
Volume xxx, (1994) number yyy pp. 000{000Isometric Piecewise Polynomial CurvesEugene FiumeyDepartment of Computer Science, University of Toronto, 10 King's College Circle, Toronto, Canada, M5S 1A4AbstractThe main preoccupations of research in computer-aided geometric design have been on shape-speci�cation techniques for polynomial curves and surfaces, and on the continuity between segmentsor patches. When modelling with such techniques, curves and surfaces can be compressed or expandedarbitrarily. There has been relatively little work on interacting with direct spatial properties of curvesand surfaces, such as their arc length or surface area. As a �rst step, we derive families of paramet-ric piecewise polynomial curves that satisfy various positional and tangential constraints together witharc-length constraints. We call these curves isometric curves. A space curve is de�ned as a sequence ofpolynomial curve segments, each of which is de�ned by the familiar Hermite or B�ezier constraints forcubic polynomials; as well, each segment is constrained to have a speci�ed arc length. We demonstratethat this class of curves is attractive and stable. We also describe the numerical techniques used thatare su�cient for achieving realtime interaction with these curves on low-end workstations.Keywords: isometric piecewise parametric polynomial curves, arc length, computer-aided geometricdesign, numerical methods.1. IntroductionResearch into the speci�cation of piecewise curves andsurfaces has very successfully attacked the problem ofshape control and continuity across curve segmentsor surface patches1; 2. The main theme of these ap-proaches is to de�ne an overall space curve C(t) as aset of piecewise polynomials p0;p1; � � � ;pm. All curvesegments are usually of the same low degree n, andmost often n = 3. Each segment pi(t) is de�ned bymeans of a sequence of control points Pij; j = 0; � � � ; nthat are weighted together by n+1 blending functionsBij(t) as in pi(t) = nXj=0 Bij(t)Pijto form an overall piecewise polynomial curve of de-gree n. Typically the blending functions are the samey The �nancial support of the Natural Sciences and Engi-neering Research Council of Canada and of the Informa-tion Technology Research Centre of Ontario is gratefullyacknowledged.
for each curve segment i, so in this case we can writeBj rather than Bij. There are many variations onthis theme that enforce continuity and a variety ofshape speci�cation possibilities. Among the desiredproperties of a curve speci�cation is a�ne invari-ance, sometimes also called co-ordinate system inde-pendence, which requires that for an a�ne transfor-mation � , �pi(t) = nXj=0 Bij(t)�Pij:Working with control points is a convenient wayof specifying curves and surfaces. However, this ex-tra layer of indirection can make it di�cult to workwith actual spatial properties of the object, such as itssurface area, curvature or arc length. The need to pre-serve length, area or volume often arises in computeranimation and in physical and geometric modelling,but this is generally part of a non-interactive postpro-cess.An interesting challenge, then, is to derive setsof blending functions that guarantee arc-length orc
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2 E. Fiume / Isometric Piecewise Polynomial Curvessurface-area invariance, but that retain traditionalcontrol-point techniques for interactivity. Further-more, we wish such solutions to be as independentof co-ordinate system as possible. As a �rst step, weconsider the problem of maintaining segment-wise arc-length constraints for piecewise polynomial curves ofdegrees 1-4. For curves of degree 3 and 4, the speci�-cation is based on the familiar cubic Hermite or B�ezierbasis. The basis will not be linear in arc length, butfor a given arc length, the solution is both transla-tion and rotation invariant. Our goals are to developa curve-speci�cation scheme that naturally extends fa-miliar techniques, that has local control, that is largelyco-ordinate system independent, and that can be e�-ciently implemented. Our resolution of these goals isa family of isometric polynomials.An extremely-interesting related problem that weshall not discuss in depth is the following: givena sequence of points (possibly mixed with tangentsand possibly with nonuniform knot spacing) Pi; i =0; � � � ; n, derive an isometric curve C(t) of degree mthat \optimally" interpolates the points. The notionof optimality may be based on quasi-physical notionssuch as strain energy, or geometric properties of thecurve. Jou and Han give a mathematical develop-ment for generally nonpolynomial, arc-length parame-terised curves of speci�ed arc-length and interpolationconstraints3. Roulier avoids arc-length parameterisa-tion and concentrates on B�ezier curves of arbitrary de-gree that meet arc-length and convexity constraints4.Although neither paper discusses the issue at length, itis possible to use either approach in a piecewise fash-ion to get some semblance of local control. What isless clear is whether these formulations can be used inan interactive design setting. Low-degree formulationswith piecewise continuity have traditionally been usedin this context. This is the focus of our work. Anothermotivation for our formulation is its expected ease ofextension to surface-area constraints.The use of isometric curves is most obvious in thespeci�cation of trajectories for computer animation:we may wish an object to follow a route of a certaindistance over some time interval, perhaps meeting cer-tain velocity and positional constraints. Another useis in texture-mapping, which has already been recog-nised (cf. Bennis et al.5). A third use is in the interpo-lation of scattered data (e.g., Lee6). Isometric curveshave an string or wire-like feel about them, and aresuitable for modelling such inelastic phenomena. Ourcurves may also be useful in �ltering, where ringing ina reconstructed signal may be damped by \pulling" onthe curve using an arc-length constraint. Ultimately,we wish to extend our approach to isometric surfacesincluding real \patches" of certain kinds of cloth, pa-per, moulded plastic, sheet metal, etc.

