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Abstract

The main preoccupations of research in computer-aided geometric design have been on shape-
specification techniques for polynomial curves and surfaces, and on the continuity between segments
or patches. When modelling with such techniques, curves and surfaces can be compressed or expanded
arbitrariy. There has been relatively little work on interacting with direct spatial properties of curves
and surfaces, such as their arc length or surface area. As a first step, we derive families of paramet-
ric precewise polynomial curves that satisfy various positional and tangential constraints together with
arc-length constraints. We call these curvesisometric curves. A space curve is defined as a sequence of
polynomial curve segments, each of which is defined by the familiar Hermite or Bézier constraints for
cubic polynomials; as well, each segment is constrained to have a specified arc length. We demonstrate
that this class of curves is attractive and stable. We also describe the numerical techniques used that
are sufficient for achieving realtime interaction with these curves on low-end workstations.

Keywords: isometric piecewise parametric polynomial curves, arc length, computer-aided geometric

design, numerical methods.

1. Introduction

Research into the specification of piecewise curves and
surfaces has very successfully attacked the problem of
shape control and continuity across curve segments
or surface patches!: 2. The main theme of these ap-
proaches is to define an overall space curve C(t) as a
set of piecewise polynomials po, p1,- -, Pm. All curve
segments are usually of the same low degree n, and
most often n = 3. Each segment p;(t) is defined by
means of a sequence of control points P;;, 3 =0,---,n
that are weighted together by n+1 blending functions
Bi;(t) as in

pi(t) =Y Bij(1)P;

to form an overall piecewise polynomial curve of de-
gree n. Typically the blending functions are the same
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for each curve segment i, so in this case we can write
B; rather than B;;. There are many variations on
this theme that enforce continuity and a variety of
shape specification possibilities. Among the desired
properties of a curve specification is affine invari-
ance, sometimes also called co-ordinate system inde-
pendence, which requires that for an affine transfor-
mation T,

ity =Y Biy(t)7 Py
=0

Working with control points is a convenient way
of specifying curves and surfaces. However, this ex-
tra layer of indirection can make it difficult to work
with actual spatial properties of the object, such as its
surface area, curvature or arc length. The need to pre-
serve length, area or volume often arises in computer
animation and in physical and geometric modelling,
but this is generally part of a non-interactive postpro-
cess.

An interesting challenge, then, is to derive sets
of blending functions that guarantee arc-length or
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surface-area invariance, but that retain traditional
control-point techniques for interactivity. Further-
more, we wish such solutions to be as independent
of co-ordinate system as possible. As a first step, we
consider the problem of maintaining segment-wise arc-
length constraints for piecewise polynomial curves of
degrees 1-4. For curves of degree 3 and 4, the specifi-
cation is based on the familiar cubic Hermite or Bézier
basis. The basis will not be linear in arc length, but
for a given arc length, the solution is both transla-
tion and rotation invariant. Our goals are to develop
a curve-specification scheme that naturally extends fa-
miliar techniques, that has local control, that is largely
co-ordinate system independent, and that can be effi-
ciently implemented. Our resolution of these goals is
a family of isometric polynomials.

An extremely-interesting related problem that we
shall not discuss in depth is the following: given
a sequence of points (possibly mixed with tangents
and possibly with nonuniform knot spacing) P;, i =
0,---,n, derive an isometric curve C(t) of degree m
that “optimally” interpolates the points. The notion
of optimality may be based on quasi-physical notions
such as strain energy, or geometric properties of the
curve. Jou and Han give a mathematical develop-
ment for generally nonpolynomial, arc-length parame-
terised curves of specified arc-length and interpolation
constraints®. Roulier avoids arc-length parameterisa-
tion and concentrates on Bézier curves of arbitrary de-
gree that meet arc-length and convexity constraints?.
Although neither paper discusses the issue at length, it
is possible to use either approach in a piecewise fash-
ion to get some semblance of local control. What is
less clear 1s whether these formulations can be used in
an interactive design setting. Low-degree formulations
with piecewise continuity have traditionally been used
in this context. This is the focus of our work. Another
motivation for our formulation is its expected ease of
extension to surface-area constraints.

