
Constraint-based Automatic Placement for Scene Composition

Ken Xu
University of Toronto

James Stewart
Queens University

Eugene Fiume
University of Toronto

Abstract
The layout of large scenes can be a time–consuming and
tedious task. In most current systems, the user must posi-
tion each of the objects by hand, one at a time. This paper
presents a constraint–based automatic placement system,
which allows the user to quickly and easily lay out com-
plex scenes.

The system uses a combination of automatically–
generated placement constraints, pseudo–physics, and a
semantic database to guide the automatic placement of
objects. Existing scenes can quickly be rearranged sim-
ply by reweighting the placement preferences. We show
that the system enables a user to lay out a complex scene
of 300 objects in less than 10 minutes.

1 Introduction

Object layout is an important and often time consum-
ing part of modeling. It takes six degrees of freedom
to fully lay out an object, while standard input devices
have only two degrees of freedom (DOF). In addition,
the layout must satisfy physical constraints such as non-
interpenetration and physical stability. As a result of the
high cost of object layout, computer graphics scenes are
often unrealistically simple or overly tidy.

Previous efforts to facilitate object placment have re-
sulted in better input devices and more efficient object
manipulation techniques, which allow individual objects
to be placed more quickly and accurately. However, the
layout of large, complex scenes remains a difficult prob-
lem because users must still manually place objects into
the scene one at a time.

In this paper we present CAPS, a Constraint-based Au-
tomatic Placement System. CAPS makes feasible the
modeling of large, complex scenes: A scene consisting of
more than 300 objects can be laid out in less than 10 min-
utes, as shown in Figure 1. The system uses a set of intu-
itive placement constraints to allow the manipulation of
large numbers of objects simultaneously. Through the use
of pseudo–physics, objects can automatically be placed
in physically stable configurations, once their placement
constraints have been set. A user need not be concerned
with the details of placement, unless he or she wishes
to. In addition, CAPS attaches semantic information to
objects, which allows placement constraints to be gen-

erated automatically. As a result, CAPS can place hun-
dreds of objects into a scene and can quickly redistribute
them into semantically meaningful locations with abso-
lutely no user intervention.

2 Related Work

A number of researchers have addressed the issue of ob-
ject placement in 3D environments. These techniques can
be broadly categorized into four groups:

1. techniques which attempt to reduce the number of
DOF to which users are exposed;

2. techniques which abandon low DOF input devices
altogether in favor of more complicated devices —
some with as many as six DOF — in order to facili-
tate direct object manipulation;

3. techniques which employ pseudo–physics to auto-
matically compute a physically stable position and
orientation for an object, after having dropped it
from some spot in the scene; and

4. techniques which use semantic information to guide
object placement.

The vast majority of existing approaches have treated
object placement as a purely geometric problem. How-
ever, more recent approaches have begun to utilize se-
mantic information in the layout process.

2.1 DOF Reduction Techniques
Some DOF–reduction methods attempt to compensate for
the two DOF of common input devices by mapping 2D
input vectors to higher dimensional vectors [20, 32]. Oth-
ers ease object placement with “snap to” constraints, such
as snapping to grids, object faces, or auxiliary helper ge-
ometry [1]. A final group of methods makes the assump-
tion that surfaces are planar, and tends to restrict object
motion along those surfaces, thereby reducing the DOF
to which users are exposed [11, 6, 27].

2.2 Input Devices and Manipulation Techniques
The limited DOF available on standard input devices has
motivated much research on higher DOF input devices.
Such devices include the Space Ball (a six DOF joy-
stick), the bat (a six DOF mouse) [34], the Roller Mouse



(a three DOF mouse) [32], and the Data Glove (a six
DOF device which can encode the position of each of
the user’s fingers) [36]. These devices are often used
in conjunction with other specialized hardware, such as
head mounted displays, to completely immerse the user
in a virtual environment. A number of existing VR sys-
tems [15, 14, 33, 7, 18, 22] make use of these specialized
input devices.

The new six DOF devices allow users to reach out a
hand, grab an object, and manipulate it as one would in
the real world [25]. This direct mapping metaphor has
some problems. First, the physical arm is confined to a
small space around the user, so many objects cannot be
directly reached and the user must travel to the location
of the object before being able to handle it. Second, ma-
nipulation of large objects is difficult, not because they
are heavy, but because they obscure the user’s view dur-
ing the placement task.

