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A prevailing trend in computer graphics is the demand for increasingly realistic global
illumination models and algorithms. Despite the fact that the computational power of
uniprocessors is increasing, it is clear that much greater computational power is required to
achieve satisfactory throughput. The obvious next step is to employ parallel processing.
The advent of affordable, tightly-coupled multiprocessors makes such an approach widely
available for the first time. We propose a tightly-coupled parallel decomposition of FIAT, a
global illumination algorithm, based on space subdivision and power balancing, that we
have recently developed. This algorithm is somewhat ambitious, and severely strains exist-
ing uniprocessor environments. We discuss techniques for reducing memory contention and
maximising parallelism. We also present empirical data on the actual performance of our
parallel solution. Since the model of parallel computation that we have employed is likely
to persist for quite some time, our techniques are applicable to other algorithms based on
space subdivision.

1. Introduction
In order to generate realistic images, global illumination algorithms tend to require vast amounts of main
memory and computational resources. The demand for increasing visual realism is unlikely to diminish,
and any progress made in improved visual realism simply results in increased expectations. Conse-
quently, the performance of implementations of these algorithms on uniprocessors will continue to be
unsatisfactory, despite constant improvements in CPU and memory speeds. Parallel solutions to such
problems have often been advocated, but until the advent of affordable multi-processors, this option has
not been widely available. These multi-processors are becoming quite popular, and it is evident that a
popular mode of large-scale computation will be to have many such machines co-existing on a local-area
network. Given this newly emerging computational environment, it is of some use and interest to apply it
to intensive applications such as global illumination.

In this paper, we shall concern ourselves with a tightly-coupled parallel implementation of FIAT, a global
illumination algorithm that we have recently developed [Four89]. The time and space requirements of
FIAT often exceed the capabilities of large uniprocessors. However, it responds nicely to parallelism.
While we have naturally tailored our parallel decomposition to the problem at hand, we feel that a
number of more general principles arise from our work:

g that acceptable speedup requires careful reconsideration of the algorithm.

g that the architecture of the target environment must be taken into account in the parallel algorithm.

g that first-order approaches to parallelism such as simple locking and buffering achieve suboptimal and
sometimes even subserial speedup.
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g that better serial algorithms can result from parallelism.

We believe that the basic tenets of our approach readily transfer to other intensive graphical applications.

In the next section, we give a brief overview of FIAT. Further details of the algorithm will be presented
as needed. We shall discuss a specific parallel implementation of FIAT, and the effect of the implementa-
tion on the performance of FIAT. It is unfortunately not common for parallel approaches to progress
beyond the paper-design stage. In our case, we are able to report on the performance of a true implemen-
tation. Lastly, we draw conclusions and examine further extensions to our work.

2. An Overview of FIAT
FIAT is a physically-based approach to the simulation of global (or environmental) illumination. Related
approaches include radiosity [Gora84], ray-tracing [Whit80], and hybrid two-pass schemes
([Imme86],[Shao88],[Sill89]). Our approach differs in that it directly handles a wide class of light
sources together with surfaces having arbitrary reflectance behaviours. This can be contrasted with tradi-
tional radiosity-based approaches which typically are constrained to diffuse reflectors and emitters, or
ray-tracing approaches, which focus on specular reflectors and point or parallel light sources. FIAT
directly handles the gamut of reflectance functions from the purely diffuse to the purely specular. A
detailed presentation of FIAT is given in [Four89] and also in [Ouel89]. Our goal in this section is to
describe very briefly the overall operation of FIAT, so that its parallel solution can be understood, and so
that the application of our techniques to other algorithms is clear. FIAT is still somewhat experimental,
but recent results have demonstrated novel illumination phenomena, such as secondary specular reflection
and caustics - a phenomenon that is very difficult to achieve using other means (see Figure 1(a)).

FIAT takes as input a description containing geometric and light-source data. An ‘initial cube’ that
bounds the scene is computed, and each face of the cube is tessellated into the same number of side ele-
ments or sexels. Each sexel occupies a small square on the side of a cell, and contains light information
in the form of parallel beams of square cross-section. Each parallel beam represents a sample of light
power emanating from the sexel in a specific direction. Many directions are used to sample a hemisphere
of incoming light distribution. The goal of FIAT, coarsely speaking, is to convert global light informa-
tion into a large set of sexels distributed throughout the environment. The sexels in turn contain many
samples of light flux in various directions (beams). The initial cell, the sexels and the beams are all shown
in Figure 2.

The reduction is achieved by maintaining a power budget for each cell, which takes into account incom-
ing, outgoing, emitted, and absorbed light power. A cell is balanced if the incoming and emitted light
power totals the outgoing and absorbed power. There is initially just one cell, the bounding volume, and
the process begins by computing the power entering the volume from external light sources. This results
in a net power imbalance, which FIAT will try to rectify. If a cell is empty or contains objects that can be
dealt with directly, then a new power balance is determined. If the cell cannot be dealt with directly, then
it is subdivided in octree fashion, and relevant sexel information is transferred to the subcells.