The use of isometric curves is most obvious in the
specification of trajectories for computer animation:
we may wish an object to follow a route of a certain
distance over some time interval, perhaps meeting cer-
tain velocity and positional constraints. Another use
is in texture-mapping, which has already been recog-
nised (cf. Bennis et al.®). A third use is in the interpo-
lation of scattered data (e.g., Lee®). Isometric curves
have an string or wire-like feel about them, and are
suitable for modelling such inelastic phenomena. Our
curves may also be useful in filtering, where ringing in
a reconstructed signal may be damped by “pulling” on
the curve using an arc-length constraint. Ultimately,
we wish to extend our approach to isometric surfaces
including real “patches” of certain kinds of cloth, pa-
per, moulded plastic, sheet metal, etc.

Our isometric curves are not necessarily arc-length
parameterised curves. In fact, they are extremely un-
likely to be so (see Farouki and Sakkalis”). An arc-
length parameterised curve is such that equal steps
in the parameter give equal steps in arc length along
the curve. Such objects would be ideal candidates for
minimising distortion in texture mapping, but there
are very few classes of polynomials that can be an-
alytically arc-length parameterised: the class is re-
stricted to lines. Girard considered this problem in a
trajectory-specification context and derived approxi-
mate table lookup techniques for arc-length reparam-
eterisations of user-specified curves®. An interesting
open problem is whether or not our isometric curve
formulation easily admits arc-length reparameterisa-
tion.

Our curve formulation is based on non-rational
polynomials. The generalisation of the approach to
rational polynomial schemes is both interesting and
challenging. The appearance of a polynomial in the
denominator as well as the numerator results in a for-
mulation that appears to be more difficult to solve
than the non-rational form. This is an excellent topic
for future research.

The next section formulates isometric curves of de-
grees 1-4. We then discuss the numerical methods re-
quired to develop an efficient implementation.

2. Mathematical Formulation of Isometric
Curves

We shall formulate an arc-length constrained polyno-
mial curve segment from first principles for curve seg-
ments of various degrees. The term isometric is syn-
onymous for our purposes with arc-length constrained.
Throughout, our discussion will be concerned with
parametric curves p(t) = (z(t),y(t)), t € [0,1] in the
plane. The extension to general space curves in R” is
straightforward.

From differential geometry”> 2, the arc length of a
space curve p(t) on domain [a, b] is defined as

Alpifa.b]) = / (o)l dt, (1)

where p denotes the component-wise derivative of p
with respect to ¢. If p(¢) is defined parametrically as
(z(t),y(t)), then the derivative can be taken compo-
nentwise (giving a velocity), and the expression for arc
length is thus

Alpi[a.b) = / 10, ()]

| Vi
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In the special case in which p = (z,y) is an explicit
function of z, that is y = f(z), then it is easy to show

that
Alpi[a)) = / J1dfar i 3)

Analytic solutions for these elliptic integrals only
exist for very simple functions. Among the polyno-
mials, for example, analytic solutions exist only for
polynomials of degree two or lower. Perhaps this fact
helps to account for the lack of work in isometric poly-
nomial curve specification. Another factor is that iso-
metric polynomial curve families do not admit a linear
polynomial basis. However, we shall see that it is pos-
sible to define such families that are “quasi-linear” in
the sense that they are translation and rotation in-
variant, and that have the convex hull property. Fur-
thermore, we shall demonstrate that the computation
of these constraints is quite feasible and that the re-
sulting curves are pleasing.

By way of example, consider the cubic space curve
p(t) = (" =262 + 3t +1, 26" +¢° -2t —1).

A plot of this curve for ¢ € [-1,1] can be found in
Figure 1. A plot of the arc-length integrand for this
curve can be found in Figure 2. The area under this
curve is the arc length. Notice that despite the vari-
ation in p, the arc-length integrand is quite smooth,
and would be even smoother after integration. This is
borne out by Figure 3, which depicts the monotone-
increasing integral function A(p(t);[—1,¢]). A four-
term Simpson’s rule evaluation of A(p(t);[—1,1]) gives
a relative error of 1%, which is almost acceptable
for display-screen precision. A sixteen-term evaluation
achieves a precision comparable to the single-precision
machine epsilon on Sun-based workstations. Gaussian
quadrature or other quadrature schemes may also be
employed (cf. pp346-350 of Watt and Watt1? and
Guenter and Parent!!), but the added economy for
low-degree curves is minimal.

We shall now consider possible arc-length constraint
formulations for curves of varying degrees. As we shall
see, quartic curves are required to give the same level
of control as can be achieved with, for example, cu-
bic Bézier or Hermite curves, together with the added
arc-length constraint. However, a we shall introduce a
useful class of Hermite-like isometric cubic curves that
may be sufficient for many applications.