Techniques which overcome these problems include
World In Miniature [29], Automatic Scaling [19], Go-
Go [24], and ray casting techniques [18, 9, 22]. Bow-
man [4] and Poupyrev [23] provide very nice categoriza-
tions of existing techniques.

Other research using specialized hardware includes
object manipulation techniques in Augmented Reality,
where virtual and real objects appear together in a scene.
As an example, Kitamura [12] discussed ways of us-
ing haptic feedback to make object manipulation feel the
same as in the real world.

2.3 Pseudo–Physical Techniques

The use of pseudo–physics can help to automatically
place objects in physically stable positions, without in-
curring the computational cost of a full physical simula-
tion. In systems which use pseudo–physics, users need
not be concerned about the details of placement; they
need only to drag the object into an approximate loca-
tion, drop it, and let the pseudo–physics do the rest. There
are many implementations of pseudo–physics, including
those of Shinya and Forgue [26], Snyder [28], Breen [5],
and Milenkovic [16, 17].

2.4 Semantic Techniques

The vast majority of layout systems consider only geom-
etry. A few layout systems also exploit semantic infor-
mation about the objects that they manipulate, including
Houde’s system [11] and the MIVE system [27]. Houde
attaches to objects “narrative handles,” which are posi-
tioned and shaped to indicate their manipulation capa-
bility. MIVE attaches semantic information to objects
in the form of labels, “binding areas,” and “offer areas.”
If the labels of two objects are compatible, objects are
placed together by connecting binding areas to offer ar-

eas. The binding and offer areas are specified manually
by the user. To assist in scene manipulation, grouping of
objects is automatically performed [30].

Semantic information in the form ofconstraintshas
long been used in editing complex objects. Examples in-
clude Sutherland’s original Sketchpad system [31], Born-
ing’s ThingLab system [2], and the Cassowary constraint
solver [3].

Recently, Coyne and Sproat [8] demonstrated the
power of semantic information in assisting scene com-
position. Their WordsEye system uses a text description
to gather semantic information about the scene. From
a pre–existing database, three dimensional (3D) objects
are matched to the objects described in the text, and are
placed in locations consistent with the text description.
WordsEye allows prototype scenes to be quickly gener-
ated, based on a few lines of text.

2.5 Issues to Address
The various techniques described above have signifi-
cantly improved user manipulation of individual objects.
Nearly all of these techniques eliminate the need for mul-
tiple projected views. Certain techniques, such as that of
Bier [1] and Smithet al.[27], can make very accurate ob-
ject placements. Six DOF input devices have the advan-
tage that manipulation feels more natural, and pseudo–
physical techniques eliminate the need for users to be
concerned about the details of placement. Finally, the
Wordseye system demonstrates that layout can be made
trivial if the system in question considers thesemantic in-
formationassociated with the objects that it manipulates.

Despite these advances, however, weaknesses still ex-
ist. Techniques such as those by Nielson [20] and Veno-
lia [32] suffer from lack of control, and it may be quite
troublesome to define the alignment manifolds as sug-
gested by Bier [1]. Six DOF manipulation techniques
have the disadvantages that the specialized hardware is
expensive, is not universally accessible, and can cause
noticeable physical fatigue.

While the Wordeye system demonstrated the power of
semantic information for object layout, it may not be ap-
propriate as a general layout tool because of the inherent
ambiguity of natural language: The system could easily
misinterpret the intent of the user. Many systems (with
the exception of pseudo–physical techniques, of course)
have no sense of the physical constraints that govern ob-
ject placement, while others have only limited pseudo–
physical support, and assume that objects are to be placed
in an upright position only.

Most importantly, nearly all of the techniques exam-
ined here manipulateonly one object at a time. A realis-
tic scene having hundreds or thousands of objects cannot
be efficiently laid out one object at a time.



Figure 1: A scene of 300 objects which was laid out in less than 10 minutes with CAPS.

