
A Multiple-Scale Stochastic Modelling PrimitiveJos StamEugene FiumeDepartment of Computer ScienceUniversity of Toronto10 King's College RoadToronto, Canada, M5S 1A4AbstractStochastic modelling has been successfully used incomputer graphics to model a wide array of natural phe-nomena. In modelling three-dimensional fuzzy or par-tially translucent phenomena, however, many approachesare hampered by high memory and computation require-ments, and by a general lack of user control. We willpresent a general stochastic modelling primitive that op-erates on two or more scales of visual detail, and whicho�ers considerable 
exibility and control of the model.At the macroscopic level, the general shape of the modelis constrained by an ellipsoidal correlation function thatcontrols the interpolation of user-supplied data values.We use a technique called Kriging to perform this inter-polation. The microscopic level permits the addition ofnoise, which allows a user to add interesting visual tex-tural detail and translucency. A wide variety of noise-synthesis techniques can be employed in our model. Weshall describe the mathematical structure of our model,and give an attractive rendering implementation that canbe embedded in a traditional ray tracer rather than re-quiring a volume renderer. As an example, we shall applyour approach to the modelling of clouds.R�esum�eEn infographie, nombreux ph�enom�enes naturels ont�et�e simul�es de mani�ere convainquante par des mod�elesstochastiques. N�eanmoins, dans la cas de ph�enom�enestri-dimensionels partiellement translucides ou 
ous, laplupart de ces mod�eles sont tr�es friands en m�emoire eten temps machine, et n'o�rent qu'un contrôle limit�e dumod�ele �a l'utilisateur. Dans cet article nous pr�esenteronsun mod�ele stochastique g�en�eral op�erant sur deux ouplusieurs niveaux de d�etail visuel, qui est facilementcontrolable par l'utilisateur. Au niveau macroscopique,la forme g�en�erale du mod�ele est une interpolation dedonn�ees, sp�eci��ees par l'utilisateur, soumise �a une fonc-tion de corr�elation ellipsoidale. Nous utilisons une tech-nique appel�ee Krigage pour l'interpolation. Le niveaumicroscopique permet l'addition de bruit, permettant �al'utilisateur d'ajouter une texture visuelle int�eressanteet une transparence au mod�ele. A ce niveau, un grandnombre de techniques de synth�ese de bruit peuvent être

utilis�ees. Nous d�ecriverons la structure math�ematique denotre mod�ele et pr�esenterons une mise en oeuvre d'un al-gorithme de synth�ese d'images de notre mod�ele, qui peutêtre facilement incorpor�ee dans un logiciel standard: lelanc�e de rayons. Comme exemple d'utilisation, nous ap-pliquerons notre mod�ele �a la simulation de nuages.Keywords: stochastic modelling, simulation of clouds,scattered data interpolation, solid textures,fractals, ray tracing.1 IntroductionMany kinds of natural phenomena are resistant to directdeterministic physical or geometric modelling. A physicalmodel, assuming one exists, can be too costly to compute,while a geometric model can be too large to manipulatee�ciently. Hence it is appropriate to search for visualmodels instead. This means a model that simulates theperceived behaviour of the phenomenon.Our concern in this paper is the modelling of objectsthat have a discernible shape and have nonuniform den-sity or opacity. Among others, clouds, �re, and variousclasses of texture fall into this category. The model pre-sented in this paper is analytical, it has the advantagesof having low storage requirements, and it is easily incor-porated into standard rendering software (such as a raytracer). A user controls both the global shape and thesmall scale detail of the phenomenon by specifying a cor-relation structure. Interestingly, the model turns out tobe a generalization of Blinn's \blobbies" [4] and Gard-ner's textured ellipsoids [7]. As a case study, we shallapply our model to simulate clouds. Clouds are inter-esting because of the wide variety of shapes and visuale�ects they exhibit. The next section reviews the basicnotions and notations of stochastic modelling, and Sec-tion 3 reviews related work in computer graphics. Sec-tion 4 informally presents our model, the mathematicsof which is discussed in Sections 5 and 6. Rendering is-sues are discussed in Section 7, followed by some basicmodelling results in Section 8.2 Stochastic ModellingOne conceptually simple approach to modelling a naturalphenomenon is to specify it completely by a large set of