2.1. Degree One Curve Segments

Line segments with two arbitrary endpoints P, P
cannot of course be arc-length constrained, but a fam-
ily of line segments given by one endpoint P, a direc-
tion d, and a length « > 0 in fact allow us to specify
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Figure 1: A parametric cubic space curve.

10

Figure 2: The arc-length integrand for the above space
curve.

isometric line segments. Fixing o and P gives a circu-
lar locus of solutions for d; fixing P and d gives a line
of solutions for «; fixing d and « gives admits a plane
of solutions for P. Finally, specifying each of P, d and
« defines a unique line segment.

2.2. Degree Two Curve Segments

Traditional piecewise parabolic segments are often suf-
ficient for applications needing only C' parametric
continuity. However, with the addition of a segment-
wise arc-length constraint it is not possible, for exam-
ple, to interpolate two endpoints per parabolic seg-
ment with C! joint continuity, all the while main-
taining an arc-length constraint. Nevertheless, this is
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Figure 3: The actual arc-length of the space curve,
A(p(t);[—1,1]), as t varies from —1 to 1.

a nontrivial family of curves that will illustrate our
derivation for higher-degree formulations discussed
later.

2.2.1. A Single Parabolic Curve Segment
Suppose we require a parabola in explicit form
y = ar? +bx +c

to have arc length o > 0 on the interval [0,1]. We re-
quire two more constraints to make this curve unique.
From the point of view of curve design, a reasonable
set of constraints would be that the curve must inter-
polate a y-value P at £ = 0 and must have derivative
9(0) = T at ¢ = 0. This situation is depicted in Fig-
ure 4. Meeting the positional constraint requires that

c=P,

which is easily seen just by letting £ = 0 in our ex-
pression for y. Similarly, differentiating y with respect
to = and letting £ = 0 shows that

b="T.

We can solve for @ by meeting the arc-length con-
straint. If we require that

A(y;[0,1]) = o,

1
/ 1+ 9% do
0

1
/ 14+ (2az + b)? ds
0

then

A(y;[0,1])

/1 14 (2az +71)2 dz. (4)

0 1 X

Figure 4: Constraints on a parabolic curve segment.

Note that the positional constraint does not figure in
the above equation, which is sensible, since an arc
length is independent of the curve’s origin. The in-
tegral on the right-hand side has an analytic form:

2Aa—|—AT—|—ln(4Aa—|—8a2—|—4aT)

A(y;[0,1]) = Ta
UT'+In(4Ua +4aT) (5)
4a ’
where
A = \/1+4aT—|—T2—|—4a2, and
U = /14712,

Since T is given, our goal is to solve for a subject to
A(y;[0,1]) = a, for a given o > 0. Note that the
term U is constant, but A is not. Some trivial re-
arrangement of the symbols is possible, but the for-
mula appears to resist further simplification. While a
closed-form solution for a appears impossible, a so-
lution, when it exists, can be efficiently found using
numerical techniques, as is discussed below. Because
the above equation is quadratic in @, there are usually
two possible solutions. For example, Figure 5 depicts
the solutions corresponding to

Using numerical techniques described in Section 3, we
find that the two quadratic curves that meet these
constraints are (approximately)

p1()
p2(t) =

We can therefore choose the desired curve shape by

—144 + 51,
5¢° + 5¢.

choosing the solution that is concave up or down as
needed, simply by selecting a positive or negative a.
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Figure 5: Two parabolic curve segments with y(0) =
0, §(0) =5, a = 10.

An important point here is that the log in the equa-
tion is a complex natural log. In the above example,
only the solution for positive a, namely p2, is found
with a real-valued log. Computing with a complex-
valued log will find both solutions. Unfortunately, this
means a direct implementation of Eq. 5 is likely to be
slower than using quadrature on Eq. 4.

A solution will not exist when the desired arc length
is not realisable for a given 7. A lower bound for «
given T' may be obtained by considering the length of
the line segment from an initial point P in the direc-
tion 7' travelling over unit distance in . The length
of this line segment is thus

\/Ax2 + Ay?

V1+ T2
U.

Rather than interpolating position and tangent, it
is easy to formulate isometric quadratics that interpo-
late two positions Po, P1, at © = 0, 1, respectively, for
example. Noting that y(0) = P, again implies that

Cc = Po.
Moreover, requiring that y(1) = P; implies that
a+bt+c=P=>b=P — P —a.