3 Constraint–based Automatic Placement

CAPS, which is the subject of this paper, allows users
to create and manipulate large scenes quickly and easily.
CAPS can lay out large numbers of objects simultane-
ously. It has a rich pseudo–physics which allows objects
to be placed in arbitrary, stable configurations. It exploits
semantic information to aid in the placement. It permits
objects to be placed randomly (within the limits of their
placement constraints and pseudo–physical constraints),
which results in scenes that exhibit a high degree of visual
richness and realism.

In the sections that follow, each of pseudo–physics,
placement constraints, and semantics will be discussed
in turn.

3.1 Pseudo–physics
CAPS uses the pseudo–physics engine of Shinya and
Forgue [26], which provides several features: non–
interpenetration of objects, object stability (using a sup-
port polygon), and a limited form of friction. Using this
model, objects that are dropped from above a surface will
come to rest in a physically realistic position on the sur-
face. Figure 2 shows a scene created using the pseudo–
physics engine in CAPS.

3.2 Placement Constraints
CAPS uses constraints to facilitate the placement of ob-
jects. A set of constraints is associated with each object

to define where the object may or may not be placed. The
constraints can be as precise or as vague as the user re-
quires.

3.2.1 Constraints
A surface constraint indicates how the object is to be
placed on the surface of another. The constraint is spec-
fied by

• The supporting surface.

• A boolean flag indicating whether the placement is
to be exact.

• If placement is exact, the exact placement location
on the surface; otherwise, one or morecontainer
polygonsand zero or moreforbidden polygonson
the surface.

If placement is exact, the object must be placed at the
exact location specified. Otherwise, the object must be
placed inside one of the containing polygons and outside
all of the forbidden polygons.

A proximity constraint indicates how close the ob-
ject should be placed to relative to another object, and
is specified by aproximity polygon. The NEAR con-
straint causes placement within the polygon; the AWAY

constraint causes placement outside the polygon.



Figure 2: Pseudo–physics in CAPS automatically ensures the stability and non–interpenetration of objects.

A support constraint indicates whether the object can
support others and whether it can be supported by oth-
ers. The CANSUPPORTboolean flag is true if and only if
the object can have others on top of it. The CANBESUP-
PORTEDboolean flag is true if and only if the object can
be on top of others.

3.2.2 Spatial Planning with Constraints
Given the constraints on an object’s placement, two di-
mensional spatial planning [10] is used to find the set of
allowable placements: LetS, F , andO be point sets rep-
resenting, respectively, a surface, forbidden areas on that
suface, and an object. LetOt be the translation ofO from
its default position by the vectort. Then the problem is to
find at such thatOt is entirely inside ofS (i.e. Ot ⊆ S)
and entirely outside ofF (i.e.Ot ∩ F = ∅).

To use 2D spatial planning for the 3D objects in a
scene, we use thefootprint of each object: The footprint
is the convex hull of the projection of the object directly
downward onto the ground plane. Only the footprints are
used to plan where an object is to be placed (an extension
to 3D spatial planning is discussed in section 5). The
constraints are implemented as follows:

• Surface constraints:LetS be the union of the con-
tainer polygons,F be the union of the forbidden
polygons, andO be the object.

• Proximity constraints: For a proximity polygonP ,
the NEAR constraint causesS to be restricted toP
(i.e. S ← S ∩P ) and the AWAY constraint causesP
to be used as a forbidden polygon (i.e.F ← F ∪P ).

• Support constraints: If an object’s CANSUPPORT

flag is false, that object’s footprint is viewed as a for-
bidden polygon when placing any other object. If an
object’s CANBESUPPORTEDflag is false, the foot-
prints of all other objects are treated as forbidden
polygons when placing that object.

All constraints are thus reduced to an instance of the spa-
tial planning problem.

3.2.3 Solving the Spatial Planning Problem
The spatial planning problem has classically been solved
using the theory of Minkowski sums and differences. The
Minkowski sum of two point setsA andB is defined as

A⊕B =
⋃
b∈B

Ab,

whereAb isA translated byb. The Minkowski difference
of two point setsA andB is defined as

A	B =
⋂
b∈B

A−b.

Given two point sets,A andB, it has been shown [13]
that Minkowski sums can be used to compute the set
of forbidden translationsTf such thatBt

⋂
A 6= ∅ for

t ∈ Tf . It has also been shown [10] that Minkowski dif-
ferences can be used to compute set ofpermitted transla-
tionsTp such thatBt ⊆ A for t ∈ Tp.