Our isometric curves are not necessarily arc-lengthparameterised curves. In fact, they are extremely un-likely to be so (see Farouki and Sakkalis7). An arc-length parameterised curve is such that equal stepsin the parameter give equal steps in arc length alongthe curve. Such objects would be ideal candidates forminimising distortion in texture mapping, but thereare very few classes of polynomials that can be an-alytically arc-length parameterised: the class is re-stricted to lines. Girard considered this problem in atrajectory-speci�cation context and derived approxi-mate table lookup techniques for arc-length reparam-eterisations of user-speci�ed curves8. An interestingopen problem is whether or not our isometric curveformulation easily admits arc-length reparameterisa-tion.Our curve formulation is based on non-rationalpolynomials. The generalisation of the approach torational polynomial schemes is both interesting andchallenging. The appearance of a polynomial in thedenominator as well as the numerator results in a for-mulation that appears to be more di�cult to solvethan the non-rational form. This is an excellent topicfor future research.The next section formulates isometric curves of de-grees 1-4. We then discuss the numerical methods re-quired to develop an e�cient implementation.2. Mathematical Formulation of IsometricCurvesWe shall formulate an arc-length constrained polyno-mial curve segment from �rst principles for curve seg-ments of various degrees. The term isometric is syn-onymous for our purposes with arc-length constrained.Throughout, our discussion will be concerned withparametric curves p(t) = (x(t); y(t)); t 2 [0; 1] in theplane. The extension to general space curves in Rn isstraightforward.From di�erential geometry9; 2, the arc length of aspace curve p(t) on domain [a; b] is de�ned asA(p; [a; b]) = Z ba k _p(t)kdt; (1)where _p denotes the component-wise derivative of pwith respect to t. If p(t) is de�ned parametrically as(x(t); y(t)), then the derivative can be taken compo-nentwise (giving a velocity), and the expression for arclength is thusA(p; [a; b]) = Z ba k( _x(t); _y(t))k dt= Z ba p _x(t)2 + _y(t)2 dt: (2)c
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E. Fiume / Isometric Piecewise Polynomial Curves 3In the special case in which p = (x; y) is an explicitfunction of x, that is y = f(x), then it is easy to showthat A(p; [a; b]) = Z ba q1 + _f(x)2 dx: (3)Analytic solutions for these elliptic integrals onlyexist for very simple functions. Among the polyno-mials, for example, analytic solutions exist only forpolynomials of degree two or lower. Perhaps this facthelps to account for the lack of work in isometric poly-nomial curve speci�cation. Another factor is that iso-metric polynomial curve families do not admit a linearpolynomial basis. However, we shall see that it is pos-sible to de�ne such families that are \quasi-linear" inthe sense that they are translation and rotation in-variant, and that have the convex hull property. Fur-thermore, we shall demonstrate that the computationof these constraints is quite feasible and that the re-sulting curves are pleasing.By way of example, consider the cubic space curvep(t) = (t3 � 2t2 + 3t+ 1; 2t3 + t2 � 2t� 1):A plot of this curve for t 2 [�1;1] can be found inFigure 1. A plot of the arc-length integrand for thiscurve can be found in Figure 2. The area under thiscurve is the arc length. Notice that despite the vari-ation in p, the arc-length integrand is quite smooth,and would be even smoother after integration. This isborne out by Figure 3, which depicts the monotone-increasing integral function A(p(t); [�1; t]). A four-term Simpson's rule evaluation of A(p(t); [�1; 1]) givesa relative error of 1%, which is almost acceptablefor display-screen precision. A sixteen-term evaluationachieves a precision comparable to the single-precisionmachine epsilon on Sun-based workstations. Gaussianquadrature or other quadrature schemes may also beemployed (cf. pp346-350 of Watt and Watt10, andGuenter and Parent11), but the added economy forlow-degree curves is minimal.We shall now consider possible arc-length constraintformulations for curves of varying degrees. As we shallsee, quartic curves are required to give the same levelof control as can be achieved with, for example, cu-bic B�ezier or Hermite curves, together with the addedarc-length constraint. However, a we shall introduce auseful class of Hermite-like isometric cubic curves thatmay be su�cient for many applications.2.1. Degree One Curve SegmentsLine segments with two arbitrary endpoints P0; P1cannot of course be arc-length constrained, but a fam-ily of line segments given by one endpoint P , a direc-tion d, and a length � > 0 in fact allow us to specify
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Figure 1: A parametric cubic space curve.