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primitives such as polygons or particles. This set can begenerated either by the user, which is somewhat imprac-tical, or by an algorithm. Reeves has successfully usedparticles to model �re and grass [18]. Rendering costmakes it di�cult to use particles for other phenomena.See, for example, the interesting but computationally-prohibitive approach taken by Kajiya and Von Herzen tomodel and render clouds [9].Another approach is to model a natural phenomenonas a function R(x; y; z). For example, in the case ofclouds the function could be the density at a given loca-tion of space, with a range of values between one, denot-ing total opacity, and zero, denoting total translucence.Many choices for R are possible, the most common be-ing smooth surfaces such as splines or blobbies [4]. Moregenerally R could be any mathematical function, but tocapture the irregularity of many natural phenomena, astochastic function is often employed [6].2.1 Random FieldsA multi-dimensional phenomenon can be modelled as arandom �eld R. At each location t 2 Rd, a random vari-able R(t) is characterized by a probability distribution:Ft(r) = Prob(R(t) � r): (1)In practice, this distribution is unknown or nonexis-tent. Another way to characterize a random processis to specify its statistics. The two best-known statis-tics are the mean �(t) = E[R(t)], and the variance�2(t) = E[R(t)2]� �(t)2, whereE[g(R(t))] = ZR g(r) dFt(r): (2)In the simplest case, these two values are independent oft, giving rise to a homogeneous random �eld.For example, we can model terrain as a random height�eld h(x; y). A three-dimensional example would be thedensity map described earlier for clouds. A dynamic phe-nomenon such as cloud formation can be modelled by afour-dimensional random �eld d(x; y; z; t). The functionR can itself be of higher dimension. For example, if thefunction R models wind velocities then the random �eldR itself is three-dimensional.2.2 Correlation MeasuresThe values of a random �eld are independent randomvariables if the value of one is una�ected by the value ofthe other. The white noise produced by such a �eld is un-structured, and on its own is not a useful model. A richerstructure can be imposed by a correlation measure of therandom �eld. Intuitively, a correlation measure de�neshow the values of the random �eld R at two given posi-tions t and s are related. The most \natural" measureis the variogram, which is the mean-square di�erence ofthe random �eld at locations t and s:
(t; s) = 12E[(R(t) �R(s))2]: (3)Another correlation measure is the covariance:C(t; s) = E[R(t)R(s)] � �(t)�(s): (4)

Positive values of the covariance function indicate thatthe values of the random �eld at the two positions tendto be close. Conversely, negative values of the covari-ance indicate a probable large di�erence between the twovalues. The normalized version of the covariance is thecorrelation function:�(t; s) = C(t; s)�(t)�(s) : (5)The variogram and the covariance are second-order statis-tics. We shall assume as others have that the second-order statistics are su�cient to characterize the visualcharacteristics of the phenomenon [8], [11]. If the phe-nomenon is purely Gaussian (i.e., Ft is a Gaussian dis-tribution), the second-order statistics exactly specify thedistribution.An isotropic random �eld is one in which the correla-tion measure only depends on the distance between thetwo points t and s. The covariance of an isotropic ran-dom �eld, for example, conveniently becomes a functionof a single variable � :C(t; s) = C(kt� sk) = C(�): (6)In other words, for a given t, the covariance is constantfor all s lying on a sphere with centre t and given ra-dius. The variogram and the correlation function of anisotropic random �eld are similarly univariate. In thiscase, the variogram can be obtained from the covarianceby the following relation:
(�) = �2 + �2 �C(�); (7)if C exists. The existence of the variogram does not guar-antee that the covariance is well de�ned. A well-knowncounter-example is Brownian motion [22], a random pro-cess with unde�ned covariance, but with a variogram di-rectly proportional to � .Isotropy is often a convenient property for reasons ofcomputation and modelling. However, most natural phe-nomema have correlations with preferred directions. Forexample, the ripples on the surface of the sea are in