The integral equation once again has a closed (but
even messier form), and solutions for ¢ can be found
numerically.

The generalisation of isometric parabolic curve seg-
ments from an explicit to parametric representation
is straightforward. Suppose the space curve p(t) =

© The Eurographics Association 1994

(z(t),y(t)) is to be constrained such that

and suppose furthermore that the curve segment must
satisfy an arc-length constraint. There are at least two
plausible constraints. One constraint would be to treat
the ¢ and y components of p separately and impose
independent arc-length constraints on them as follows:

A(z;[0,1]) = ag,
A(y;[0,1]) = ay.

Another constraint would be to consider the overall
arc length of p:

A(p;[0,1]) = a.

Componentwise constraints are explicit functions in
the parameter, and can therefore be solved from our
earlier discussion. The second constraint, namely true
arc length for a space curve, is both more interesting
and more realistic, since a solution has some hope of
being co-ordinate system independent. Not all solu-
tions to the constraint are independent of co-ordinate
system. Most are not. A scheme based on componen-
twise arc-length constraints is co-ordinate system de-
pendent by definition. In the case of isometric curves,
we cannot require complete affine invariance, because
arc length is not invariant under shears and scalings.
This does not mean there is no way to predict the
change in the arc-length as a result of scaling. In
fact, for uniform scaling this is easy. Our notion of
co-ordinate system independence will be restricted to
translations and rotations.

Let the curve segment p(t) = (z(t), y(t)) be
p(t) = at’ + bt + c,
denoting the components
z(t) = apt® + byt - Cz,
y(t) = ayt® +byt+cy.

Most of the constraints can be resolved componentwise
and are analogous to the solution in the explicit case:

p(0) = P = (ca,cy) = P,
p(0) = T = (bs,b,) =T.

It remains to solve for the leading coefficients (am, ay).
Recalling from Eq. 2 that the arc length for a space
curve on [0,1] is

Alpi[0,1]) = / I

| v o
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after substituting the above constraints, our expres-
sion for arc length becomes

A(p;[0,1]) = / at? + bt + ¢ dt, (6)

where T = (d;,d,), a = 4a-a,b=4a-T,and ¢ = T-T.
After some tedious algebra, a closed-form solution for
the integral can be found (which is unsurprising, since
a closed form exists for the explicit case). However, it
is extremely messy and uninformative, and indeed it
is more appropriate to solve numerically for (as,ay)
directly from the integral equation, since real square
roots are less costly than complex natural logarithms.

Observe that while the positional and tangential
constraints can be solved independently for each com-
ponent, the arc-length constraint involves both com-
ponents simultaneously. In fact, the system is under-
constrained, since we have two unknowns, a; and a,,
in one equation. There is thus a large set of possible so-
lutions. One way to get a unique solution is to express
a cross-constraint between a, and a,. For example, a,
could be a functional combination of the given values
together with a,. The simplest cross-constraint would

be
Ay = 6(1;“

for some constant 3 # 0. This allows us to write Eq.
6 as a function of a single variable a, and, if a so-
lution to the equation A(p(¢;as);[to, t1]) = a for a,
exists, we can back-substitute to get a,. (The notation
p(t;a) means that the coefficient @ is a parameter in
the polynomial p(¢). Thus ¢ would be the indetermi-
nate in the integral equation A(p(¢;a);[to, t1]) = a.)
The advantage gained here is speed of computation,
but a disadvantage is co-ordinate system dependence.
In particular, our resulting curve will be translation in-
variant, but not rotation invariant. On the other hand,
it has a rather nice property of being “bias” parame-
ter. We shall more to say about this later.

2.2.2. Piecewise Formulations

It is not possible to define isometric everywhere C?!
quadratic curves that also interpolate two arbitrary
prespecified endpoints. About the best we can do if
C? joint continuity is desired is the “go with the flow”
approach: specify an initial velocity and position for
the first curve segment, and then use arc-length con-
straints to control the position and velocity of all sub-
sequent segments. This is illustrated in Figure 6, in
which the user is free to specify the initial position
and tangent of first segment, as well as its arc length.
The subsequent positional information for segment
1 > 0 is completely determined by «;—_1. This obvi-
ously does not result in a particularly powerful tech-

a3

\

Figure 6: Two parabolic curve segments with a user-
specified initial tangent and position. Subsequent posi-
tions and tangents are controlled by the arc length for
each segment.

nique for curve design, but it may be of some use in
trajectory simulation and in initial-value problems.

