
surface due to light emanating from a linear light source.
This is a one-dimensional integration problem over the
angle defined by the point on the surface and the source.
If we assume that the source emits light uniformly and
that the surface reflects diffusely, the integration problem
is trivial to solve, unless there is one or more occluding
objects. These occluding objects create discontinuities in
the integrand itself, since the integrand becomes zero over
the portion of the source that is being occluded. Notice
that these discontinuities are in the integrand, and are dis-
tinct from the discontinuities in the radiance function of
the illuminated surface, as defined in discontinuity mesh-
ing algorithms.

In this paper, we explore the penumbral shadow prob-
lem by casting it in terms of an integration problem with
a smooth integrand everywhere but at a small number of
discontinuities. First, we introduce the Random Seed Bi-
section (RSB) algorithm, an algorithm for finding the ap-
proximate location of a discontinuity in an integrand. We
demonstrate that this algorithm has an important property:
the expected value of the discontinuity found by RSB is a
continuous function of the actual value of the discontinu-
ity. The RSB algorithm is also general in that it can find
discontinuities for arbitrary objects, as long as an intersec-
tion routine can be written for that object.

We then use RSB to subdivide the domain of integra-
tion into panels bounded by a discontinuityand efficiently
approximate the integral over each panel using a numeri-
cal quadrature of low degree. We demonstrate the effec-
tiveness of this technique for integrands with at most 1
discontinuity. We then provide heuristics that take advan-
tage of scene coherence to enable the technique to han-

dle integrands with 2 discontinuities. Finally, we demon-
strate some results for moderately complex scenes where
the number of discontinuities in each integrand is small,
but not necessarily less than three.

2 Discontinuities and Their Enumeration

The variation in the illumination function over a scene
from fully lit regions in space, to penumbra, to umbra
can be viewed as various kinds of discontinuities in that
function. If such discontinuities can be accurately found,
then domains of integration can be defined, over which
the function is smooth. Both Drettakis[5] and Stewart[14]
take this approach. However, the enumeration of all dis-
continuities is very expensive and perceptually unneces-
sary. Further, an efficient discontinuity preprocessing al-
gorithm for non-polyhedral environments appears to be
out of reach.

In this paper, we consider a different kind of disconti-
nuities, namely, discontinuities in the linear light source
integrand itself. This approach is motivated by the obser-
vation that in many scenes, most of the integrands result-
ing from the illuminationof a point on a surface by a linear
light source will have at most a small number of discon-
tinuities. Even if, from a given point to be shaded, the to-
tal number of objects occluding the source is high, the ef-
fective number of discontinuities introduced in the source
integrand can still be quite low. If several objects cause a
single portion of a linear light source to be blocked, they
will contributeat most 2 discontinuitiesto the resulting in-
tegrand. Consider the point to be shaded on the sphere in
Figure 1. Even though the source is being occluded by a
patch discretized into triangles, a cube, and a cone, only 2
discontinuities occur in the integrand due to these occlu-
sions.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

light source

visible segment

Figure 1: Multiple objects causing 2 discontinuities.

Consider the scene consisting of the interior of a sub-
way car, as illustrated in Figure 2(a). The illumination
in this scene comes from two linear light sources, run-



(a) Rendered Scene (b) Far Light Discontinuities (c) Near Light Discontinuities

Legend : ��0 discs. 1 disc. 2 discs. 3+ discs.

Figure 2: Number of discontinuities arising from linear light sources. The number of discontinuities in the integrand
at a pixel corresponds to its shade, as indicated in the above legend.

ning along each side of the car. The number of discon-
tinuities in the two resulting integrands can be approxi-
mated for each pixel by calculating the visibilityat a thou-
sand points on each source and computing the number
of visibility changes as the source is traversed from one
end to the other. In Figure 2(b), we show, for each pixel,
the number of discontinuities present in the resulting inte-
grand due to the source along the far wall (i.e., the visible
wall) of the car. Notice that more than 75% of the pix-
els have fewer than 2 discontinuities in the integrand, and
only about 11% of the pixels have more than 2 disconti-
nuities in the integrand. In Figure 2(c), we show the num-
ber of discontinuities in the resulting integrand due to the
source along the near wall (this wall is behind the viewer
and thus not seen). In this case, the results are even better,
as 88% of the pixels have at most 1 discontinuity in their
integrand, and less than 1% of the pixels have more than
2 discontinuities in their integrand.