u-enced by wind direction. Rather than immediately jumpto nonisotropic random �elds, however, we can general-ize spherical correlations to ellipsoidal correlations [22].For isotropic random �elds, all points lying on the samesphere centred at a point t have the same correlationwith t. We can instead insist that all points lying on anellipsoid about the point t have the same correlation. Anellipsoid is simply a scaling in the coordinate system ofthe random �eld. The covariance (or variogram) is nowof the form: C(s; t) = C((s� t)Q(s� t)t) (8)whereQ is a d�d positive-de�nite and symmetric matrix,d being the dimension of the �eld. Setting Q to theidentity matrix brings us back to a standard isotropiccorrelation. All the properties of the isotropic case arepreserved in this more general setting.Rather than specifying the matrix Q directly, we couldinstead specify the major axes and the eccentricity �i ofthe ellipsoid along each of these axes. From these valuesQ can be calculated automatically. We form a diagonal
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matrix D with respect to the coordinate system de�nedby these axes, with elements �i given by:�i = 1�2i : (9)If P is the transformation matrix from the canonical co-ordinate system to the system given by the major axesof the ellipsoid, then Q = PDPt: (10)All covariance functions must possess the positive de�-niteness property, namely that for all points t1; t2; . . . ; tnand coe�cients �1; �2; . . . ; �n we have the following in-equality: nXi;j=1 �i�jC(ti; tj) � 0: (11)The inequality holds similarly for the correlation func-tion. For isotropic random �elds stronger conditions exist[22] [11].2.3 Spectral RepresentationAnother way to characterize a random �eld is to analyseits frequency response using a Fourier transform. LetR(!!!) be the Fourier transform of the random �eld R(t).As in [23] we de�ne the spectral density function S(!!!) as:limT!1 ST (!!!) = limT!1 1T jR(!!!)j2: (12)The Wiener-Khintchine theorem [22] states that for ahomogeneous random �eld, the spectral density func-tion and the covariance form a Fourier transform pair.Thus in theory these two functions have exactly the samemodelling power. Since the Fourier transform preservesisotropy, the spectral density function of an isotropic ran-dom �eld is also isotropic. One simple way to generatea random �eld is to convolve a canonical random �eldsuch as white noise W (t) with a deterministic �lter ker-nel H(t): R(t) = Z H(s� t)W (s) ds: (13)In frequency domain, this reduces to multiplication:R(!!!) = H(!!!)W(!!!): (14)If SW (!!!) is the spectral density of the random �eldW (t),then the spectral density of the transformed random �eldR(t) is [22]: SR(!!!) = jH(!!!)j2SW (!!!): (15)In the case of white noise, which has constant spectraldensity, the above equation gives us a direct way to con-struct H(!!!) from the desired spectral density function.2.4 Nondeterministic fractalsFractals can describe highly irregular phenomena, andthey exhibit detail at all scales [13]. Some fractals are de-terministically self similar. Exact self similarity is nonex-istent in nature, but we can require that the random �eldmodelling a phenomenon has second-order statistics that

are self similar. The nondeterministic fractal fractionalBrownian motion (fBm) has the statistical self-similarityproperty, and is characterized by the following variogram:
(�) / �2H ; (16)where H = d + 1 � D is directly related to the frac-tal dimension D. H = 12 gives Brownian motion. Forany value of H, the random �eld has an in�nite varianceand hence the covariance is unde�ned. Because fBm isnon-homogeneous, the Wiener-Khintchine theorem is in-applicable. The spectral density function for fBm can bederived heuristically, however, and is in fact [23]:S(!!!) / k!!!k�� (17)where � = 2H + 1. The spectral distribution is non-zerofor all frequencies. This implies that fBm has detail atall scales. The statistical self similarity (or self a�nity,[23]) is given by the relation
(a�) / a2H
