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Abstract
One of the benefits of shading with linear light sources
isaso one of its mgjor challenges: generating soft shad-
ows. The primary difficulty inthistask isdetermining the
discontinuitiesin the linear light source integralsthat are
caused by occluding objects. We demonstrate in this pa-
per that the computed location of each discontinuity only
needs to be moderately accurate, provided that the ex-
pected vaue of thislocation is a continuous function of
the actua value of the location. We introduce Random
Seed Bisection (RSB), an algorithmthat has this property.
We use thisagorithm to efficiently find the approximate
location of adiscontinuity, inorder to partitionthedomain
of integration into subintervals (panels) over which the
integrand is naturally smooth, and approximate the inte-
gral efficiently over each panel using low-degree numeri-
cal quadratures. We demonstrate the effectiveness of this
solution for shadowing problems with at most 1 disconti-
nuity in the domain of integration. We aso provide effi-
cient heuristics that take advantage of the coherencein a
scene to handle shadowing problems with at most 2 dis-
continuitiesin the domain of integration. Thiswork is a
first step toward a comprehensive approach to efficiently
solving numerical integration problemsfor extended light
SOUICES.
Résumé

L’ un des bénéfices del’ utilisation de sources lumineuses
linéaires représente aussi son plus grand défi, soit le cal-
cul des ombres progressives. Pour résoudre ce probléme,
on doit déterminer les discontinuités dans la fonction a
intégrer qui sont dues a une visibilité partielle de I en-
vironnement. Nous démontrons qu’ une approximation
modérément précise de ces discontinuités est suffisante,
a condition que la valeur calculée varie de fagcon con-
tinue en fonction de la valeur actuelle. Nous présentons
un agorithme avec cette caractéristique, soit le Ran-
dom Seed Bisection (RSB). Nous nous servons de cet
algorithme pour trouver d'une fagon efficace I’ endroit
approximatif d’'une discontinuité, et pour ensuite sub-

diviser le domaine de I'intégrale en sous-domaines ou
I’on peut évaluer I'intégrale rapidement en se servant
d’une méthode d’ intégration a base d’interpolation poly-
nomiale de faible degré. Nous demontrons|’ efficacité de
cette sol ution pour des problémesd ombresou |’ intégrale
possede une seule discontinuité. Nous proposons aussi
des heuristiques pour | es problémes a 2 discontinuitésqui
sont basées sur la cohérence inhérente d'une scene. Ce
travail constitue une premiere &ape d’ une nouvellefagon
de résoudre les problemes d’ ombres progressives dues
aux sources lumineuses étendues basée sur une approche
numeérique efficace.

Key words: Numerical quadratures, integration, linear
light sources, soft shadows, random seed bisection.

1 Introduction

The process of determining the illumination provided by
an extended light source can be separated into two phases.
First, given a point to be shaded, we must determine the
visibility of the source, that is, the domain of the source
that is fully visible from the given point. Second, given
the visible portion of the source, we must compute there-
flected light due to this portion. In environments where
sources emit light uniformly and surfaces reflect light dif-
fusely, the latter integration problem can either be solved
analytically — for example if the resulting area to inte-
grate is polygonal [9] — or quickly approximated using
low degree quadratures. In such cases, the limiting factor
in obtaining accurate penumbral shadows liesin the abil-
ity to solve the visibility problem.

In the general setting of extended light sources, three
main techniques have been used to handle the visibil-
ity of a source. The earliest techniques determined vis-
ibility of the source by either approximating it by point
light sources [1], or by point sampling the source itself
[4, 15]. Thisis proneto aiasing if an insufficient num-
ber of samples is used. Images of a higher quality can
be achieved using algorithms that use shadow volumes
and/or discontinuity meshing to determine the exact vis-



ibility of a source [11, 10, 2, 3, 7, 5, 14, 6]. Such tech-
niguesare very expensive and have only been designed to
compute exact visibility for polygonal environments. Fi-
nally, shadow maps have also been used to approximate
soft shadows, most recently by convolving source and oc-
cluder images to produce a soft shadow texture[12, 13].
Such algorithms can produce convincing shadows for en-
vironments with arbitrary types of objects, but incorrect
shadows are sometimes produced, for example, if large
occluding objects touch the receiver. Most of these ex-
tended light source shadow agorithms have been devel-
oped for area light sources, and not specifically for linear
light sources, with some notable exceptions [11, 10].