In many scenes we consider to be “typical”, we have
observed that the total number of discontinuities arising
from illuminationwith a linear light source is quite small.
This suggests that specialized algorithms should be con-
sidered when rendering penumbral regions from linear
light sources (and possibly other classes of light sources).
In the following sections, we present a general algorithm
for finding a discontinuity in a linear light source, and ef-
ficient algorithms to handle illumination integrals involv-
ing 0, 1, or 2 discontinuities. The algorithms only need to
find the approximate location of these discontinuities in
order to render visually pleasing penumbrae.

3 Iterative Discontinuity Finding Algorithms

In this section, we review three basic iterative algorithms
for finding the approximate location of a discontinuity in
an integrand, and define the new Random Seed Bisection
(RSB) algorithm. Given an interval which is known to

contain a single discontinuity�, an iterative discontinuity
finding algorithm finds ~�, the approximate location of the
discontinuity in this interval, within a tolerance �. We will
demonstrate in the next this section that even approximate
knowledge of the location of a discontinuity can consid-
erably improve the calculation of the penumbral shadow
due to a linear light source.

Let V (x) be the function that defines the visibility of a
source from a point to be shaded. Assume that each lin-
ear light source (and its visibility function V ) is parame-
terised on the unit interval U = [0; 1]. We further assume
that each point x 2 U is either fully visible (V (x) = 1)
or fully occluded (V (x) = 0). V is therefore a sequence
of step functions. A discontinuity in the integrand occurs
at a point � iff V (x) is discontinuous at �.

Suppose that we know that a given V has at most 1 dis-
continuity. If V (0) = V (1), then V is constant over U ,
and has 0 discontinuities. If V (0) 6= V (1), then V has
1 discontinuity in U . Without loss of generality, we will
assume for convenience that V (0) = 1. The problem
of finding the discontinuity � within a given tolerance �
can then be formulated as follows. Given a step functionV (x) defined asV (x) = � 1 if x 2 [0; �]0 if x 2 (�; 1] ; (1)

find ~�, the approximate location of the discontinuity, such
that k~���k � �. We now examine four different iterative
algorithms for solving this problem.

3.1 Pure Bisection
The Pure Bisection (PB) algorithm is defined by the me-
thodical bisection (i.e., choosing the midpoint) of the in-
terval containing the discontinuity. It is based on the ob-
servation that if an interval containing a single disconti-
nuity is bisected, precisely one of the two resulting subin-
tervals will contain the discontinuity.



Figure 3: Illustration of iterative discontinuity finding al-
gorithms with V (x) a step function. Samples chosen as
a midpoint are shown as triangles; samples chosen ran-
domly are shown as squares.

PB provides the optimal convergence bound. The error
is bounded by (12 )n after n � 1 iterations. The expected
value of ~� is a discontinuous function of �:E(~�) = 2b2n�1�c + 12n : (2)E(~�) has 2n�1 � 1 discontinuities in U .

3.2 Jittered Bisection

If PB is modified such that the point in the final interval is
chosen randomly from a uniform distribution, it is called a
Jittered Bisection (JB) algorithm. Since only the last point
is chosen differently than in PB, and since the expected
value of this last point is precisely the midpoint of the last
subinterval (i.e., the last point chosen for PB), E(~�) is as
in Equation (2), and again has 2n�1 � 1 discontinuities.

3.3 Random Cut

In a Random Cut (RC) algorithm, the sub-interval known
to contain the discontinuity is subdivided by randomly
choosing a point from a uniform distribution. RC has an
expected value of ~� that is a continuous function of �:E(~�) = 1=2 + �(2n � 1)2n+1 : (3)

n � range E(~�)
1 [0; 1] 1=4 + �=2
2 [0; 1=2] 1=8 + 1=4�+ �2[1=2; 1] �3=8 + 9=4�� �2
3 [0; 1=4] 1=16 + 1=8�+ 49=18�2[1=4; 1=2] 13=144+ 41=72�+ 1=2�2[1=2; 3=4] �23=144 + 113=72�� 1=2�2[3=4; 1] �275=144+ 401=72�+ 49=18�2

Table 1: Expected value of ~� for RSB.

The convergence bound for RC is worse than for PB. Af-
ter n � 1 steps, the expected value of the length1 of the
subinterval containing � is (23 )n.