The spatial planning problem can thus be solved using
Minkowski sums and differences. Given point setsS, F ,
andO (as defined in the preceding section), we can find



the set of safe translations ofO as follows: First, compute
the set of permitted translationsTp such thatOt ⊆ S for
t ∈ Tp. Second, compute the set of forbidden translations
Tf such thatOt

⋂
F 6= ∅ for t ∈ Tf . Then the set of safe

translations isTp − Tf .
It is not feasible to compute Minkowski sums and dif-

ferences for arbitrary point sets. However, algorithms do
exist to compute the Minkowski sum and difference for
simple polygons. Even so, the general algorithm for sim-
ple polygons is slow and complicated to implement. For-
tunately, algorithms for Minkowski sums and differences
are simpler and faster for a number of special cases. In
CAPS, we take advantage of these special cases, and re-
strict all forbidden polygons to be convex, and all con-
tainer polygons to be simple. Thus, we need to compute
the Minkowski sum for only the convex-convex case, and
the Minkowski difference for the simple-convex case, us-
ing techniques by O’Rourke [21] and Ghosh [10] respec-
tively.

3.3 Semantics–based Constraints
In a realistic scene, object layout is governed not only
by physical constraints, but also by semantic ones includ-
ing function, fragility, and interactions with other objects.
Semantic properties of objects are often independent of
the geometry, and are constant over the vast majority of
scenes. CAPS therefore maintains asemantic databaseof
information about objects, and uses it to generatedefault
placement constraintsfor objects.

3.3.1 Semantic Database
With CAPS, the user assigns each object to aclass, which
represents the real–world classification of the object. For
example, there might be a class for all tables, and another
for all chairs. For the purpose of layout, it is useful to
know the set of plausible placements that objects of one
class can take relative to objects of each other class. To
this end, each classC stores the following information:

• A list of parent classes: Objects of the parent class
typically appearunderobjects ofC. For example,
if the current object class is a plate, parent classes
might be tables and counters. These are denoted
“parent classes” because the supporting object is the
parent of the supported object in the CAPS scene
graph.

• A list of child classes: Objects of the child class typ-
ically appearon top ofobjects ofC. For example, if
the current object class is a bookshelf, child classes
might be books and plants. (The child and parent
classes are symmetric; we use the two, instead of
just one, to make the placement algorithm more ef-
ficient.)

• A CANSUPPORTflag, which is true if and only if
objectsother thanthose inC ’s child classes may
appear on top of objects ofC.

• A CANBESUPPORTED flag, which is true if and
only if objectsother thanthose inC ’s parent classes
may appear under objects ofC.

• For each parent class, anorientation constraintto
control the orientation of objects ofC with respect
to objects of the parent class.

The child and parent classes determine the surfaces on
which an objectO can be placed. If such a surface
already supports other objects, the CANSUPPORT and
CANBESUPPORTEDflags determine whetherO can be
“piled” on top of those objects.

For example, a book is typically placed upon a table,
but if a lamp appears on that table already the book should
not be placed upon the lamp. But if other books appear on
that table, the new book could reasonably be placed upon
the others. In terms of the semantic database: tables are
in the parent class of a book; lamps have a false CAN-
SUPPORTflag; and books have a true CANSUPPORTflag
(used to allow the books on the table to support other ob-
jects), and a true CANBESUPPORTEDflag (used to allow
the book currently being placed to be piled upon other
objects).

3.3.2 Default Placement Constraints
For a particular objectO, placement constraints are
automatically generated by CAPS from the semantic
database, as follows:

• A default surface constraint is defined for each sup-
porting object inO’s parent classes. The default
constraint has a single container polygon which is
the boundary of the object’s upward–pointing sur-
face, and has no forbidden polygons.

• For each supporting object, the CANSUPPORTand
CANBESUPPORTEDflags, as well as any orientation
constraints, are taken from the semantic database.

Automatic generation of default placement constraints
greatly simplifies the scene layout task: The user can pop-
ulate a scene with hundreds of objects in a matter of min-
utes, and can then refine the placements by modifying the
constraints or by repositioning objects manually.