Linear light sources, despite being useful illumina
tion primitives, have often been neglected in computer
graphics, or simply approximated with point light sources
to avoid added rendering complexity. Inthispaper, wein-
troduce a nove approach for solving the visibility prob-
lem in the context of linear light sources. Consider the
problem of computingthereflectance at agiven pointon a
surface dueto light emanating from alinear light source.
This is a one-dimensiona integration problem over the
angle defined by the point on the surface and the source.
If we assume that the source emits light uniformly and
that the surface reflects diffusely, the integration problem
istrivia to solve, unless there is one or more occluding
objects. These occluding objects create discontinuitiesin
theintegranditself, sincetheintegrand becomes zero over
the portion of the source that is being occluded. Notice
that these discontinuitiesare in theintegrand, and are dis-
tinct from the discontinuitiesin the radiance function of
the illuminated surface, as defined in discontinuity mesh-
ing algorithms.

In this paper, we explore the penumbral shadow prob-
lem by casting it in terms of an integration problem with
a smooth integrand everywhere but at a small number of
discontinuities. First, we introduce the Random Seed Bi-
section (RSB) agorithm, an agorithm for finding the ap-
proximate location of adiscontinuity in an integrand. We
demonstratethat thisal gorithm hasanimportant property:
the expected value of the discontinuity found by RSB isa
continuousfunction of the actual value of the discontinu-
ity. The RSB agorithm isalso genera in that it can find
discontinuitiesfor arbitrary objects, aslong asanintersec-
tion routine can be written for that object.

We then use RSB to subdivide the domain of integra
tioninto panel sbounded by adiscontinuity and efficiently
approximate the integral over each panel using a numeri-
ca quadrature of low degree. We demonstrate the effec-
tiveness of this technique for integrands with at most 1
discontinuity. We then provideheuristicsthat take advan-
tage of scene coherence to enable the technique to han-

dleintegrandswith 2 discontinuities. Finally, we demon-
strate some results for moderately complex scenes where
the number of discontinuitiesin each integrand is small,
but not necessarily less than three.

2 Discontinuitiesand Their Enumeration

The variation in the illumination function over a scene
from fully lit regions in space, to penumbra, to umbra
can be viewed as various kinds of discontinuitiesin that
function. If such discontinuitiescan be accurately found,
then domains of integration can be defined, over which
thefunctionissmooth. Both Drettakig[5] and Stewart[14]
take this approach. However, the enumeration of all dis-
continuitiesis very expensive and perceptually unneces-
sary. Further, an efficient discontinuity preprocessing al-
gorithm for non-polyhedral environments appears to be
out of reach.

In this paper, we consider a different kind of disconti-
nuities, namely, discontinuitiesin the linear light source
integrand itself. This approach is motivated by the obser-
vation that in many scenes, most of the integrands result-
ingfromtheilluminationof apoint onasurfaceby alinear
light source will have at most a small number of discon-
tinuities. Even if, from a given point to be shaded, theto-
tal number of objects occluding the sourceishigh, the ef-
fective number of discontinuitiesintroduced in the source
integrand can till be quitelow. If several objects cause a
single portion of alinear light source to be blocked, they
will contributeat most 2 discontinuitiesto theresultingin-
tegrand. Consider the point to be shaded on the spherein
Figure 1. Even though the sourceis being occluded by a
patch discretized into triangles, a cube, and acone, only 2
discontinuities occur in the integrand due to these occlu-

sions.
light source
visible segment

Figure 1: Multipleobjects causing 2 discontinuities.