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Figure 2: The arc-length integrand for the above spacecurve.isometric line segments. Fixing � and P gives a circu-lar locus of solutions for d; �xing P and d gives a lineof solutions for �; �xing d and � gives admits a planeof solutions for P . Finally, specifying each of P , d and� de�nes a unique line segment.2.2. Degree Two Curve SegmentsTraditional piecewise parabolic segments are often suf-�cient for applications needing only C1 parametriccontinuity. However, with the addition of a segment-wise arc-length constraint it is not possible, for exam-ple, to interpolate two endpoints per parabolic seg-ment with C1 joint continuity, all the while main-taining an arc-length constraint. Nevertheless, this isc
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4 E. Fiume / Isometric Piecewise Polynomial Curves
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xFigure 3: The actual arc-length of the space curve,A(p(t); [�1; t]), as t varies from �1 to 1.a nontrivial family of curves that will illustrate ourderivation for higher-degree formulations discussedlater.2.2.1. A Single Parabolic Curve SegmentSuppose we require a parabola in explicit formy = ax2 + bx + cto have arc length � > 0 on the interval [0,1]. We re-quire two more constraints to make this curve unique.From the point of view of curve design, a reasonableset of constraints would be that the curve must inter-polate a y-value P at x = 0 and must have derivative_y(0) = T at x = 0. This situation is depicted in Fig-ure 4. Meeting the positional constraint requires thatc = P;which is easily seen just by letting x = 0 in our ex-pression for y. Similarly, di�erentiating y with respectto x and letting x = 0 shows thatb = T:We can solve for a by meeting the arc-length con-straint. If we require thatA(y; [0; 1]) = �;then A(y; [0; 1]) = Z 10 p1 + _y2 dx= Z 10 p1 + (2ax+ b)2 dx= Z 10 p1 + (2ax+ T )2 dx: (4)
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0 1Figure 4: Constraints on a parabolic curve segment.Note that the positional constraint does not �gure inthe above equation, which is sensible, since an arclength is independent of the curve's origin. The in-tegral on the right-hand side has an analytic form:A(y; [0; 1]) = 2Aa+AT + ln(4Aa+ 8 a2 + 4 aT )4a� UT + ln(4Ua + 4 aT )4 a ; (5)where A = p1 + 4aT + T 2 + 4a2; andU = p1 + T 2:Since T is given, our goal is to solve for a subject toA(y; [0; 1]) = �, for a given � > 0. Note that theterm U is constant, but A is not. Some trivial re-arrangement of the symbols is possible, but the for-mula appears to resist further simpli�cation. While aclosed-form solution for a appears impossible, a so-lution, when it exists, can be e�ciently found usingnumerical techniques, as is discussed below. Becausethe above equation is quadratic in a, there are usuallytwo possible solutions. For example, Figure 5 depictsthe solutions corresponding to� = 10; T = 5; P = 0:Using numerical techniques described in Section 3, we�nd that the two quadratic curves that meet theseconstraints are (approximately)p1(t) = �14t2 + 5t;p2(t) = 5t2 + 5t:We can therefore choose the desired curve shape bychoosing the solution that is concave up or down asneeded, simply by selecting a positive or negative a.c
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E. Fiume / Isometric Piecewise Polynomial Curves 5
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tFigure 5: Two parabolic curve segments with y(0) =0; _y(0) = 5; � = 10.An important point here is that the log in the equa-tion is a complex natural log. In the above example,only the solution for positive a, namely p2, is foundwith a real-valued log. Computing with a complex-valued log will �nd both solutions. Unfortunately, thismeans a direct implementation of Eq. 5 is likely to beslower than using quadrature on Eq. 4.A solution will not exist when the desired arc lengthis not realisable for a given T . A lower bound for �given T may be obtained by considering the length ofthe line segment from an initial point P in the direc-tion T travelling over unit distance in x. The lengthof this line segment is thusp�x2 +�y2 = p1 + T 2= U:Rather than interpolating position and tangent, itis easy to formulate isometric quadratics that interpo-late two positions P0; P1, at x = 0; 1, respectively, forexample. Noting that y(0) = P0 again implies thatc = P0:Moreover, requiring that y(1) = P1 implies thata + b+ c = P1 ) b = P1 � P0 � a:The integral equation once again has a closed (buteven messier form), and solutions for a can be foundnumerically.The generalisation of isometric parabolic curve seg-ments from an explicit to parametric representationis straightforward. Suppose the space curve p(t) =