3.3.3 Classes vs. Instances
Surface constraints, proximity constraints, support con-
straints, and orientation constraints apply to object in-
stances, while semantic constraints such as parent class
and child class apply to object classes. The values



for CANSUPPORT, CANBESUPPORTED, and orientation
constraints, as stored in the semantic database, may be
thought of as default values that are given to new object
instances of a particular class. These default values are
assigned to the initial instance, and may later be changed
by the user.

3.4 Scene Layout with CAPS

CAPS automatically lays out a scene by placing objects
into the scene, one object at a time. As each new object
is placed, the object finds a feasible position which sat-
isfies its placement constraints. The placement algorithm
for a single objectO is as follows (see Figure 3 for an
example):

1. Choose a surfaceS from amongst those objects in
O’s parent classes. This choice is made randomly
according to user–defined probability distribution
over the available surfaces (or according to a uni-
form distribution if the user has defined none).

2. Identify all the forbidden regions on the surfaceS.
The set of forbidden regions includes any forbidden
polygons specified with the surface constraint ofS,
as well as the footprints of all objects that have al-
ready been placed onS and that have a false CAN-
SUPPORTflag. IfO has a false CANBESUPPORTED

flag, the footprints ofall objects currently onS will
be considered forbidden regions.

3. Perform spatial planning as described in Sec-
tion 3.2.3, using the forbidden polygons calculated
above, and using a container polygon which defaults
to the boundary ofS. (The user may have explicitly
defined the container polygon to be smaller by edit-
ing the automatically–generated surface constraint.)

4. If no safe positions exist forO, go back to Step 1
and attempt to placeO on one of the other avail-
able surfaces. Note that CAPS does not attempt to
undo previous placements of other objects in order
to placeO. If there is no surface on which to safely
placeO, nothing is done.

5. Of the safe positions calculated forO in Step 3,
choose one at random.

6. Since there may be other objects (which have a true
CANSUPPORT flag) at the chosen position, move
O abovethe chosen position and drop it, using the
pseudo–physics engine to compute a physically sta-
ble configuration.

3.4.1 Object Placement by the User
The user may place objects into the scene by selecting
a surface and selecting multiple objects to be placed on
that surface. This process is considerably simplified by
the semantic database: Once the user has selected a sur-
face, a list is presented of objects that can appear on that
surface. The user may choose any number of any type of
those objects, which CAPS will then place on the surface
in positions that satisfy all placement constraints (using
Steps 2 through 6 above). For example, each bookshelf
in Figures 1 and 4 was populated simply by selecting it
and instructing CAPS to add a certain number of books
to it.

CAPS thus provides the user with a means of very
quickly increasing the visual richness of the scene.

3.4.2 Adjustable Level of Control
CAPS provides users with the precise level of control that
they require. At the highest level, users may rely on the
automatically generated placement constraints. Should
those prove unsatisfactory, the user may replace any au-
tomatically generated constraint with user defined ones.
For example, the user can replace a default surface con-
straint by sketching the container and forbidden polygons
on the surface. If precision is required, the user can re-
strict object placement to a single point, thus providing
as much control as any previous method. CAPS never
forces a user to make placements that are more precise
than is required, which saves time in the layout process
and produces a more realistic and visually rich scene.

3.4.3 Fast Object Redistribution using Scenarios
An object of classC may be placed on objects of its par-
ent classes. A weight is assigned to each parent class of
C, and the objects ofC are placed on the objects of the
parent classes in proportion to these weights. By default,
these weights are all equal, yielding a uniform distribu-
tion.

These weights are calledscenariosbecause they vary
with the situation that is being modelled. Before supper,
for example, plates are likely to be on the table; after sup-
per, they are more likely to appear beside the sink. The
weights of the plate’s parent classes (the table and sink
classes) may be modified to reflect these two situations.

CAPS permits objects to beredistributedin the scene
simply by changing the scenarios. Upon such a change,
the objects are removed from their current positions —
any supported objects being settled with pseudo–physics
— and are redistributed according to the new scenarios.

Objects of classC are distributed amongst the par-
ent classes in proportion to the scenario weights. But
amongst theobjectsof each parent class, asecondary dis-
tribution may be used (if desired) to favour placement on



Figure 3: Left: Positioning a carafe on a tabletop which already supports three books. The carafe has a false CANBE-
SUPPORTEDflag, so it cannot be placed on any of the books. Right: The two dark areas, computed with Minkowski
sums and differences, represent the set of safe positions for the carafe, whose circular footprint is shown.

certain objects of the same parent class. As with the pri-
mary distribution (i.e. the scenarios), the secondary dis-
tribution is, by default, uniform.