3.4 Random Seed Bisection
The Random Seed Bisection (RSB) algorithm is a simple
yet surprisingly effective modification of PB. Instead of
splitting the original interval by testing the midpoint, we
test a seed s that is chosen randomly from a uniform dis-
tribution over U. RSB then proceeds as in PB. It can be
shown that the convergence bound for RSB is almost as
good as the one for PB. Specifically, after n�1 steps, the
expected value for the length of the subinterval containing� is (23)(12 )n�1. This is easy to understand if we consider
that, on average, after the initial random cut, we are ap-
plying PB on an interval of average length 2=3.

The bound from RSB is not only very close to the opti-
mal bound: the expected value of ~� is a continuous func-
tion of �. E(~�) is tedious to calculate analytically. For
example, for n = 2, E(~�) is defined over [0; 1=2] by:Z �s=0 3s+ 14 ds + Z 2�s=� 34s ds+ Z 1s=2� 14s ds: (4)

One can show that for any value n, the resulting function
is a piecewise quadratic function of � that is everywhere
continuous. In Table 1, we have shown the quadratic
functions for the first few values of n.

The four algorithms are illustrated in Figure 3 withV (x) being a step function with a single discontinuity.
The subdivision points chosen are enumerated at each
step. Subdivision of the interval containing the disconti-
nuity occurs either at the midpoint (shown as a triangle)
or at a randomly selected point (shown as a square) in the
interval.

3.5 Expected Value of Algorithms
In Figure 4, we have shown the expected value of ~� as a
function of �, for all the discontinuity finding algorithms.

1The expected length of the subinterval of [0;1] containing � isR 1�=0[R �x=0(1� x)dx+ R 1x=� x dx]d� = R [ 12 + �(1� �)] = 23 .
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Figure 4: Expected value of algorithms. Abscissa is the location of the discontinuity, ordinate is the expected value.

The expected value plots are shown for n = 2 and n = 4
subdivisions. Since PB and JB have the same expected
value, only the plot for PB is shown.

The expected value for RSB is continuous, and it also
converges more quickly and in a more uniform fashion
than PB. After only four subdivisions, the expected value
of ~� for RSB has almost converged to E(~�) = �. RC is
continuous, as expected, but converges much more slowly
than the other algorithms. Finally, notice that the discon-
tinuities in E(~�) result in the staircase plots for PB.

4 Single Discontinuity Integration Algorithm

If we know that part of a scene, or perhaps an entire scene,
is illuminated by linear light source integrals such that the
resulting integrands have at most 1 discontinuity, we can
use a discontinuity finding algorithm to help us evaluate
the integral efficiently and accurately. Given a specific in-
tegration problem, we first test the visibility of each end
point of the source, that is, V (0) and V (1). If both are
1, we have a fully visible source and evaluate the integral
over it with no further visibility tests. If both are 0, we
have a fully occluded source and the integral is zero. Fi-
nally, if V (0) 6= V (1), we use an iterative discontinu-
ity finding algorithm to approximate the location of the
discontinuity, and integrate the source over the resulting
visible portion with no further visibility tests. If the re-
flectance function of the surface is not highly specular, the
visible portion of the integral can be efficiently approx-
imated using a low degree quadrature such as a 2 point
Gauss quadrature.

Figure 5 depicts a scene consisting of a linear light
source illuminating a matte floor. The source is located
at the back of the scene, and is partially obstructed on the
left side by a wall. All visible points in this scene gener-
ate linear light source integrands (for direct illumination)
that have at most 1 discontinuity. The source, which ex-
tends slightly beyond the visible image, is integrated by
first finding the approximate location of the discontinuity
and then using a 2 point Gauss quadrature on the resulting
visible segment.

The first four images in the left column of Figure 5
were generated using the four different discontinuityfind-
ing algorithms to compute the location of the discontinu-
ity within a tolerance of � = 0:25. The first four images
in the right column were generated using the same algo-
rithms with a tolerance of � = 0:05. The banding present
in Figure 5(a) can be attributed to PB’s discontinuous ex-
pected value. Notice that JB does not alleviate the band-
ing in Figure 5(c), which is not surprising because JB’s
expected value is also discontinuous. Even for � = 0:05,
the images in Figure 5(b) and 5(d) still show banding ar-
tifacts. In contrast, the images generated by both the ran-
dom cut and the random seed bisections methods show no
banding, a small amount of noise with � = 0:25, and al-
most no noise with � = 0:05.� PB JB RC RSB

0.25 3.78 3.78 4.95 4.21
0.05 5.47 5.47 6.78 5.47

Table 2: Average number of visibility tests for tolerances
of � = 0:25 and � = 0:05.