2.3. Degree Three Curves
2.3.1. A Single Cubic Curve Segment

The ability to meet four positional constraints exactly
together with an arc-length constraint is not possi-
ble with a cubic curve segment. For example, we can-
not hope to meet the cubic Hermite conditions of two
endpoints Py, P1, two tangents To, Ty with specific
magnitudes, together with an arc-length constraint.
However, by relaxing these constraints slightly, we
can achieve a generally satisfactory solution. We shall
first derive a solution for isometric cubic Hermite seg-
ments and subsequently apply this solution to the cu-
bic Bézier form.

The well-known cubic Hermite curve is given by the
constraints

p(0) = Py, p(1) = P, To =p(0), T1 =p(1), (7)

which leads easily to the monomial change-of-basis!?,
2 =2 1 1 P
Cra e -3 3 -2 -1 Py
p(t)=[t* ¢ t 1] o 1 o T,
1 0 0 0 T,

This gives rise to the following expression in the user-
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specified constraints:

pt) = (2 -30+1)P+(B3¥-20)P
+ (=28 4+1) To+ (£ =) Ty
= (2(Po—P1)+ (To+Ty) ¢’ (8)
+ (3(PL = Po) — 2To — T1)) > + Tot + Po.

The resulting curve is unique for a given set of con-
straints. To meet an additional arc-length constraint,
we relax the tangent constraint so that given user-
specified tangents Ty, T1, we find a Hermite curve
that satisfies

p(O) = STo, p(l) = ST1.
We then solve for s subject to meeting the arc-length
constraint. In this case, Eq. 8 becomes

p(1) = (2(Po — P1) +s(To + T1)) ¢° (9)
—|— (3(P1 — Po) — S(2T0 — T1))) t2 —|— STot —|— Po.

Observe that if we were able to derive a closed form
for the arc length

Ap( 0,1 = [ iR o)

then A would no longer be a function of ¢. Indeed,
it would be a function of s alone. Furthermore, the
integrand would contain terms in s* and s under the
square-root (the actual formula is messy, but this is
obvious from Eq. 10). Thus there would be at most
two solutions to the nonlinear equation A(s) = «, one
with s positive, and the other with s negative. When
a solution exists, we shall choose the solution s > 0;
since s controls the magnitude of the curve’s tangents
at the endpoints of the interval, this will preserve the
overall shape of the curve. Flipping a tangent would
introduce or remove a point of inflection. Figure 7 il-
lustrates how the curve changes to meet three different
arc-length constraints while satisfying four constraints
on position and tangent. Figure 8 illustrates the ef-
fect of changing the two tangents to the curve, while
maintaining the same endpoints and arc length. For a
wide-range of arc lengths, interacting with these con-
strained curves is quite similar to their unconstrained
counterparts.

The classic cubic Bézier curve p(t) is given by four
control points Py, P1, P>, Ps. The constraints on p(t)
are that

p(0) = P, p(1)
p(0) = 3(PL— P), p(1)

P,
3Py — pyy. (1D

This yields the following standard matrix representa-
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Figure 7: Three Hermite cubic curves that each meet
the same four constraints on positions and tangents,
but which have varying arc lengths.

Figure 8: The effect of varying the tangent of a con-
strained cubic hermite curve while maintaining the
same arc length and endpoints.

tion:
-1 3 -3 1 P
ra e 3 -3 3 0 2
p(t)= [ ¢ t 1] 3 3 0 o P,
1 0 0 0 P

The cubic Hermite and Bézier curve families are di-
rectly related, and in fact the cubic Bézier form can
be thought of as being a convenient specification tech-
nique for cubic Hermite curves. To solve for an arc-
length constraint in a manner analogous to the Her-
mite case, we relax our tangent constraint to

B0) = (P — Po), B(1) = s(Ps — Py).

Solving for s in this case is exactly as before, and
we shall once again choose the solution for which



Figure 9: Several constrained Bézier cubic curves that
each meet the same four positional constraints, but
which have differing arc lengths. The solid curve is
the standard Bézier solution.

s > 0. Figure 9 illustrates the effect of changing the
arc length of the Bézier curve while maintaining the
other positional constraints. The solid curve depicts
the standard cubic Bézier solution satisfying Eq. 11
(i.e., s = 3). Although these curves do not in gen-
eral have the convex-hull property with respect to the
original control points, they do have the property with
respect to the control points Py, P1, P, P, where

P1 = P0-|—S(P1—P0),
PQ = P3-|—S(P3—P2).