Consider the scene consisting of the interior of a sub-
way car, as illustrated in Figure 2(a). The illumination
in this scene comes from two linear light sources, run-
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Figure 2: Number of discontinuitiesarising from linear light sources. The number of discontinuitiesin the integrand

at apixel correspondsto its shade, asindicated in the above

ning along each side of the car. The number of discon-
tinuities in the two resulting integrands can be approxi-
mated for each pixel by calculating thevisibility at athou-
sand points on each source and computing the number
of visibility changes as the source is traversed from one
end to the other. In Figure 2(b), we show, for each pixdl,
the number of discontinuitiespresent intheresulting inte-
grand dueto the source along thefar wall (i.e., thevisible
wall) of the car. Notice that more than 75% of the pix-
els have fewer than 2 discontinuitiesin the integrand, and
only about 11% of the pixels have more than 2 disconti-
nuitiesin theintegrand. In Figure2(c), we show the num-
ber of discontinuitiesin theresulting integrand dueto the
source aong the near wall (thiswall isbehind the viewer
and thusnot seen). Inthiscase, theresultsare even better,
as 88% of the pixels have at most 1 discontinuity in their
integrand, and less than 1% of the pixels have more than
2 discontinuitiesin their integrand.

In many scenes we consider to be “typical”, we have
observed that the total number of discontinuities arising
fromilluminationwith alinear light sourceisquitesmall.
This suggests that specialized a gorithms should be con-
sidered when rendering penumbra regions from linear
light sources (and possibly other classes of light sources).
In the following sections, we present a general algorithm
for finding adiscontinuity in alinear light source, and ef-
ficient algorithmsto handleilluminationintegralsinvolv-
ing 0, 1, or 2 discontinuities. The agorithmsonly need to
find the approximate location of these discontinuitiesin
order to render visually pleasing penumbrae.

3 Iterative Discontinuity Finding Algorithms

In this section, we review three basic iterative agorithms
for finding the approximate location of a discontinuity in
an integrand, and define the new Random Seed Bisection
(RSB) agorithm. Given an interval which is known to

legend.

contain asinglediscontinuity A, aniterative discontinuity
finding algorithm finds A, the approximate location of the
discontinuityinthisinterval, withinatolerance . We will
demonstratein thenext this section that even approxi mate
knowledge of the location of a discontinuity can consid-
erably improve the calculation of the penumbral shadow
due to alinear light source.

Let V(x) bethefunction that defines the visibility of a
source from a point to be shaded. Assume that each lin-
ear light source (and its visibility function V) is parame-
terised on theunitinterval U = [0, 1]. We further assume
that each point « € U iseither fully visible (V' (z) = 1)
or fully occluded (V' (z) = 0). V istherefore a sequence
of step functions. A discontinuity in the integrand occurs
a apoint A iff V(z) isdiscontinuousat A.

Supposethat we know that agiven V' hasat most 1 dis-
continuity. If V/(0) = V(1), then V is constant over U,
and has 0 discontinuities. If 17(0) # V(1), then V has
1 discontinuity in /. Without loss of generality, we will
assume for convenience that V' (0) = 1. The problem
of finding the discontinuity A within a given tolerance ¢
can then beformulated as follows. Given a step function
V (x) defined as

1 ifze0,A]
V($):{ 0 ifre(1] ()

find :\L the approximate | ocation of the discontinuity, such
that ||A—A|| < e. Wenow examinefour different iterative
algorithmsfor solving this problem.

3.1 PureBisection

The Pure Bisection (PB) agorithm is defined by the me-
thodical bisection (i.e., choosing the midpoint) of the in-
terval containing the discontinuity. It is based on the ob-
servation that if an interval containing a single disconti-
nuity is bisected, precisely one of thetwo resulting subin-
tervalswill contain the discontinuity.
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Figure 3: Illustration of iterative discontinuity finding al -
gorithms with V() a step function. Samples chosen as
a midpoint are shown as triangles; samples chosen ran-
domly are shown as squares.