Objects may thus be redistributed quickly and easily by
simply adjusting the scenario weights and, if more con-
trol is desired, by adjusting the weights of the secondary
distributions.

3.4.4 Direct Object Manipulation by the User
In addition to its automatic layout capabilities, CAPS per-
mits the direct user manipulation of already–placed ob-
jects. Direct manipulation could be a tedious task due to
the need to explicitly group objects and to restore physi-
cal stability once changes have been made. For example,
to move a table that supports other objects — without ex-
plicitly grouping the table and objects — could result in
the objects floating in space. Also, moving the bottom
book from a pile of books requires adjustments to all the
books above it. CAPS provides dependency tracking and
implicit grouping to assist direct user manipulation.

Dependency tracking maintains the physical depen-
dences between objects: For each object, CAPS keeps
a list of all the other objects that might affect the stability
of that object if they are moved. When a physical insta-
bility arises, CAPS can quickly determine which objects
need to be re–stabilized, and can use the pseudo–physics
engine to calculate new, stable positions for them.

Implicit grouping is achieved by moving as a group all
dependency–connected objects: Such a group is called a
pile. For example, if the user moves a bookshelf that sup-
ports several books, the books will automatically move

with the bookshelf.

To move objects from one surface to another, the auto-
matic placement mechanism is used to initially place the
object on the new surface, after which direct user manipu-
lation may be done. During direct manipulation, seman-
tic constraints are purposefully disabled to allow users
full freedom of manipulation. Visual feedback from the
manipulation is instantaneous. Collision detection is en-
abled to prevent piles from interpenetrating. Dependency
tracking and implicit grouping are both implemented us-
ing a novel data structure called the “Footprint Based De-
pendency Graph” [35], which is updated during the auto-
matic placement process.

4 Results

The combination of pseudo–physics and the semantic
database proves to be quite powerful for purposes of
scene layout. Pseudo–physics ensures that physical con-
straints are satisfied, while the semantic database pro-
vides plausible layouts which may easily be modified.

CAPS permits the user to act as a director, since the
details of object placement are handled by the computer.
For example, the user can select a bookshelf, ask that 100
books be placed on the shelf, and CAPS will do the rest.
A user can thus very quickly populate a scene with hun-
dreds of objects, which brings a visual richness to the
scene not otherwise achievable in a limited amount of
time. Manual refinement (with the mouse or a six DOF
input device) can then be used to fine–tune the scene to
its exact desired form.



Figure 4: A scene of 500 objects which was laid out in 25 minutes with CAPS. Most of the time was spent
by the user in exactly positioning monitors and chairs. (Consider that a traditional modeling system would
require the user to exactly position the 479 other objects.)

Once the scene has been populated, the objects can
be quickly redistributed to semantically acceptable lo-
cations using the various scenarios. This is especially
useful where many variants of a certain scene are re-
quired. Where the automatically generated placement
constraints prove unsatisfactory, placement constraints
can be quickly refined by attaching a new, user–specified
placement constraint to the affected objects. Since place-
ment constraints can be attached to multiple objects si-
multaneously, adjusting initial object placements is quite
efficient.

Figure 1 showed a scene crafted using CAPS. That par-
ticular scene has 300 objects and was laid out in less than
10 minutes: 5 minutes to get a skeletal layout, and 5 min-
utes to populate and redistribute the rest of the objects.
Figure 4 shows a scene with 500 objects, which required
25 minutes to lay out due to the many monitors and chairs
which required exact placements. Although more exten-
sive user tests are required to validate these productivity
gains, these initial results are very encouraging.

5 Future Work

5.1 Three Dimensional Planning

Because we use footprints to plan object placements, cer-
tain effects, such as placing chairs under tables, are cur-
rently not achievable (since, in this example, the foot-
prints would overlap). However, thiscanbe achieved by
performing the spatial planning simultaneously on sev-
eral horizontal slices of the space. For example, we could
take a horizontal slice at the foot of the chair, another in
the midsection of both chair and table, and a final slice
at the top of the table. CAPS would enforce the 2D con-
straints within each slice in the usual manner. Placement
of an object would be considered safe if and only if place-
ment is safe in each of the slices.