Overall, this curve family has many of the properties

of the standard cubic Bézier form: it is invariant un-
der translation and rotation (for example, notice the
invariance of the curve under rotation in Figure 10),
it has the convex hull property with respect to the
updated control points given by the value s. Further-
more, as we shall see, s is cheap to compute.

2.3.2. Piecewise Formulation

Isometric cubic Bézier and Hermite curves can sat-
isfy the expected constraints to ensure piecewise con-
tinuity. Because the magnitude of the tangents across
curve segments cannot be preserved, we have a form
of geometric, but not exact parametric continuity. In
many cases, however, this is quite acceptable. The
magnitude of the tangent vector is of course given by
the s terms described above. In Figure 11, for example,

E. Fiume / Isometric Piecewise Polynomial Curves

Figure 10: Invariance of isometric cubic Bézier
curves under rotation. For clarity, the two non-
interpolated control vertices are not displayed.

we see three Bézier curves specified using eight control
points in which we enforce G' continuity. Notice that
when an interior (tangent) control point is moved, the
solid curve becomes the dotted curve, preserving con-
tinuity. Furthermore, note the local control, evidenced
by the fact that the final curve segment is invariant
to a change in the tangent between the first two seg-
ments.

2.4. Degree Four Curve Segments

If our application requires that we meet position and
velocity constraints exactly, as for example, in tra-
jectory interpolation, then we must resort to quartic
curves. Solving the system of constraints is analogous
to the situation for parabolic segments. In particular,
if we have a space curve

p(t)=at' +bt’ +ct® +dt+ e
subject as in Eq. 7 to
p(0) =P, p(1) =P, To=p(0), T1=p(1),
then after some algebra,
= Py,
To, (12)

= 3P1—3P0—2T0—T1—|—a
2P0—2P1+T0+T1—2&

T e a o
Il
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Figure 11: Continuity and local control for isomet-
ric Bézier curves. The circled control point affecting
the first two curve segments is moved, resulting in a
change to these segments, while leaving the third in-
variant.

which leaves a = (az, ay) free. If we let Ty = (0, Yo)
and T1 = (&1, 91), then each component &(¢; a,)? and
y(t; ay)2 under the square root in an arc-length inte-
gral is of the form

CE(t, am)2 = Ag:ai + B.ra.r + Cma

y(t; ay)2 = Ayai + Byay + Oy,

where
A, = (4 =6t +2t)°
By = (6(d0 —|— d1 —|— 2y0 — 2y1)t2
—|— 4(—d1 — 2d0 —|— 3y1 — 3y0)t —|— 2d0)Ay)
Cy = (3(2y0 — 2y1 —|— do —|— d1)t2

—|— 2(3:{/1 — 3y0 — 2d0 — d1)t —|— d0)2,

and similarly for &(t;a,)*. The important point here
is that just as in the case for parabolic segments, the
system is quadratic in a. This is not a difficulty; indeed
it allows us extra freedom in choosing an appropriate
curve shape. We have found that most often, alter-
nating positive and negative solutions values for a for
each segment, meaning that the curve alternately goes
from concave to convex, gives the most pleasing shape
for trajectories. In geometric modelling applications,
however, there may be special reasons for choosing

convex curves4 .

© The Eurographics Association 1994

Figure 12: The effect of B on an isometric quartic
curve.

As with the parabolic segments, we are faced with
the problem of solving for the two a terms in one equa-
tion. If we impose the constraint that

ay = faz, (13)

then the solution for a, can be quickly computed and
back propagated. The choice of § affects the bias of
1 "as can be seen in Figure 12. For some ap-
plications, this bias term may be useful for design.
However, because it directly biases the relative weight
of the  or y components making up the space curve,
the curve is not rotation invariant, though it is trans-
lation invariant.

the curve

Recalling Figure 12 once again, we note that, all
other things being equal, the dotted curve is the most
symmetric and pleasing. This happens to be the curve
that minimises strain energy. For a scalar function
p(t), we define its strain energy over interval [to, 1]
as

S(p(1): Tto, a]) = / R, (14)

to

The strain energy of a quartic polynomial p(t) = at* +
bt® + ct® + dt + e on [0,1] is

S(p(t);[0,1]) = %a2+12b2—|—4c2—|—16ac—|—36ab—|—12bc.