PB providesthe optimal convergence bound. The error
is bounded by (3)" after n — 1 iterations. The expected

value of ) isadiscontinuousfunction of \:
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E(X\) has2”~! — 1 discontinuitiesin U.

3.2 Jittered Bisection

If PB ismodified such that the pointinthefinal interval is
chosen randomly fromauniformdistribution, itiscalled a
Jittered Bisection (JB) algorithm. Sinceonly thelast point
is chosen differently than in PB, and since the expected
value of thislast point is precisely the midpoint of the last
subinterval (i.e., thelast point chosen for PB), E()\) isas
in Equation (2), and again has 27 ~! — 1 discontinuities.

3.3 Random Cut

In aRandom Cut (RC) algorithm, the sub-interva known
to contain the discontinuity is subdivided by randomly
choosing a point from a uniform distribution. RC has an
expected value of \ that is a continuousfunction of A:

B = L= ®

n | Arange E(N)

1110,1] 1/4+)/2

2| [0,1/2] 1/8 4+ 1/4A+ A2
[1/2,1] —3/8+9/4X\ — \?

3| [0,1/4] 1/16 + 1/8X\ + 49/18)\2
[1/4,1/2] | 13/144 4+ 41/72X + 1/2)?
[1/2,3/4] | —23/144 4 113/72)\ — 1/2)?
[3/4,1] —275/144 4+ 401 /72X + 49/18)\?

Table 1: Expected value of A for RSB.

The convergence bound for RC isworse than for PB. Af-
ter n — 1 steps, the expected value of the length® of the
subinterval containing A is (2)".
3.4 Random Seed Bisection
The Random Seed Bisection (RSB) algorithmisasimple
yet surprisingly effective modification of PB. Instead of
splitting the origina interval by testing the midpoint, we
test aseed s that ischosen randomly from auniform dis-
tribution over U. RSB then proceeds as in PB. It can be
shown that the convergence bound for RSB is almost as
good asthe one for PB. Specifically, after n — 1 steps, the
expected valuefor the length of the subinterval containing
A is(%)(%)"_l. Thisiseasy to understand if we consider
that, on average, after the initial random cut, we are ap-
plying PB on an interval of average length 2/3.
Thebound from RSB is not only very closeto the opti-
mal bound: the expected value of ) isacontinuous func-
tion of . E(}) is tedious to calculate analytically. For
example, for n = 2, E()) isdefined over [0, 1/2] by:

A 2A 1
3s+1 3 1
ds—l—/ —sds—l—/ —sds. (4
/520 4 s=A 4 $=2A 4

One can show that for any value n, the resulting function
is a piecewise quadratic function of A that is everywhere
continuous. In Table 1, we have shown the quadratic
functionsfor thefirst few values of n.

The four algorithms are illustrated in Figure 3 with
V(z) being a step function with a single discontinuity.
The subdivision points chosen are enumerated at each
step. Subdivision of the interval containing the disconti-
nuity occurs either at the midpoint (shown as a triangl€)
or at arandomly selected point (shown as a square) inthe
interval.

3.5 Expected Value of Algorithms

In Figure 4, we have shown the expected value of A asa
function of A, for all the discontinuity finding algorithms.

1The expected length of the subinterval of [0,1] containing X is
1 A 1
fx:o[fm=o(1 —a)de + fm=x da]dr = f[% +A(-N] =3
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Figure 4: Expected value of algorithms. Abscissaisthe location of the discontinuity, ordinate is the expected value.

The expected value plotsare shownfor n = 2 and n = 4
subdivisions. Since PB and JB have the same expected
value, only the plot for PB is shown.

The expected value for RSB is continuous, and it also
converges more quickly and in a more uniform fashion
than PB. After only four subdivisions, the expected value
of X for RSB has almost converged to £(A) = . RCis
continuous, asexpected, but converges much moresowly
than the other a gorithms. Finally, notice that the discon-

tinuitiesin ZZ(A) result in the staircase plotsfor PB.