In terms of rendering times, the resulting cost can be
broken down into two principal components: the cost of
finding the location of the discontinuity, and the cost of
calculating the integrand on the visible interval of inte-
gration. Because visibility has been approximately deter-
mined, the 2 point quadrature performs no visibility test-
ing. Since a 2 point Gauss quadrature is used in every
case, and since almost every pixel requires exactly one
application of the quadrature, the difference in cost be-
tween the various algorithms can be directly attributed to
the cost of finding the discontinuity. In Table 2, we have
tabulated the average number of visibility tests for each
method, for both � = 0:25 and � = 0:05. Notice that since
PB and JB are identical in complexity, they share the same
cost. The results are as predicted in theory, and the only
surprise is that for a tolerance of 0:05, RSB performed as
well as PB and JB.



(a) Pure Bisection - � = 0:25 (b) Pure Bisection - � = 0:05
(c) Jittered Bisection - � = 0:25 (d) Jittered Bisection - � = 0:05

(e) Random Cut - � = 0:25 (f) Random Cut - � = 0:05
(g) Random Seed Bisection - � = 0:25 (h) Random Seed Bisection - � = 0:05

(i) HPD with 4 samples (j) HPD with 6 samples

Figure 5: Penumbral region comparison for a scene with at most 1 discontinuity.



In Figure 5(i) and 5(j), we show the results of apply-
ing an integration method of cost similar to RSB. Since
the integrand has an unknown discontinuity location, the
most suitable2 type of numerical technique to integrate in
the presence of this discontinuity is one with a blue noise
signature such as the Hierarchical Poisson Disk (HPD)
[8] sampling strategy. We use such a strategy to calcu-
late the integral over the entire source, testing for occlu-
sion at each shading sample. Since we allowed roughly
4 occlusion tests for � = 0:25 and 6 occlusion tests for� = 0:05, we have shown the results for both 4 and 6 shad-
ing samples using HPD. Notice that this comparison is ac-
tually biased in favour of HPD since it does not take into
consideration the cost of calculating the illuminationfrom
the additional shading samples (e.g., RSB with � = 0:05
uses on average 5.47 visibility tests and 2 shading sam-
ples, whereas HPD uses 6 visibility tests and 6 shading
samples). Comparing Figure 5(g) to Figure 5(i) and Fig-
ure 5(h) to Figure 5(j), we conclude that RSB outperforms
HPD.

The results of this comparison illustrate the importance
of the method used to find the approximate location of a
discontinuity. Using the results of the discontinuity find-
ing methods, we can efficiently find good visual approxi-
mate solutions to the penumbral integration problem.

5 Two Discontinuity Integration Algorithm

In this section, we present a Two Discontinuity Finding
(TDF) algorithm, which is an extension of the algorithm
of the previous section. TDF enables us to efficiently han-
dle integrands with up to 2 discontinuities. Let us con-
sider the end points of a linear light source whose visi-
bility function V (x) is known to have at most 2 discon-
tinuities over U . If V (0) 6= V (1), then we only have 1
discontinuity and we can use RSB to find it. Otherwise,V (0) = V (1) and the end points are either both visible,
or both occluded. We must decide if we have 0 or 2 dis-
continuities.

5.1 Scene Coherence and Visibility Changes
The heuristics we have designed are motivated by the ob-
servation that the integrand will have 2 discontinuities iff
there exists a point m 2 (0; 1) such that V (m) 6= V (0).
Let P be the number of discontinuities detected in the in-
tegrand for the previous (i.e., adjacent) pixel, and let these
discontinuities be p1 and p2, if they exist. We have de-
signed a heuristic for each value of P that either finds a
point m such that V (m) 6= V (0), or returns a failed sta-
tus. If m is found, we use RSB to find a discontinuity in[0;m] and in [m; 1], otherwise we conclude that there is
no discontinuity. We now present the heuristics of TDF.

2Any strictly deterministic integration method with 6 or less points
will suffer from banding.

State P = 0
Let � be a user-specified tolerance, and assume that the
visibility function for the source is defined over U , and
let x�2 = 0 and x�1 = 1. Choose a random valuex0 2 U and determine V (x0). If V (x0) 6= V (0), then
let m = x0 and return. Otherwise, at each subsequent
step i, we choose xi as the midpoint of the largest subin-
terval [xa; xb] such that a; b 2 [�2; i� 1] and there is noc 2 [�2; i � 1] such that xc 2 (xa; xb), with ties being
broken randomly. In other words, this algorithm chooses
the next point by examining the Voronoi diagram corre-
sponding to the points already chosen and selecting the
midpoint of the largest Voronoi region. For this reason,
we will refer to this algorithm as Voronoi Search (VS).