(x(t); y(t)) is to be constrained such thatp(0) = P = (px; py);_p(0) = T = (dx; dy);and suppose furthermore that the curve segment mustsatisfy an arc-length constraint. There are at least twoplausible constraints. One constraint would be to treatthe x and y components of p separately and imposeindependent arc-length constraints on them as follows:A(x; [0; 1]) = �x;A(y; [0; 1]) = �y:Another constraint would be to consider the overallarc length of p : A(p; [0; 1]) = �:Componentwise constraints are explicit functions inthe parameter, and can therefore be solved from ourearlier discussion. The second constraint, namely truearc length for a space curve, is both more interestingand more realistic, since a solution has some hope ofbeing co-ordinate system independent. Not all solu-tions to the constraint are independent of co-ordinatesystem. Most are not. A scheme based on componen-twise arc-length constraints is co-ordinate system de-pendent by de�nition. In the case of isometric curves,we cannot require complete a�ne invariance, becausearc length is not invariant under shears and scalings.This does not mean there is no way to predict thechange in the arc-length as a result of scaling. Infact, for uniform scaling this is easy. Our notion ofco-ordinate system independence will be restricted totranslations and rotations.Let the curve segment p(t) = (x(t); y(t)) bep(t) = at2 + bt+ c;denoting the componentsx(t) = axt2 + bxt+ cx;y(t) = ayt2 + byt+ cy:Most of the constraints can be resolved componentwiseand are analogous to the solution in the explicit case:p(0) = P ) (cx; cy) = P;_p(0) = T ) (bx; by) = T:It remains to solve for the leading coe�cients (ax; ay).Recalling from Eq. 2 that the arc length for a spacecurve on [0,1] isA(p; [0; 1]) = Z 10 k( _p(t)k dt= Z 10 p _x(t)2 + _y(t)2 dt;c
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6 E. Fiume / Isometric Piecewise Polynomial Curvesafter substituting the above constraints, our expres-sion for arc length becomesA(p; [0; 1]) = Z 10 pat2 + bt + c dt; (6)whereT = (dx; dy), a = 4a�a, b = 4a�T, and c = T�T.After some tedious algebra, a closed-form solution forthe integral can be found (which is unsurprising, sincea closed form exists for the explicit case). However, itis extremely messy and uninformative, and indeed itis more appropriate to solve numerically for (ax; ay)directly from the integral equation, since real squareroots are less costly than complex natural logarithms.Observe that while the positional and tangentialconstraints can be solved independently for each com-ponent, the arc-length constraint involves both com-ponents simultaneously. In fact, the system is under-constrained, since we have two unknowns, ax and ay,in one equation. There is thus a large set of possible so-lutions. One way to get a unique solution is to expressa cross-constraint between ax and ay. For example, aycould be a functional combination of the given valuestogether with ax. The simplest cross-constraint wouldbe ay = �ax;for some constant � 6= 0. This allows us to write Eq.6 as a function of a single variable ax and, if a so-lution to the equation A(p(t; ax); [t0; t1]) = � for axexists, we can back-substitute to get ay. (The notationp(t;a) means that the coe�cient a is a parameter inthe polynomial p(t). Thus a would be the indetermi-nate in the integral equation A(p(t;a); [t0; t1]) = �.)The advantage gained here is speed of computation,but a disadvantage is co-ordinate system dependence.In particular, our resulting curve will be translation in-variant, but not rotation invariant. On the other hand,it has a rather nice property of being \bias" parame-ter. We shall more to say about this later.2.2.2. Piecewise FormulationsIt is not possible to de�ne isometric everywhere C1quadratic curves that also interpolate two arbitraryprespeci�ed endpoints. About the best we can do ifC1 joint continuity is desired is the \go with the 