4 SingleDiscontinuity Integration Algorithm

If weknow that part of ascene, or perhaps an entire scene,
isilluminated by linear light source integralssuch that the
resulting integrands have at most 1 discontinuity, we can
use a discontinuity finding algorithm to help us evaluate
theintegral efficiently and accurately. Given aspecificin-
tegration problem, we first test the visibility of each end
point of the source, that is, V(0) and V'(1). If both are
1, we have afully visible source and evaluate the integral
over it with no further visibility tests. If both are 0, we
have afully occluded source and the integral is zero. Fi-
naly, if V(0) # V(1), we use an iterative discontinu-
ity finding agorithm to approximate the location of the
discontinuity, and integrate the source over the resulting
visible portion with no further visibility tests. If the re-
flectance function of the surfaceisnot highly specular, the
visible portion of the integra can be efficiently approx-
imated using a low degree quadrature such as a 2 point
Gauss quadrature.

Figure 5 depicts a scene consisting of a linear light
source illuminating a matte floor. The source is located
at the back of the scene, and is partially obstructed on the
left side by awall. All visible pointsin this scene gener-
ate linear light source integrands (for direct illumination)
that have at most 1 discontinuity. The source, which ex-
tends dightly beyond the visible image, is integrated by
first finding the approximate [ocation of the discontinuity
and then using a2 point Gauss quadrature on the resulting
visible segment.

The first four images in the left column of Figure 5
were generated using thefour different discontinuity find-
ing algorithmsto compute the location of the discontinu-
ity within atolerance of ¢ = 0.25. Thefirst four images
in the right column were generated using the same algo-
rithms with atolerance of ¢ = 0.05. The banding present
in Figure 5(a) can be attributed to PB’s discontinuousex-
pected value. Notice that JB does not alleviate the band-
ing in Figure 5(c), which is not surprising because JB’s
expected value is also discontinuous. Even for ¢ = 0.05,
the images in Figure 5(b) and 5(d) till show banding ar-
tifacts. In contrast, the images generated by both the ran-
dom cut and the random seed bi sections methods show no
banding, a small amount of noisewith e = 0.25, and al-
most no noisewith e = 0.05.

€ PB | B RC | RSB
025|378 | 378 | 495 | 421
0.05 | 547 | 547 | 6.78 | 547

Table 2: Average number of visibility testsfor tolerances
of e = 0.25 and e = 0.05.

In terms of rendering times, the resulting cost can be
broken down into two principal components: the cost of
finding the location of the discontinuity, and the cost of
calculating the integrand on the visible interval of inte-
gration. Because visibility has been approximately deter-
mined, the 2 point quadrature performs no visibility test-
ing. Since a 2 point Gauss quadrature is used in every
case, and since amost every pixel requires exactly one
application of the quadrature, the difference in cost be-
tween the various algorithms can be directly attributed to
the cost of finding the discontinuity. In Table 2, we have
tabulated the average number of visibility tests for each
method, for bothe = 0.25 and e = 0.05. Noticethat since
PB and JB areidentical in complexity, they sharethe same
cost. The results are as predicted in theory, and the only
surpriseisthat for atolerance of 0.05, RSB performed as
well as PB and JB.



(8) PureBisection- ¢ = 0.25 (b) PureBisection- € = 0.05

(c) Jittered Bisection - € = 0.25 (d) Jittered Bisection- ¢ = 0.05

(e) Random Cut - ¢ = 0.25 (f) Random Cut - € = 0.05

(9) Random Seed Bisection- ¢ = 0.25 (h) Random Seed Bisection- ¢ = 0.05

(i) HPD with 4 samples (j) HPD with 6 samples

Figure 5: Penumbral region comparison for a scene with at most 1 discontinuity.