The iteration stops as soon as some V (xi) 6= V (0), in
which case we let m = xi and return. If we reach the tol-
erance �, that is, if the largest subinterval becomes smaller
than �, we stop and conclude that, probabilistically3, we
have 0 discontinuities, and return a failed status.

State P = 1
Since the integrand for the previous pixel had 1 discon-
tinuity, then one end point of the source was visible, and
one was occluded. Since the endpoints are now both oc-
cluded or both visible, one of the end points has changed
visibility, say vi. Based on scene coherence, it is likely
that if a change of visibility still occurs in the integrand
(i.e., if we now have 2 discontinuities), it does so near
the previous discontinuity p1. Since p1 was only known
within a tolerance of �, we let m = p1+vi2 and computeV (m). If V (m) 6= V (0), we return successfully. Other-
wise, we use VS to look for a change of visibilitybetweenp1 and vi.
State P = 2
The integrand for the previous pixel had 2 discontinuities.
Based on scene coherence, it is likely that if we still have 2
discontinuities in the integrand, the midpointm = p1+p22
between p1 and p2 will be such that V (m) 6= V (0). If this
is the case, return successfully. Otherwise, we use VS to
look for a change of visibility in U .

5.2 Results
Figure 6 depicts a scene consisting of a linear light source
illuminating a matte floor. The source is located above
and behind the top right edge of the floor, and is partially
obstructed by a cylinder. All visible points in this scene
generate linear light source integrands (for direct illumi-
nation) that have at most 2 discontinuities.

Cylinders of two different radii were chosen to test dif-
ferent degrees of difficulty in finding discontinuities. In
both cases, the light is of length 50 and is 21 units away

3Specifically, there is no gap G � U of size kGk > � such thatV (X) 6= V (0);8x 2 G.



(a) TDF (� = 0:05, � = 0:25); radius 2 (b) TDF (� = 0:05, � = 0:25); radius 0.4

(c) 7 point Gauss; radius 0.4 (d) 7 point HPD; radius 0.4

Figure 6: Penumbral region comparison for a scene with at most 2 discontinuities.

(at a 45� angle) from the base of the cylinder. The cylin-
der in Figure 6(a) has a radius of 2, whereas the cylinder
in Figures 6(b), 6(c), and 6(d) has a radius of 0.4.

The first two images were generated using TDF and a
tolerance of � = 5% in RSB, and of � = 25% in VS. TDF
required an average of 5:9 visibility tests in Figure 6(a),
and 5:6 visibility tests in Figure 6(b), to determine the lo-
cation of the discontinuities. The resulting segments were
then integrated using a 2 point Gauss quadrature. The
shadows are very smooth in both cases. The pixel adja-
cency heuristics used in states P = 1 and P = 2 were
very successful at predicting the location of a discontinu-
ity without having to resort to VS: 100% in Figure 6(a)
and 98% in Figure 6(b).

Figure 6(c) was generated using a 7 point Gauss quad-
rature. Notice the aliasing appearing as shadow bands in
the image. Figure 6(d) was generated using an approxi-
mation to HPD using 7 samples per integral, and a cylin-
der of radius 0.4. HPD was the best representative among
the methods which do not take into consideration the loca-
tion of discontinuities. The resulting image does not suf-

fer from aliasing but is very noisy.

The number of samples (7 for both Gauss and HPD)
was chosen to roughly match the average number of visi-
bility tests (5:6) required to compute Figure 6(c) plus the
average number of shading calculations (2:5), such that
the algorithms had the same rendering time (less than 3
seconds). From Figure 6(b), 6(c) and 6(d), we can con-
clude that the integrand discontinuityfinding method out-
performs both the Gauss quadrature and the HPD method.