The strain of a space curve p(t) = (z(t), y(¢)) is simply
S(p(t); [a, b]) = S(z(2); [a, 0]) + S(y(t); [a, b]).

The second derivative is related to curvature, and in-
deed in an arc-length parameterisation it is equal to
curvature. In general, it approximates curvature, and
thus a polynomial from a class with the lowest strain
energy essentially has the fewest “kinks” and wiggles
in it. By using an affine-invariant measure such as
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strain energy, we are able to remove a co-ordinate sys-
tem bias from the solution for the leading coefficients
a. This now gives us a curve formulation that is iso-
metric and that exactly meets a set of cubic Hermite
or Bézier style constraints. The price to pay is added
computational difficulty, which we now address.

3. Numerical Techniques

Numerical implementations of the above formulations
require careful study, but generally only elementary
numerical techniques are required for acceptable real-
time performance on cheap workstations. We first dis-
cuss stable fundamental techniques that were used in
our implementation and then discuss approximation
schemes when very fast computations are required.

As we saw earlier, an arc-length integral of a low-
degree polynomial is a simple, smooth function. A 4-
12 term Simpson’s rule on a uniform subdivision of
[0,1] quickly yields a satisfactory solution. Comparable
results are achieved with gaussian quadrature!?- 11,
We shall see below how fast approximation schemes
can be built from basic quadrature rules.

Solving the nonlinear equation
A(p(t;s,a);[0,1]) =«

for a scale factor s or for a single coefficient a requires
some care. An ideal situation would have been one in
which we would be solving for the bound variable ¢ in
the integral. Unfortunately, we are solving for a single
variable within a square root and under an integral.
The resulting derivative of A with respect to s or a as
necessary is truly frightening and far too expensive to
compute. This makes a derivative-free approach im-
perative. We have found that secant-rule works ex-
tremely well in this casel3. Initial guesses are easy
to manufacture heuristically, and the average conver-
gence to achieve screen resolution is 3-4 iterations.

Solving for the isometric cubic and parabolic for-
mulations requires nothing more than the above, and
our entirely software implementation on a 0.5MFLOP
Sun [PC without graphics assist permits the realtime
manipulation of many curve segments. The computa-
tion is most certainly dominated by rendering time. As
it happens, there is a surprising relationship between
arc length and the leading coefficient ¢ (and similarly
for s). Figure 13 depicts how the arc length (vertical
axis) varies with the leading coefficient a of a typical
quartic curve. The picture for lower-degree curves is
quite similar. Notice the nearly linear tails, tapering
to a minimum. The trough of this curve clearly de-
pends on the boundary conditions of the constrained
polynomial, but in cases where the desired arc length
is distant from the trough, a linear approximation is

40,

-300 -200 -100 0l 100 200 300
0

Figure 13: The change in arc length (vertical azis)
as the leading coefficient of a quartic varies.

quite sufficient. This provides a very fast approxima-
tion when the length of a curve segment is changed
while the control points remain the same.

Computing an isometric strain-minimisation func-
tional is the most expensive step. To solve for the
isometric polynomial that minimises strain we have
observed that strain near the vicinity of the global
minimum tends tends to have a rounded trough-like
curve with respect to the leading coefficients. We have
tried many approaches, but the best one seems to be
successive parabolic interpolation, since it is deriva-
tive free, and since it quickly converges if the initial
guesses are in the “valley” of the trough!#. If this can-
not be guaranteed, then a more conservative approach
based on golden search can be employed!?.

Our strain-minimisation algorithm is as follows. Our
goal is to find the quartic polynomial space curve
p(t) = (z(t),y(t)) with the least strain energy that
meets the arc-length and positional constraints. As
we saw in Eq. 13, the positional constraints prescribe
the b,c,d, and e coefficients of the space curve. Our
only variables are the leading coeflicients a = (az, ay).
If we use successive parabolic interpolation, we begin
with three initial guesses for the leading coefficient
az. Meeting the other constraints thus prescribes the
corresponding a, for these guesses. We evaluate the
strain energy e, of the resulting polynomials and fit
a parabola through the points corresponding (agz, €q, ).
We compute the minimum of this parabola, giving us
a new a, and we discard the first guess. After an aver-
age of 4-5 iterations, we find a fixed point. Notice that
this algorithm requires the both the arc-length inte-
gral and arc-length constraint satisfaction algorithms,

© The Eurographics Association 1994
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described above, as subroutines. As implemented, this
implementation can compute the continuous update
of about 10 such strain-minimal curves at about 10
frames/second on a Sun IPC.