In Figure 5(i) and 5(j), we show the results of apply-
ing an integration method of cost similar to RSB. Since
the integrand has an unknown discontinuity location, the
most suitable? type of numerical techniquetointegratein
the presence of thisdiscontinuity isone with ablue noise
signature such as the Hierarchical Poisson Disk (HPD)
[8] sampling strategy. We use such a strategy to calcu-
late the integra over the entire source, testing for occlu-
sion a each shading sample. Since we allowed roughly
4 occlusion tests for ¢ = 0.25 and 6 occlusion tests for
¢ = 0.05, wehave shown theresultsfor both 4 and 6 shad-
ing samplesusingHPD. Noticethat thiscomparisonisac-
tually biased in favour of HPD sinceit does not take into
considerationthe cost of cal culating theilluminationfrom
the additional shading samples (e.g., RSB withe¢ = 0.05
uses on average 5.47 visibility tests and 2 shading sam-
ples, whereas HPD uses 6 visibility tests and 6 shading
samples). Comparing Figure 5(g) to Figure 5(i) and Fig-
ure 5(h) to Figure5(j), we concludethat RSB outperforms
HPD.

Theresultsof thiscomparisonillustratetheimportance
of the method used to find the approximate location of a
discontinuity. Using the results of the discontinuity find-
ing methods, we can efficiently find good visual approxi-
mate solutionsto the penumbral integration problem.

5 Two Discontinuity Integration Algorithm

In this section, we present a Two Discontinuity Finding
(TDF) agorithm, which is an extension of the algorithm
of theprevioussection. TDF enablesusto efficiently han-
dle integrands with up to 2 discontinuities. Let us con-
sider the end points of a linear light source whose visi-
bility function V'(z) is known to have a most 2 discon-
tinuitiesover U. If V(0) # V/(1), then we only have 1
discontinuity and we can use RSB to find it. Otherwise,
V(0) = V(1) and the end points are either both visible,
or both occluded. We must decide if we have O or 2 dis-
continuities.

5.1 Scene Coherence and Visibility Changes

The heuristicswe have designed are motivated by the ob-
servation that the integrand will have 2 discontinuitiesiff
there existsa point m € (0,1) such that V(m) # V(0).
Let P bethe number of discontinuitiesdetected in thein-
tegrand for theprevious(i.e., adjacent) pixel, and let these
discontinuities be p; and p,, if they exist. We have de-
signed a heuristic for each value of P that either finds a
point m such that V' (m) # V/(0), or returns afailed sta-
tus. If m isfound, we use RSB to find a discontinuity in
[0,m] and in [m, 1], otherwise we conclude that thereis
no discontinuity. We now present the heuristics of TDF.

2Any strictly deterministic integration method with 6 or less points
will suffer from banding.

State P =0
Let v be a user-specified tolerance, and assume that the
visibility function for the source is defined over U/, and
let z_» = 0and z_; = 1. Choose a random value
zo € U and determine V(o). If V(z0) # V(0), then
let m = x¢ and return. Otherwise, at each subsequent
step ¢, we choose x; as the midpoint of the largest subin-
terval [z,, zp] suchthat a, b € [-2,i — 1] and thereis no
¢ € [-2,i— 1] suchthat z. € (x4, xs), Withties being
broken randomly. In other words, this algorithm chooses
the next point by examining the Voronoi diagram corre-
sponding to the points aready chosen and selecting the
midpoint of the largest VVoronoi region. For this reason,
we will refer to this algorithm as Voronoi Search (VS).
The iteration stops as soon as some V (z;) # V(0), in
which case welet m = x; and return. If we reach thetol-
erance v, thatis, if thelargest subinterva becomes smaller
than v, we stop and conclude that, probabilistically?, we
have 0 discontinuities, and return a failed status.

State P =1

Since the integrand for the previous pixel had 1 discon-
tinuity, then one end point of the source was visible, and
one was occluded. Since the endpoints are now both oc-
cluded or both visible, one of the end points has changed
visibility, say v;. Based on scene coherence, it is likely
that if a change of visibility still occurs in the integrand
(i.e., if we now have 2 discontinuities), it does so near
the previous discontinuity p;. Since p; was only known
within atolerance of ¢, we let m = ’% and compute
V(m). If V(m) # V(0), we return successfully. Other-
wise, we useV Stolook for achange of visibility between
p1 and v;.