(�); (18)where a � 0 is any scaling factor.3 Previous WorkThere have been many successful approaches to the mod-elling of natural phenomena using stochastic techniques.The main di�culties with most of these approaches for3-D objects are high costs for storage and computationand a lack of control over the global shape of the phe-nomenon.Spectral Models. Voss [23] was the �rst to sug-gest spectral models to generate random �elds to sim-ulate visual phenomena. By exploiting Eqs. 14,15,17,a frequency-domain characterization, R(!!!), of the phe-nomenon is created by �ltering white noise. The ran-dom �eld R(t) is just the inverse Fourier transform. Themethod is reasonably e�cient for 2-D synthesis if the FastFourier Transform (FFT) is used. For 3-D phenomena,this technique su�ers from the above problems. Particu-larly evident is the lack of control over the global shapeof the phenomenon, which is an unpredictable trial-and-error process. Anjyo has recently generalized Voss work[1].Stochastic Displacement. Fournier, Fussell andCarpenter introduced in [6] the most popular fractalbased model: random midpoint displacement. Themodel is e�cient and global shape can be controlled byspecifying the value of the phenomenon at certain givenpoints. Hence they call their algorithm stochastic inter-polation. The algorithm recursively adds detail (higherfrequencies), with new values being linearly interpolatedfrom the old ones and then perturbed by Gaussian noisehaving zero mean and a variance satisfying Eq. 16. Alot of e�ort has been put into raytracing these models[5]. Again this method is memory-intensive and is henceunsuited for three-dimensional phenomena.Constrained Fractals. Szeliski and Terzopoulos re-cently presented a new model to generate fractals [21].The main advantage of their model is the possibility ofcontrolling the global shape of the phenomenon. Themodel has two components, one smooth component,
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which is a spline approximating the data constraints pro-vided by the user, and a stochastic component giving thefractal statistics. Interestingly, this model thus combinestwo popular modelling techniques in computer graphicsinto one. The model is generated by solving a variationalproblem. The quantity to be minimized is the \splineenergy" and the \data constraint" energy. It turns outthat the frequency response of the spline energy has afractal spectrum (see Equation 17). As with the othertechniques, it does not gracefully extend to 3-D phenom-ena.Generalized Stochastic Subdivision. Lewis in [11]generalized the midpoint displacement algorithm to non-fractal random �elds. He was the �rst to suggest theuse of the correlation function as a modelling tool incomputer graphics. His model is also procedural, requir-ing the solution of a linear system for the generation ofeach new value, as it is estimated from the previously-generated values. The technique he uses (Wiener inter-polation) is similar to the estimation scheme describedlater in this paper. However, estimation in our modelis used for a di�erent purpose, namely to estimate theglobal shape. His model has the same drawbacks as themidpoint displacement algorithm, although it is not re-stricted to fractals.Textured Ellipsoids. An algorithm similar in spiritto the one presented in this paper is presented by Gardner[7]. His model works essentially for density maps, whichincludes clouds and trees. Gardner uses the ellipsoid asthe basic building block of his model. The user speci-�es the global shape of the phenomenon by arranging aset of ellipsoids. Small-scale detail is then added by us-ing a (solid) texture. Gardner uses an analytical randomfunction texture. Rendering is very simple: the translu-cence threshold is modi�ed as a function of the projectedequation of the ellipsoid onto the viewing plane. Thisthreshold is high near the border of the ellipsoid and lownear the centre of the ellipsoid.Hypertexture. In the SIGGRAPH 89 proceedingswe can �nd two 3-D modelling techniques that are similarin spirit [10] [17]. In both techniques the global shape ofa phenomenon is de�ned using standard graphics prim-itives. Small-scale detail is then added by mapping a\thick" texture onto the global shape. Rendering is ac-complished by rather expensive volume-rendering tech-niques. Both approaches give impressive results.4 Overview of the ModelWe will now present a new model for simulating visuallya certain class of natural phenomena. As stated in theintroduction we want an analytical model that permits astrong degree of control over the global shape, and overthe small-scale random perturbation of the object. Theperturbation is given by a random function, which is usedas a solid texture [15] [16], although a variety of noise-synthesis techniques can be employed.Our approach distinguishes between large scale andsmall scale visual detail. In our model, the user speci�es:the value of the phenomenon at some arbitrary locationsof space, and a correlation function describing how thevalues at these points are related. The global shape is