Although it seems natural that an extension to using
3D Minkowski sums and differences could be made, this
doesn’t seem to be worthwhile. Because objects tend to
rest on surfaces, the layout problem is more 2D than 3D
in nature. For this reason — and due to their efficiency
— we favor 2D techniques over 3D ones. (However, 3D



Minkowski sums and differences could be useful in cer-
tain situations, such as detecting the free space under the
table where chairs may be placed.)

5.2 Generalized Distributions

Currently, objects are distributed uniformly randomly on
a surface once placement constraints are satisfied. Un-
der this scheme, we can view forbidden regions as hav-
ing zero placement probability density, while safe regions
have uniform probability density. A more general proba-
bility distribution would provide more control. For exam-
ple, we could use a Gaussian distribution for the NEAR

constraint in order to more heavily weight closer place-
ment. As another example, we could model the place-
ment of forks on one side of a plate by making the prob-
ability density of the NEAR constraint very high on that
side of the plate. This would permit a fork to be placed
in approximately the right position, with a bit of leeway
(depending upon the distribution) to add some real–world
sloppiness in the fork’s placement.

5.3 Semantic Database

When a new class of objects is defined in the semantic
database, its CANSUPPORTrelations with each already–
existing class must be checked. A more powerful formal
representation — using abstract classes and inheritance,
for example — would be appropriate in a future exten-
sion to CAPS. We also need to extend the use of seman-
tic information to deal with functional and non–local de-
pendencies that are currently not considered. A simple
example of such a dependency is the strong relationship
that exists between the position and the direction of the
monitors and the position of the chair in Figure 4.

6 Conclusion

The combination of physics, semantics, and placement
constraints permits us to quickly and easily lay out a
scene. We have shown that the layout task can be sub-
stantially accelerated with a simple pseudo–physics en-
gine and a small amount of semantic information. Fu-
ture work into generalized distributions and a richer set
of semantic information might lead to a new modeling
technique, where users can create scenes by specifying
the number and distribution of each class of object to be
included in the scene.

References

[1] E.A. Bier. Snap-dragging in three dimensions.ACM
Symposium on Interactive 3D Graphics, pages 193–
204, 1990.

[2] A. Borning. The programming language aspects
of thinglab, a constraint oriented simulation labo-

ratory. ACM Transactions on Programming Lan-
guages and Systems, (3):353–387, 1981.

[3] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao.
Solving linear arithmetic constraints for user inter-
face applications. InACM Symposium on User In-
terface Software and Technology (UIST), pages 87–
96, 1997.

[4] D. Bowman and L. Hodges. An evaluation of tech-
niques for grabbing and manipulating remote ob-
jects in immersive virtual environments.ACM Sym-
posium on Interactive 3D Graphics, pages 35–38,
1997.

[5] D.E. Breen, R.T. Whitaker, E. Rose, and
M. Tuceryan. Interactive occlusion and auto-
matic object placement for augmented reality.
Eurographics, 15(3):11–22, 1996.

[6] R. Bukowski and C. Sequin. Object associations.
ACM Symposium on Interactive 3D Graphics, pages
131–138, 1995.

[7] J. Butterworth, A. Davidson, S. Hench, and
T. Olano. 3DM: a three-dimensional modeler us-
ing a head-mounted display.ACM Symposium on
Interactive 3D Graphics, 25(2):135–138, 1992.

[8] B. Coyne and R. Sproat. Wordseye: An automatic
text-to-scene conversion system.ACM SIGGRAPH,
pages 487–496, 2001.

[9] A. Forsberg, K. Herndon, and R. Zeleznik. Aperture
based selection for immersive virtual environment.
ACM Symposium on User Interface Software and
Technology (UIST), pages 95–96, 1996.

[10] P.K. Ghosh. A solution of polygon containment,
spatial planning, and other related problems using
minkowski operations.Computer Vision, Graphics,
and Image Processing, (49):1–35, 1990.

[11] S. Houde. Iterative design of an interface for easy
3-d direct manipulation.ACM SIGCHI, pages 135–
142, 1992.