State P = 2

Theintegrand for the previouspixel had 2 discontinuities.
Based on scene coherence, itislikey that if we still have2
discontinuitiesin theintegrand, the midpoint m = 2422
between p; and p» will besuchthat V' (m) # V' (0). Ifthis
isthe case, return successfully. Otherwise, we use VSto
look for achange of visibilityin U.

52 Results
Figure 6 depictsascene consisting of alinear light source
illuminating a matte floor. The source is located above
and behind the top right edge of the floor, and is partialy
obstructed by a cylinder. All visible pointsin this scene
generate linear light source integrands (for direct illumi-
nation) that have at most 2 discontinuities.

Cylindersof two different radii were chosen to test dif-
ferent degrees of difficulty in finding discontinuities. In
both cases, the light is of length 50 and is 21 units away

3Specifically, thereisnogap G C U of size [|G|| > v such that
V(X) # V(0),Vz € G.



(a) TDF (¢ = 0.05, v = 0.25); radius 2

(b) TDF (¢ = 0.05, v = 0.25); radius 0.4

(c) 7 point Gauss, radius 0.4

(d) 7 point HPD; radius 0.4

Figure 6: Penumbral region comparison for ascene with at most 2 discontinuities.

(at a45° angle) from the base of the cylinder. The cylin-
der in Figure 6(a) has aradius of 2, whereas the cylinder
in Figures 6(b), 6(c), and 6(d) has aradius of 0.4.

The first two images were generated using TDF and a
toleranceof ¢ = 5% inRSB, and of v = 25% inVS. TDF
required an average of 5.9 visibility tests in Figure 6(a),
and 5.6 visibility testsin Figure 6(b), to determine thelo-
cation of the discontinuities. The resulting segments were
then integrated using a 2 point Gauss quadrature. The
shadows are very smooth in both cases. The pixel adja-
cency heuristicsused instates P = 1 and P = 2 were
very successful at predicting the location of a discontinu-
ity without having to resort to VS: 100% in Figure 6(a)
and 98% in Figure 6(b).

Figure 6(c) was generated using a 7 point Gauss quad-
rature. Notice the aliasing appearing as shadow bandsin
the image. Figure 6(d) was generated using an approxi-
mation to HPD using 7 samples per integral, and a cylin-
der of radius0.4. HPD was the best representative among
the methodswhich do not takeinto considerationtheloca-
tion of discontinuities. The resulting image does not suf-

fer from aliasing but is very noisy.

The number of samples (7 for both Gauss and HPD)
was chosen to roughly match the average number of visi-
bility tests (5.6) required to compute Figure 6(c) plusthe
average number of shading calculations (2.5), such that
the algorithms had the same rendering time (less than 3
seconds). From Figure 6(b), 6(c) and 6(d), we can con-
cludethat the integrand di scontinuity finding method out-
performs both the Gauss quadrature and the HPD method.

In Figure 2 we showed an example of a moderately
complex scene modelled with polygons, cylinders and
spheres. It isilluminated by two linear light sources, with
only 5% of the resulting integrands having more than 2
discontinuities. In Figure 7 we show the result of ap-
plying TDF to this scene. On average, 5 visibility tests
were needed to locate the discontinuities on each light
source, for a total rendering time of 3.4 minutes. The
resulting shadows are very convincing in all the regions
where fewer than 3 discontinuities were present. Notice
the smoothness of the shadow in the difficult area near the
bottom of the wall, immediately to the right of the set of



Figure 7: Subway scene computed with TDF (¢ = 0.05, v = 0.25).

three seats. In this area, a small portion of each source
isvisible, even though the end pointsthemselves are oc-
cluded. In some parts of the image, the limitation of the
algorithmisevident in the form of speckling.