smoothly interpolated from this data using linear esti-mation.Small scale detail, which is produced by an analyticrandom function, makes the phenomenon \look real".Without it the object can appear too smooth and arti�-cial. The user has control over this small scale by spec-ifying the correlation function of the random �eld. Wewill describe below the classes of random functions suit-able for generating small-scale detail. The advantages ofchoosing analytical random functions over random databases (such as those generated by FFT based methods)are manifold: storage requirements do not increase ex-ponentially with the dimension of the random �eld, andeach value of the random �eld can be computed inde-pendently, hence the algorithm can be parallelized in astraightforward manner.The model at both levels of scale uses a correlationmeasure. Unlike fractals, the correlation measures neednot be the same. The model can also be strati�ed intomore discrete levels of scale or generalized to continuousscale space.5 Smooth EstimationA user constrains the global shape by providing n pairs ofdata (ti; di), where ti is the location of the value di. Theobvious way to get the global shape is by smooth inter-polation. In smooth interpolation we look for a smoothfunction L(t) such thatL(ti) = di (19)for i = 1 . . .n. Furthermore we require that the functionis \well behaved" away from the data locations, whichprecludes the use of Lagrange interpolation. A betterchoice would be thin-plate interpolation [21]. A moregeneral solution is obtained if we view the interpolationproblem as an estimation problem. In estimation the-ory, we wish to estimate the value of a random �eld ata certain location, given the knowledge of its values at aset of locations and its second order statistics. A popu-lar estimation method �rst developed in geostatistics iscalled Kriging [8]. Kriging is a minimum variance, unbi-ased, linear estimation method which solves the followingproblem: given a random �eld R(t) with known correla-tion C(�) and a set of known valuesd1 = R(t1); d2 = R(t2); . . . ; dn = R(tn) (20)�nd a linear estimatorL(t) = nXi=1 �idi (21)such that E[(L(t) � R(t))2] is a minimum over all such(linear) estimators. To ensure uniqueness, we also requirethat the estimator be unbiased:E[L(t)] = E[R(t)] = �: (22)This condition implicitly assumes that the random�eld is homogeneous. Later some extensions for non-homogeneous random �elds will be mentioned. Theabove problem is a classical variational problem and canbe solved by introducing a \Lagrange Multiplier" �. The
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result is a linear system for the coe�cients �i and themultiplier �: ���M = b(t) (23)where ��� = (�1; . . . ; �n; �). The matrix M only dependson the covariance of the random �eld and on the locationof the data points. More precisely, it is0BBB@ C(0) C12 � � � C1n 1C21 C(0) � � � C2n 1... ... . . . ... ...Cn1 Cn2 � � � C(0) 11 1 � � � 1 0 1CCCA ; (24)where Cij stands for C(kti� tjk). The righthand side ofEq. 23 is a vector depending on the data locations and tonly: b(t) = (C(kt� t1k); . . . ; C(kt� tnk); 1): (25)Because M is positive-de�nite and symmetric (cf. Eq.11), not only does Eq. 23 always have a solution, thereare stable methods to compute it.It may appear that the method is ine�cient, becausewe have to solve a linear system for each location t. How-ever, using the symmetry of M and some linear algebra,we can prove that L(t) = b(t)yt; (26)where y is the solution of the linear systemyM = d (27)with d = (d1; . . . ; dn; 0). As M and d do not dependon t, this system only has to be solved at most once perframe. Therefore our estimator is:L(t) = nXi=1 yiC(kt� tik): (28)If we consider a Gaussian covariance function C(�) =exp(���2) then L is a \blobby" [4].In the case that the covariance is unde�ned, it is stillpossible to derive the above equations in terms of thevariogram. In practice, however, we de�ne a pseudo-covariance [8]: C 0(�) = A� 