[12] Y. Kitamura and F. Kishino. Consolidated manip-
ulation of virtual and real objects.Proceedings of
virtual reality software and technology, pages 133–
138, 1997.

[13] Z. Li. Compaction algorithms for non-convex poly-
gons and their applications. PhD thesis, Harvard
University, Cambridge, Massacusettes, 1994.

[14] J. Liang. Jdcad: A highly interactive 3D modeling
system. Computers and Graphics, 18(4):499–506,
1994.



[15] D.P. Mapes and J.M. Moshell. A two handed in-
terface for object manipulation in virtual environ-
ments.Presence, 4(4):403–416, 1995.

[16] V.J. Milenkovic. Position-based physics: simulat-
ing the motion of many highly interacting spheres
and polyhedra.ACM SIGGRAPH, pages 129–136,
1996.

[17] V.J. Milenkovic. Optimization-based animation.
ACM SIGGRAPH, pages 37–46, 2001.

[18] M.R. Mine. Isaac: a meta-cad system for virutal
environments.Computer Aided Design, 29(8):547–
553, 1997.

[19] M.R. Mine, F.P. Brooks, and C.H. Sequin. Mov-
ing objects in space: Exploiting proprioception in
virtual-environment interaction.ACM SIGGRAPH,
pages 19–26, 1997.

[20] G.M. Nielson and D.R. Olson. Direct manipula-
tion techniques for 3D objects using 2D location
devices. InWorkShop on Interactive 3D Graphics,
pages 175–182, 1986.

[21] J.O. O’Rourke. Computational Geometry in C.
Cambridge University Press, 1998.

[22] J. Pierce, A. Forsberg, M. Conway, S. Hong,
R. Zeleznik, and M. Mine. Image plane interaction
techniques in 3D immersive environments.ACM
Symposium on Interactive 3D Graphics, pages 39–
43, 1997.

[23] Poupyrev, S. Weghorst, M. Billinghurst, and
T. Ichikawa. Egocentric object manipulation in
virtual environments: Emperical evaluation of in-
teraction techniques.Computer Graphics Forum,
17(3):41–52, 1998.

[24] I. Poupyrev, M. Billinghurst, S. Weghorst, and
T.Ichikawa. Go-go interaction technique: Non-
linear mapping for direct manipulation in VR.ACM
Symposium on User Interface Software and Tech-
nology (UIST), pages 79–80, 1996.

[25] W. Robinett and R. Holloway. Implementation of
flying, scaling and grabbing in virtual worlds.ACM
Symposium on Interactive 3D Graphics, pages 197–
208, 1992.

[26] M. Shinya and M.C. Forgue. Laying out objects
with geometric and physical constraints.The Visual
Computer, (11):188–201, 1995.

[27] G. Smith, T. Salzman, and W. Stuerzlinger. 3D
scene manipulation with 2D devices and con-
straints.Graphics Interface, pages 135–142, 2000.

[28] J.M. Snyder. An interactive tool for placing
curved surfaces without interpenetration.ACM SIG-
GRAPH, pages 209–217, 1995.

[29] R. Stoakley, M.J. Conway, and R. Pausch. Virtual
reality on a wim: interactive worlds in miniature.
ACM SIGCHI, pages 265–272, 1995.

[30] W. Stuerzlinger and G. Smith. Efficient manipula-
tion of object groups in virtual environments. In
IEEE Virtual Reality, 2002. to appear.

[31] I. Sutherland. Sketchpad: a man-machine graphical
communication system. InProceedings of the IFIP
Spring Joint Conference, 1963.

[32] D. Venolia. Facile 3D direct manipulation.ACM
SIGCHI, pages 31–36, 1993.

[33] C. Ware. Using hand position for virtual object
placement.Visual Computer, 5(6):245–253, 1990.

[34] C. Ware and D.R. Jessome. Using the bat: a six-
dimensional mouse for object placement.IEEE
Computer Graphics & Applications, 8(6):65–70,
1988.

[35] K. Xu. Automatic object layout using 2D con-
straints and semantics. Master’s thesis, University
of Toronto, 2001.

[36] T.G. Zimmerman, J. Lanier, C. Blanchard,
S. Bryson, and Y. Harvill. A hand gesture inter-
face device. Proceedings of CHI and GI, pages
189–192, 1987.