ow"approach: specify an initial velocity and position forthe �rst curve segment, and then use arc-length con-straints to control the position and velocity of all sub-sequent segments. This is illustrated in Figure 6, inwhich the user is free to specify the initial positionand tangent of �rst segment, as well as its arc length.The subsequent positional information for segmenti > 0 is completely determined by �i�1. This obvi-ously does not result in a particularly powerful tech-
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1Figure 6: Two parabolic curve segments with a user-speci�ed initial tangent and position. Subsequent posi-tions and tangents are controlled by the arc length foreach segment.nique for curve design, but it may be of some use intrajectory simulation and in initial-value problems.2.3. Degree Three Curves2.3.1. A Single Cubic Curve SegmentThe ability to meet four positional constraints exactlytogether with an arc-length constraint is not possi-ble with a cubic curve segment. For example, we can-not hope to meet the cubic Hermite conditions of twoendpoints P0; P1, two tangents T0;T1 with speci�cmagnitudes, together with an arc-length constraint.However, by relaxing these constraints slightly, wecan achieve a generally satisfactory solution. We shall�rst derive a solution for isometric cubic Hermite seg-ments and subsequently apply this solution to the cu-bic B�ezier form.The well-known cubic Hermite curve is given by theconstraintsp(0) = P0; p(1) = P1; T0 = _p(0); T1 = _p(1); (7)which leads easily to the monomial change-of-basis12,p(t) = �t3 t2 t 1� 264 2 �2 1 1�3 3 �2 �10 0 1 01 0 0 0 375 264 P0P1T0T1 375 :This gives rise to the following expression in the user-c
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E. Fiume / Isometric Piecewise Polynomial Curves 7speci�ed constraints:p(t) = �2 t3 � 3 t2 + 1�P0 + �3 t2 � 2 t3�P1+ �t3 � 2 t2 + t�T0 + �t3 � t2�T1= (2(P0 � P1) + (T0 +T1)) t3 (8)+ (3(P1 � P0)� 2T0 �T1)) t2 +T0t+ P0:The resulting curve is unique for a given set of con-straints. To meet an additional arc-length constraint,we relax the tangent constraint so that given user-speci�ed tangents T0;T1, we �nd a Hermite curvethat satis�es _p(0) = sT0; _p(1) = sT1:We then solve for s subject to meeting the arc-lengthconstraint. In this case, Eq. 8 becomesp(t) = (2(P0 � P1) + s(T0 +T1)) t3 (9)+ (3(P1 � P0) � s(2T0 �T1))) t2 + sT0t+ P0:Observe that if we were able to derive a closed formfor the arc lengthA(p(t; s); [0;1]) = Z 10 p _x(t; s)2 + _y(t; s)2 dt; (10)then A would no longer be a function of t. Indeed,it would be a function of s alone. Furthermore, theintegrand would contain terms in s2 and s under thesquare-root (the actual formula is messy, but this isobvious from Eq. 10). Thus there would be at mosttwo solutions to the nonlinear equation A(s) = �, onewith s positive, and the other with s negative. Whena solution exists, we shall choose the solution s > 0;since s controls the magnitude of the curve's tangentsat the endpoints of the interval, this will preserve theoverall shape of the curve. Flipping a tangent wouldintroduce or remove a point of in
ection. Figure 7 il-lustrates how the curve changes to meet three di�erentarc-length constraints while satisfying four constraintson position and tangent. Figure 8 illustrates the ef-fect of changing the two tangents to the curve, whilemaintaining the same endpoints and arc length. For awide-range of arc lengths, interacting with these con-strained curves is quite similar to their unconstrainedcounterparts.The classic cubic B�ezier curve p(t) is given by fourcontrol points P0; P1; P2; P3. The constraints on p(t)are thatp(0) = P0; p(1) = P3;_p(0) = 3(P1 � P0); _p(1) = 3(P3 � P2): (11)This yields the following standard matrix representa-

Figure 7: Three Hermite cubic curves that each meetthe same four constraints on positions and tangents,but which have varying arc lengths.