In Figure 2 we showed an example of a moderately
complex scene modelled with polygons, cylinders and
spheres. It is illuminated by two linear light sources, with
only 5% of the resulting integrands having more than 2
discontinuities. In Figure 7 we show the result of ap-
plying TDF to this scene. On average, 5 visibility tests
were needed to locate the discontinuities on each light
source, for a total rendering time of 3:4 minutes. The
resulting shadows are very convincing in all the regions
where fewer than 3 discontinuities were present. Notice
the smoothness of the shadow in the difficult area near the
bottom of the wall, immediately to the right of the set of



Figure 7: Subway scene computed with TDF (� = 0:05, � = 0:25).

three seats. In this area, a small portion of each source
is visible, even though the end points themselves are oc-
cluded. In some parts of the image, the limitation of the
algorithm is evident in the form of speckling.

6 Discussion

One of the important characteristics of the Two Discon-
tinuity Finding (TDF) algorithm is the use of tolerances
to control the quality of the discontinuity approximations.
On one hand, this gives users a powerful means of balanc-
ing the quality of the shadows with its cost. On the other
hand, given an integrand with at most two discontinuities,
the RSB tolerance � and the VS tolerance � are reliable
predictors of the quality of the shadow. Given a pair of
discontinuities due to a small occluder, the probability of
TDF missing the occluder is inversely proportional to the
fraction of the source that is being occluded. If a small
occluder is found, RSB guarantees that its extent will be
determined correctly, within the tolerance of �. There-
fore the difference between a small occluder being missed
or being found is bounded above by the actual contribu-
tion of the occluder, within RSB’s tolerance �. This is an
important characteristic for low sampling densities, since

“accidentally finding a small occluder” does not lead to an
overly dark shadow. This is in contrast to more traditional
low density visibility testing where one sample “acciden-
tally finding a small occluder” leads to overestimating the
importance of the shadow, as was evident in Figure 6(c).

To isolate the effectiveness of the algorithms, anti-
aliasing was not performed on any of the images included
in this paper. An interesting direction of research will be
to combine anti-aliasing techniques with our algorithms.
One possible application would be to compute the in-
tegrand discontinuity only once per pixel, thus amortiz-
ing the cost over all the anti-aliasing samples used for
each pixel. This would allow the algorithms to either use
smaller tolerances, or to speedup their performance.

A question that remains to be answered is how to use
the algorithms we have developed to handle integrands
with more than 2 discontinuities. As we saw in Figure 7,
the results are promising but problems do exist. For ex-
ample, the speckling near the middle-top is a result of
a source integrand with 3 discontinuities — one caused
by the recessed wall, the other two by the overhanging
handrail — incorrectly being handled. The algorithm cor-
rectly detects that one end point is occluded and one visi-



ble, and uses RSB to find the discontinuity. The resulting
pixel is noticeably too dark if the discontinuityfound is on
the handrail instead of on the edge of the wall, since then
too much of the source is classified as occluded. To allevi-
ate this type of problem, one could track variations in irra-
diance in a small neighbourhoodabout each pixel and ren-
der more carefully (e.g., by subdividing the source) those
pixels whose variance exceeds a certain threshold.

7 Conclusion

In this paper, we have presented a new approach to solv-
ing the penumbral problem for linear light sources. This
approach is based on the observation that most integrands
are smooth in their domain of integration, except at a
small number of discontinuities. We have demonstrated
that in many cases, knowing the approximate location of
a discontinuity, in conjunction with using a low degree
quadrature method is sufficient to provide quality penum-
bral shadows.

We introduced Random Seed Bisection (RSB), a new
algorithm for computing the approximate location of the
discontinuity in a linear light source. This algorithm
converges nearly as quickly as the traditional bisection
method, but provides continuous expected values for the
approximate location of the discontinuity. This results in
smooth penumbral shadows when integrands with 1 dis-
continuity are present. RSB is also a general algorithm,
since it can be used with any type of object, provided that
an intersection routine can be written for that object.

Finally, we combined RSB with effective heuristics
based on scene coherence to develop a Two Discontinuity
Finding (TDF) algorithm. TDF efficiently handles inte-
grands with at most 2 discontinuities. We presented con-
vincing results for test cases of varying difficulty, and dis-
cussed the important characteristics of TDF. We also pre-
sented some promising results for a complex scene con-
taining some integrands with more than 2 discontinuities.

In the future, we hope to further develop methods to
efficiently handle multiple discontinuities in linear light
source integrands. Two particularly interesting areas of
research are handling more than 2 discontinuities, and
combining these algorithms with anti-aliasing. Finally,
we will continue the investigation of the usage of approx-
imate knowledge of integrand discontinuities for comput-
ing penumbral shadows due to area light sources, and to
investigate the importance of similar algorithms for other
aspects of the rendering process.
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