(�); (29)and then apply the above equations to the pseudo-covariance instead of to the covariance. If the covarianceexists, then A is actually equal to �2 + �2 in accordancewith Eq. 7. The quantity A is the asymptotic value ofthe variogram as � tends to in�nity. This assumes thatthe correlation structure is inherently local. For the frac-tal models this is not true in theory, but in practice itworks as an approximation.The non-bias condition of Eq. 22 assumes that therandom �eld has the same mean for all locations t. Ifthe mean does depend on t, i.e. � = �(t), we introducea homogeneous random �eld, called the residual,S(t) = R(t) � �(t): (30)It is now possible to apply the above Kriging procedure tothe residual. However, the mean �(t) may not be known

at all. In this case, it is often assumed [8] that the meanhas a simple form �(t) = kXi=1 aifi(t) (31)where the coe�cients ai become additional unknowns ofthe Kriging equations and the fi are a set of \basis func-tions". Usually the functions fi are polynomials of asmall degree.6 Random FunctionsWe shall model the small-scale features with a simple ran-dom function. As with the large-scale level, this functionis characterized by its second-order statistics. By a sim-ple function we mean one that is given by a small numberof coe�cients and that can be evaluated at a point withno dependence on previous computations. We will nowdiscuss two possibilities.6.1 Spectral SumsBy Fourier analysis, we know that each random �eld canbe approximated by a sum of spectral components. Thisis the basic idea behind the di�erent \spectral sum" ran-dom functions. In [16] Perlin introduced a noise functionN(t). This function smoothly interpolates an integer lat-tice of independent Gaussian random variables. It is thusclearly bandlimited. Perlin uses this function as a ba-sis for building more complicated random functions. Bysumming scaled versions of this function he is able togenerate a fractal \1=f -noise":Xi �12�iN(2it): (32)This corresponds to a fBm with spectral parameter � =3, as shown in [19]. Mandelbrot in [13] gave an analyticalrandom function, which is a modi�cation of Weierstrassfamous \nowhere di�erentiable but continuous" function:W (t) = NXk=�N AkrkH (�r�kt+ �k) (33)where the Ak are Gaussian random variables,  is anyperiodic function of period �, the �k are uniformly dis-tributed random variables over the interval [0,�], H isthe fractal codimension and r is the lacunarity factor.A thorough study of this function can be found in [3].Several extensions to higher dimensions have been stud-ied. Ausloos and Berman in [2] consider the followingextension: 
(t) = MXj=1 !jWj(nj � t) (34)Where the !j are uniformly distributed randomvariables, the Wj are one-dimensional Weierstrass-Mandelbrot functions and the nj are unit vectors uni-formly distributed over the unit sphere. The constantsN and M are a tradeo� between image quality and e�-ciency. If M is too small, then directional artifacts be-come visible [20]. The Weierstrass-Mandelbrot function
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is interesting if we are interested in fractal random func-tions. All the above functions have a random component,unlike for example, Gardner in [7], who used a determin-istic spectral sum. The apparent randomness is achievedby coupling the phases of the sinusoidal functions in theseveral coordinates.6.2 Sparse ConvolutionIn [12] Lewis thoroughly reviewed most random func-tions and introduces a new random function to computergraphics: P (t) =Xi aih(t� ti): (35)This corresponds to a discrete version of a convolution,with kernel h, of a Poisson noise process. A Poissonnoise process is an ensemble of uncorrelated values ai,distributed at uncorrelated locations in space ti. Thekernel entirely speci�es the second-order statistics of therandom function (see Eq. 15). The quality of the randomfunction can be controlled by changing the density of thePoisson noise process.7 Rendering of the Model7.1 The Rendering AlgorithmWhile it is possible to render the above model usingvolume-rendering techniques, we prefer to use renderingtechniques that exploit the geometry of the model and ifnecessary, develop special-purpose renderers to deal withcommon subcases of the model. A particularly desirablegoal would be to develop techniques that can be incor-porated into a standard scanline or ray-tracing renderer.Let us assume that the phenomenon to be rendered is acloud. We will brie