Figure 8: The e�ect of varying the tangent of a con-strained cubic hermite curve while maintaining thesame arc length and endpoints.tion:p(t) = �t3 t2 t 1� 264 �1 3 �3 13 �3 3 0�3 3 0 01 0 0 0 375 264 P0P1P2P3 375 :The cubic Hermite and B�ezier curve families are di-rectly related, and in fact the cubic B�ezier form canbe thought of as being a convenient speci�cation tech-nique for cubic Hermite curves. To solve for an arc-length constraint in a manner analogous to the Her-mite case, we relax our tangent constraint to_p(0) = s(P1 � P0); _p(1) = s(P3 � P2):Solving for s in this case is exactly as before, andwe shall once again choose the solution for whichc
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8 E. Fiume / Isometric Piecewise Polynomial Curves
Figure 9: Several constrained B�ezier cubic curves thateach meet the same four positional constraints, butwhich have di�ering arc lengths. The solid curve isthe standard B�ezier solution.s > 0. Figure 9 illustrates the e�ect of changing thearc length of the B�ezier curve while maintaining theother positional constraints. The solid curve depictsthe standard cubic B�ezier solution satisfying Eq. 11(i.e., s = 3). Although these curves do not in gen-eral have the convex-hull property with respect to theoriginal control points, they do have the property withrespect to the control points P0; P̂1; P̂2; P3, whereP̂1 = P0 + s(P1 � P0);P̂2 = P3 + s(P3 � P2):Overall, this curve family has many of the propertiesof the standard cubic B�ezier form: it is invariant un-der translation and rotation (for example, notice theinvariance of the curve under rotation in Figure 10),it has the convex hull property with respect to theupdated control points given by the value s. Further-more, as we shall see, s is cheap to compute.2.3.2. Piecewise FormulationIsometric cubic B�ezier and Hermite curves can sat-isfy the expected constraints to ensure piecewise con-tinuity. Because the magnitude of the tangents acrosscurve segments cannot be preserved, we have a formof geometric, but not exact parametric continuity. Inmany cases, however, this is quite acceptable. Themagnitude of the tangent vector is of course given bythe s terms described above. In Figure 11, for example,

Figure 10: Invariance of isometric cubic B�eziercurves under rotation. For clarity, the two non-interpolated control vertices are not displayed.we see three B�ezier curves speci�ed using eight controlpoints in which we enforce G1 continuity. Notice thatwhen an interior (tangent) control point is moved, thesolid curve becomes the dotted curve, preserving con-tinuity. Furthermore, note the local control, evidencedby the fact that the �nal curve segment is invariantto a change in the tangent between the �rst two seg-ments.2.4. Degree Four Curve SegmentsIf our application requires that we meet position andvelocity constraints exactly, as for example, in tra-jectory interpolation, then we must resort to quarticcurves. Solving the system of constraints is analogousto the situation for parabolic segments. In particular,if we have a space curvep(t) = at4 + bt3 + ct2 + dt+ esubject as in Eq. 7 top(0) = P0; p(1) = P1; T0 = _p(0); T1 = _p(1);then after some algebra,e = P0;d = T0; (12)c = 3P1 � 3P0 � 2T0 �T1 + ab = 2P0 � 2P1 +T0 +T1 � 2ac
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E. Fiume / Isometric Piecewise Polynomial Curves 9
Figure 11: Continuity and local control for isomet-ric B�ezier curves. The circled control point a�ectingthe �rst two curve segments is moved, resulting in achange to these segments, while leaving the third in-variant.which leaves a = (ax; ay) free. If we let T0 = ( _x0; _y0)and T1 = ( _x1; _y1), then each component _x(t; ax)2 and_y(t; ay)2 under the square root in an arc-length inte-gral is of the form_x(t; ax)2 = Axa2x + Bxax +Cx;_y(t; ay)2 = Aya2y +Byay + Cy;whereAy = (4t3 � 6t2 + 2t)2By = (6(d0 + d1 + 2y0 � 2y1)t2+ 4(�d1 � 2d0 + 3y1 � 3y0)t+ 2d0)Ay)Cy = (3(2y0 � 2y1 + d0 + d1)t2+ 2(3y1 � 3y0 � 2d0 � d1)t+ d0)2;and similarly for _x(t; ax)2. The important point hereis that just as in the case for parabolic segments, thesystem is quadratic in a. This is not a di�culty; indeedit allows us extra freedom in choosing an appropriatecurve shape. We have found that most often, alter-nating positive and negative solutions values for a foreach segment, meaning that the curve alternately goesfrom concave to convex, gives the most pleasing shapefor trajectories. In geometric modelling applications,however, there may be special reasons for choosingconvex curves4.