When speed is at an absolute premium, we suggest
the following scheme. For simplicity of notation, let
us consider approximating the arc-length of a func-
tion y = f(%;s), namely an explicit function in z with
parameter s for which we ultimately wish to solve.
When employing any nonadaptive compound quadra-
ture rule on uniformly spaced samples, we approxi-
mate an arc-length integral on [0,1] as follows:

/ \/1+f(x;s)2 dz
Zn:wm/l —|—f(iAx;s)2 dz, (15)

where the w; are the weights given by the quadrature
rule employed. As mentioned earlier, for a compound
Simpson’s rule, n is usually small (with n = 8 gen-
erally being quite sufficient). Thus evaluating Eq. 15
once is fast. The inefficiency arises because it is re-
peatedly evaluated to solve for a given arc length, and
it is further repeated in strain-energy computations.
It it would be worthwhile to approximate the com-
pound quadrature rule by a low-degree polynomial, if
possible.

A(f;[0,1])

Q

In any of the above formulations, if we solve for
either a leading coefficient or a scale factor, we always
get a quadratic function in that parameter under the
square root. That is,

A(f;[0,1]) = Zwi\/ais2+bis+ci, (16)
=0

where the a;, b;, and ¢; are easily computed from the
control points and tAz. While techniques from com-
puter algebra might sometimes be helpful in comput-
ing an analytic square root of the quadratic, we in-
stead consider a series approximation. The Taylor’s
series for a single term within the summation is:

2
\/as2+bs+cz\/5+b—s+\/5<a b )52—1—

Tt Vilse5a

b3 ba 3
\/E<16c3_ﬁ)5 + (n

3b%a a? 5 b* 4
\/E<16c3 T8 Tma) T
0(55).

Thus each term involves the square-root of a quadratic
function in the quadrature rule given by Eq. 16 re-
quires the computation of a single square root, namely
\/¢, in the approximation to the quadrature rule,

© The Eurographics Association 1994

Eq 17. If we sum the Taylor’s series corresponding to
each term in Eq. 16, we arrive at a polynomial approx-
imation to the arc length. Letting the polynomial to
be of low degree (e.g., 2-4) allows us to solve efficiently
for arc-length directly as a function of s.

To summarise the technique, we approximate the
arc-length integral for an arbitrary low-degree poly-
nomial by writing it as a formal quadrature rule,
performing a series approximation of the individual
terms, and noting that when we sum the approxima-
tions, we get a low-degree polynomial in the parameter
to solve, with only a small number of square roots to
compute. The coefficients of the polynomial can be
computed and directly substituted into the formula-
tion. We stress that this solution is an approximation
but the author has obtained good preliminary results.
A more rigorous evaluation of the technique is neces-
sary, however, and is the subject of current research.

4. Conclusion

We have presented an interesting class of Hermite-like
isometric polynomial curves, and we have discussed
a their implementation. Interacting with the isomet-
ric curves is as natural (or not) as working with the
unconstrained Hermite form, and our formulation of
these curves has local control and co-ordinate system
independence.

One difficulty with the quartic form is that the
strain-energy based objective function operates lo-
cally, in keeping with our theme of local control. This
means that individual curve segments look quite good,
but that the joints between curve segments may ex-
hibit high local curvature. Several strategies may be
employed to address this problem. One would be to op-
timise strain energy over more than one curve segment
at a time. This would affect the local-control proper-
ties of the formulation. Another approach would be
to formulate a different objective function to be min-
imised. After all, there is no requirement that a real
trajectory must have minimum curvature at all times.
A final approach would be to increase the degree of the
curve and have it operate over wider support. Again,
this undermines the local-support assumption.

As was mentioned earlier, we have only considered
non-rational polynomial forms in this paper. Exten-
sions to rational forms would be worthwhile.

Our formulation was chosen in the hope that it
would make simpler the extension to isometric sur-
faces. We are just beginning that work now. Despite
the apparent geometric simplicity of sheets of paper,
patches of cloth, and pieces of sheet metal, surface-
area constraints are mathematically much more subtle
than arc-length constraints.
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