6 Discussion

One of the important characteristics of the Two Discon-
tinuity Finding (TDF) algorithm is the use of tolerances
to control the quality of the discontinuity approximations.
On one hand, thisgivesusers apowerful means of balanc-
ing the quality of the shadows with itscost. On the other
hand, given an integrand with at most two discontinuities,
the RSB tolerance ¢ and the VS tolerance v are reliable
predictors of the quality of the shadow. Given a pair of
discontinuitiesdue to a small occluder, the probability of
TDF missing the occluder isinversely proportional to the
fraction of the source that is being occluded. If a small
occluder isfound, RSB guarantees that its extent will be
determined correctly, within the tolerance of ¢. There-
forethedifference between asmall occluder being missed
or being found is bounded above by the actua contribu-
tion of the occluder, within RSB’stolerance e. Thisisan
important characteristic for low sampling densities, since

“accidentally findingasmall occluder” doesnot leadto an
overly dark shadow. Thisisin contrast to moretraditional
low density visibility testing where one sample “ acciden-
tally finding asmall occluder” leadsto overestimating the
importance of the shadow, as was evident in Figure 6(c).

To isolate the effectiveness of the algorithms, anti-
aliasing was not performed on any of theimagesincluded
in this paper. An interesting direction of research will be
to combine anti-aliasing techniques with our algorithms.
One possible application would be to compute the in-
tegrand discontinuity only once per pixel, thus amortiz-
ing the cost over al the anti-aliasing samples used for
each pixel. Thiswould allow the agorithmsto either use
smaller tolerances, or to speedup their performance.

A question that remains to be answered is how to use
the algorithms we have developed to handle integrands
with more than 2 discontinuities. Aswe saw in Figure 7,
the results are promising but problems do exist. For ex-
ample, the speckling near the middle-top is a result of
a source integrand with 3 discontinuities— one caused
by the recessed wall, the other two by the overhanging
handrail — incorrectly being handled. The algorithm cor-
rectly detects that one end point is occluded and onevisi-



ble, and uses RSB to find the discontinuity. The resulting
pixel isnoticeably toodark if the discontinuity foundison
the handrail instead of on the edge of the wall, since then
too much of the sourceisclassified asoccluded. To alevi-
ate thistype of problem, one could track variationsinirra-
dianceinasmall neighbourhood about each pixel and ren-
der more carefully (e.g., by subdividing the source) those
pixels whose variance exceeds a certain threshol d.

7 Conclusion

In this paper, we have presented a new approach to solv-
ing the penumbral problem for linear light sources. This
approach isbased on the observation that most integrands
are smooth in their domain of integration, except at a
small number of discontinuities. We have demonstrated
that in many cases, knowing the approximate location of
a discontinuity, in conjunction with using a low degree
quadrature method i s sufficient to provide quality penum-
bral shadows.

We introduced Random Seed Bisection (RSB), a hew
algorithm for computing the approximate location of the
discontinuity in a linear light source. This agorithm
converges nearly as quickly as the traditional bisection
method, but provides continuous expected values for the
approximate location of the discontinuity. Thisresultsin
smooth penumbra shadows when integrands with 1 dis-
continuity are present. RSB is also a general agorithm,
sinceit can be used with any type of object, provided that
an intersection routine can be written for that object.

Finally, we combined RSB with effective heuristics
based on scene coherence to devel op a Two Discontinuity
Finding (TDF) agorithm. TDF efficiently handles inte-
grands with at most 2 discontinuities. We presented con-
vincing resultsfor test cases of varying difficulty, and dis-
cussed theimportant characteristics of TDF. We a so pre-
sented some promising results for a complex scene con-
tai ning some integrands with more than 2 discontinuities.

In the future, we hope to further develop methods to
efficiently handle multiple discontinuitiesin linear light
source integrands. Two particularly interesting areas of
research are handling more than 2 discontinuities, and
combining these algorithms with anti-aliasing. Finaly,
we will continuethe investigation of the usage of approx-
imate knowledge of integrand discontinuitiesfor comput-
ing penumbral shadows due to area light sources, and to
investigate theimportance of similar agorithmsfor other
aspects of the rendering process.
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