Figure 12: The e�ect of � on an isometric quarticcurve.As with the parabolic segments, we are faced withthe problem of solving for the two a terms in one equa-tion. If we impose the constraint thatay = �ax; (13)then the solution for ax can be quickly computed andback propagated. The choice of � a�ects the bias ofthe curve1, as can be seen in Figure 12. For some ap-plications, this bias term may be useful for design.However, because it directly biases the relative weightof the x or y components making up the space curve,the curve is not rotation invariant, though it is trans-lation invariant.Recalling Figure 12 once again, we note that, allother things being equal, the dotted curve is the mostsymmetric and pleasing. This happens to be the curvethat minimises strain energy. For a scalar functionp(t), we de�ne its strain energy over interval [t0; t1]as S(p(t); [t0; t1]) = Z t1t0 �p2(t)dt: (14)The strain energy of a quartic polynomial p(t) = at4+bt3 + ct2 + dt+ e on [0,1] isS(p(t); [0; 1]) = 1445 a2+12b2+4c2+16ac+36ab+12bc:The strain of a space curve p(t) = (x(t); y(t)) is simplyS(p(t); [a; b]) = S(x(t); [a; b]) + S(y(t); [a; b]):The second derivative is related to curvature, and in-deed in an arc-length parameterisation it is equal tocurvature. In general, it approximates curvature, andthus a polynomial from a class with the lowest strainenergy essentially has the fewest \kinks" and wigglesin it. By using an a�ne-invariant measure such asc
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10 E. Fiume / Isometric Piecewise Polynomial Curvesstrain energy, we are able to remove a co-ordinate sys-tem bias from the solution for the leading coe�cientsa. This now gives us a curve formulation that is iso-metric and that exactly meets a set of cubic Hermiteor B�ezier style constraints. The price to pay is addedcomputational di�culty, which we now address.3. Numerical TechniquesNumerical implementations of the above formulationsrequire careful study, but generally only elementarynumerical techniques are required for acceptable real-time performance on cheap workstations. We �rst dis-cuss stable fundamental techniques that were used inour implementation and then discuss approximationschemes when very fast computations are required.As we saw earlier, an arc-length integral of a low-degree polynomial is a simple, smooth function. A 4-12 term Simpson's rule on a uniform subdivision of[0,1] quickly yields a satisfactory solution. Comparableresults are achieved with gaussian quadrature10; 11.We shall see below how fast approximation schemescan be built from basic quadrature rules.Solving the nonlinear equationA(p(t;s; a); [0; 1]) = �for a scale factor s or for a single coe�cient a requiressome care. An ideal situation would have been one inwhich we would be solving for the bound variable t inthe integral. Unfortunately, we are solving for a singlevariable within a square root and under an integral.The resulting derivative of A with respect to s or a asnecessary is truly frightening and far too expensive tocompute. This makes a derivative-free approach im-perative. We have found that secant-rule works ex-tremely well in this case13. Initial guesses are easyto manufacture heuristically, and the average conver-gence to achieve screen resolution is 3-4 iterations.Solving for the isometric cubic and parabolic for-mulations requires nothing more than the above, andour entirely software implementation on a 0.5MFLOPSun IPC without graphics assist permits the realtimemanipulation of many curve segments. The computa-tion is most certainly dominated by rendering time. Asit happens, there is a surprising relationship betweenarc length and the leading coe�cient a (and similarlyfor s). Figure 13 depicts how the arc length (verticalaxis) varies with the leading coe�cient a of a typicalquartic curve. The picture for lower-degree curves isquite similar. Notice the nearly linear tails, taperingto a minimum. The trough of this curve clearly de-pends on the boundary conditions of the constrainedpolynomial, but in cases where the desired arc lengthis distant from the trough, a linear approximation is
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Figure 13: The change in arc length (vertical axis)as the leading coe�cient of a quartic varies.quite su�cient. This provides a very fast approxima-tion when the length of a curve segment is changedwhile the control points remain the same.Computing an isometric strain-minimisation func-tional is the most expensive step. To solve for theisometric polynomial that minimises strain we haveobserved that strain near the vicinity of the globalminimum tends tends to have a rounded trough-likecurve with respect to the leading coe�cients. We havetried many approaches, but the best one seems to besuccessive parabolic interpolation, since it is deriva-tive free, and since it quickly converges if the initialguesses are in the \valley" of the trough14. If this can-not be guaranteed, then a more conservative approachbased on golden search can be employed13.Our strain-minimisation algorithm is as follows. Ourgoal is to �nd the quartic polynomial space curvep(t) = (x(t); y(t)) with the least strain energy thatmeets the arc-length and positional constraints. Aswe saw in Eq. 13, the positional constraints prescribethe b;c;d; and e coe�cients of the space curve. Ouronly variables are the leading coe�cients a = (ax; ay).If we use successive parabolic interpolation, we beginwith three initial guesses for the leading coe�cientax. Meeting the other constraints thus prescribes thecorresponding ay for these guesses. We evaluate thestrain energy eax of the resulting polynomials and �ta parabola through the points corresponding (ax; eax).We compute the minimum of this parabola, giving usa new ax, and we discard the �rst guess. After an aver-age of 4-5 iterations, we �nd a �xed point. Notice thatthis algorithm requires the both the arc-length inte-gral and arc-length constraint satisfaction algorithms,c