y outline the algorithm for a ray-tracing environment.For each ray do(1) Calculate intersection points of ray withthe isosurface of the global shape(2) If no intersection then next ray(3) Calculate brightness and self-shadowing atthe intersection point using the geometry ofthe global shape(4) Perturb brightness and calculatetranslucency using the small-scale noisefunction(5) If translucence < 1 then continue to tracethe rayNext rayWe will discuss step (1) in more detail in Section 7.2and will present a simple algorithm for steps (3) and (4)based on Gardner's work [7] in Section 7.3.7.2 Ray Tracing Generalized BlobbiesWhile it is possible to generalize the heuristic techniquesused by Blinn [4] to ellipsoidal correlations, we prefer touse a more robust approach based on interval arithmetic,which was introduced to computer graphics by Mitchell[14]. Recall that our global model has the following form:L(t)� T = nXi=1 yiC((t� ti)Qi(t� ti)t) � T; (36)

where T is a given threshold (de�ning the blobby as anisosurface), and the Qi are as in Eq. 8, which gives anellipsoidal shape to the correlation measure. When cal-culating the intersection of a ray and the blobby, we �rsttransform the ray to its canonical form R(t) = (0; 0; t),and then substitute R(t) into L(t) to get the equation'(t) = nXi=1 yiC(ci + bi(t� zi) + ai(t� zi)2) = T (37)where ai, bi and ci are given by the coe�cients of Qiand the components of ti. We isolate all the roots of 'in intervals using interval arithmetic. Once we have aninterval [a; b], which is guaranteed to contain only oneroot, we can apply a standard root �nder such as theNewton iteration. For more details see [20].7.3 The Illumination ModelFrom the global shape we get an intersection point P ,the normal N to the surface and the distance d traversedthrough the cloud by the ray. First we calculate theclassical illumination Iclassic given by any illuminationmodel incorporating the ambient, di�use and specularterm. Iclassic accounts for semi-global illumination ef-fects such as self-shadowing. We then texture the globalshape by some random function R: t = R(P ), and com-pare this texture value t to a threshold T which is afunction of the distance d and the cosine of the angle� between the viewing vector and the normal N . Wede�ne a threshold T1 at the \edge" of the cloud (typi-cally very high) and a threshold T2 at the \centre" of thecloud (typically very low). The threshold is varied in ourcurrent implementation asT = T1 + (T2 � T1) exp(��d�2) (38)where � is a user speci�ed parameter which in
uencesthe \fuzziness" of the cloud's \edge". The �nal texturevalue is set to t0 = max(0; �(t; T )) (39)where � is a normalization function which is currently�(t; T ) = (t� T )=(1� T ): (40)If Iback is the illumination coming from behind the cloudthen the �nal illumination is given by:I = t0Iclassic + (1� t0) exp(��d�2)Iback: (41)8 ResultsAs a test case, we have applied our model to clouds.Figures 1 and 2 depict sample data given by reddishspheres, with saturation of red denoting proximity to theviewer. These �gures illustrate the global shape underan isotropic (spherical) correlation function with di�er-ent parameters. Figures 3 and 4 depict the addition ofvarious amounts of noise to the shape from Figure 3. Fig-ure 5 gives a global shape resulting from the same dataas in previous �gures but using an ellipsoidal correlationfunction. Lastly, Figure 6 gives a resulting cloud afteradding noise. Rendering costs are not high: on the orderof 15-20 minutes for a 256�256 images on a SGI PersonalIris 25.
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9 Future WorkWe have introduced a new multiple-scale stochastic mod-elling primitive and have described a low-cost, low-storage rendering technique that can be embedded in astandard ray tracer. The directions to go from here arevaried. The model permits great 
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