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E. Fiume / Isometric Piecewise Polynomial Curves 11described above, as subroutines. As implemented, thisimplementation can compute the continuous updateof about 10 such strain-minimal curves at about 10frames/second on a Sun IPC.When speed is at an absolute premium, we suggestthe following scheme. For simplicity of notation, letus consider approximating the arc-length of a func-tion y = f(x;s), namely an explicit function in x withparameter s for which we ultimately wish to solve.When employing any nonadaptive compound quadra-ture rule on uniformly spaced samples, we approxi-mate an arc-length integral on [0,1] as follows:A(f ; [0;1]) = Z 10 q1 + _f(x; s)2 dx� nXi=0 wiq1 + _f(i�x; s)2 dx; (15)where the wi are the weights given by the quadraturerule employed. As mentioned earlier, for a compoundSimpson's rule, n is usually small (with n = 8 gen-erally being quite su�cient). Thus evaluating Eq. 15once is fast. The ine�ciency arises because it is re-peatedly evaluated to solve for a given arc length, andit is further repeated in strain-energy computations.It it would be worthwhile to approximate the com-pound quadrature rule by a low-degree polynomial, ifpossible.In any of the above formulations, if we solve foreither a leading coe�cient or a scale factor, we alwaysget a quadratic function in that parameter under thesquare root. That is,A(f ; [0; 1]) � nXi=0 wipais2 + bis+ ci; (16)where the ai; bi, and ci are easily computed from thecontrol points and i�x. While techniques from com-puter algebra might sometimes be helpful in comput-ing an analytic square root of the quadratic, we in-stead consider a series approximation. The Taylor'sseries for a single term within the summation is:pas2 + bs+ c � pc+ bs2pc +pc� a2 c � b28 c2� s2 +pc� b316 c3 � ba4 c2� s3 + (17)pc�3 b2a16 c3 � a28 c2 � 5 b4128 c4� s4 +O(s5):Thus each term involves the square-root of a quadraticfunction in the quadrature rule given by Eq. 16 re-quires the computation of a single square root, namelypc, in the approximation to the quadrature rule,

Eq 17. If we sum the Taylor's series corresponding toeach term in Eq. 16, we arrive at a polynomial approx-imation to the arc length. Letting the polynomial tobe of low degree (e.g., 2-4) allows us to solve e�cientlyfor arc-length directly as a function of s.To summarise the technique, we approximate thearc-length integral for an arbitrary low-degree poly-nomial by writing it as a formal quadrature rule,performing a series approximation of the individualterms, and noting that when we sum the approxima-tions, we get a low-degree polynomial in the parameterto solve, with only a small number of square roots tocompute. The coe�cients of the polynomial can becomputed and directly substituted into the formula-tion. We stress that this solution is an approximationbut the author has obtained good preliminary results.A more rigorous evaluation of the technique is neces-sary, however, and is the subject of current research.4. ConclusionWe have presented an interesting class of Hermite-likeisometric polynomial curves, and we have discusseda their implementation. Interacting with the isomet-ric curves is as natural (or not) as working with theunconstrained Hermite form, and our formulation ofthese curves has local control and co-ordinate systemindependence.One di�culty with the quartic form is that thestrain-energy based objective function operates lo-cally, in keeping with our theme of local control. Thismeans that individual curve segments look quite good,but that the joints between curve segments may ex-hibit high local curvature. Several strategies may beemployed to address this problem. One would be to op-timise strain energy over more than one curve segmentat a time. This would a�ect the local-control proper-ties of the formulation. Another approach would beto formulate a di�erent objective function to be min-imised. After all, there is no requirement that a realtrajectory must have minimum curvature at all times.A �nal approach would be to increase the degree of thecurve and have it operate over wider support. Again,this undermines the local-support assumption.As was mentioned earlier, we have only considerednon-rational polynomial forms in this paper. Exten-sions to rational forms would be worthwhile.Our formulation was chosen in the hope that itwould make simpler the extension to isometric sur-faces. We are just beginning that work now. Despitethe apparent geometric simplicity of sheets of paper,patches of cloth, and pieces of sheet metal, surface-area constraints are mathematically much more subtlethan arc-length constraints.c
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