We consider in slightly greater detail the case in which a cell can be dealt with. If a cell is empty, we
simply propagate every incoming light beam to relevant outgoing sexel. If the cell is not empty, an inter-
section computation between a specific light beam and the scene within the cell is performed. Light
beams that do not intersect with any objects within the cell are propagated as in the empty-cell case. For
those beams that do intersect with an object, a new power distribution about the point of intersection is
computed by invoking a local illumination model, with the beam acting as a light source. The outgoing
distribution may be quite complex, since it is not assumed that the reflectance function of the intersected
object is perfectly diffuse or specular. This distribution is sampled in many directions, and the relevant
outgoing sexels are updated. If the intersection point corresponds to a point that is visible from the eye
position, then the shade of this point in the direction of the viewpoint is computed and added to a relevant
pixel entry in a light update buffer or LUB. Thus an image is progressively produced as a function of cell
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Figure 2: Initial Cell, Subdivision, Sexels, Beams

balancing. The algorithm continues until the overall power imbalance falls below a threshold value.

3. The Goals for a Tightly-Coupled Parallel Solution
The task of FIAT inside a cell is complex and can involve a large amount of computation and data. To
take maximum advantage of the capabilities of parallel hardware we set the following goals:

(a) To perform as much of the computation as possible in parallel.

(b) To distribute the computation evenly among all processors.

(c) To find a solution that minimises the amount of locking necessary, and allows the processors to
compute independently as much as possible.

(d) To introduce a solution that can be scaled to a large number of processors. The range of processors
in which we are interested is that of existing common-bus shared-memory architectures, incorporat-
ing from 2 to 16 processors and not more than about 30. For larger-scale parallelism, we prefer to
take a hierarchical approach in which several tightly-coupled processors are employed. This
approach is an orthogonal dimension to the techniques described in this paper [Dret90].

To achieve these goals we shall first analyse the serial algorithm to determine the computationally expen-
sive sections. We investigate the structure of the algorithm and the data dependencies involved, to decide
how much computation in these sections can be parallelised, thus achieving goal (a). Goal (b) is achieved
by investigating the ways in which the computation can be segmented into independent components so
that the work is evenly distributed. To avoid locking it may be necessary to use temporary memory
private to each processor, and examine whether such a solution is actually preferable. For both (b) and
(c) in combination with private buffering schemes, changing the order of computation proves to be neces-
sary. Finally the selection of the scheme will be such that goal (d) is satisfied by design.

In the remainder of the paper we present the serial algorithm in more detail, outline a set of test cases
which we use to analyse the behaviour of the algorithm, and investigate the choices of parallel schemes.
We present one solution that satisfies the goals to the largest extent, and discuss some of the problems
that were dealt with in the design and implementation of this solution. Timing results on three test scenes
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are presented showing the effect of varying several parameters affecting performance. Some possible
alternative schemes for parallelism are discussed, and we close with a summary and some possible
enhancements.

4. Analysis of the Serial Algorithm
The computation in a cell can be split into two components. The first, called balancing, involves distri-
buting light entering a cell as a result of interaction with objects in the cell; also involved is the propaga-
tion of light beams within the sexels on one face of a cell to the sexels on some other face if the beam
does not intersect with anything. The second component, shading, involves updating the section of the
LUB associated with the cell. This is done by determining the visible surface for each pixel and shading
based on the incoming light that impinges on this visible point. These two processes are independent,
but use some common subroutines.

4.1. The serial algorithm.

For the purposes of this discussion we present a high-level pseudo-code version of the balancing (Figure
3(a)) and shading algorithms (Figure 3(b)) for the serial version of FIAT, shown on the following page.

4.2. Analysing the behaviour of FIAT in a cell.

From the pseudo-code presented in Figure 3 it is evident that a large proportion of the computation
will be spent in the functions that are executed in the inner loops. For balancing, these are the beam inter-
sections and, if distribution is needed, the power calculations and the code that finds the destination sexel.
For shading, the corresponding expensive operations are finding the sexels that shine on the visible point,
and performing power calculations to determine the shade. To confirm these intuitive estimations
profiling was performed for test cases. These test cases will also be used to evaluate the performance of
the parallel solution proposed.

BalanceCell (cell)
{

for each face
for each sexel

for each beam
/* does the beam hit anything ? */
P = BeamIntersect
if something is intersected at point P

DistribLight(P)
else

PropagateLight(beam)
}

DistribLight(hit_point)
{

for every direction d in sphere of directions around hit_point
/* calculate power reflected/refracted in direction */
Power = PowerCalc()
Sexel = FindDestinationSexel()
assign Power to direction d on Sexel

}

PropagateLight(beam)
{

sexel = FindDestinationSexel
assign the power of beam to same direction on sexel

}

Figure 3 (a) The serial algorithm for balancing.
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ShadeCell (cell)
{

determine xmin,xmax ymin,ymax corresponding to
projection of cell onto LUB
for x = xmin to xmax

for y = ymin to ymax
/* intersect ray from eye through centre of pixel (x,y) */
P = RayIntersect()
if P is on an object inside cell

/* find appropriate sexels whose
beams impinge on P */

while (sexel = FindHitSexel())
/* calculate power that sexel shines on P and shades (x,y) */
ShineBeam(sexel, P, x, y)

}

Figure 3(b) The serial algorithm for shading.

4.2.1. Test Cases

FIAT is extremely flexible in the range of light sources and surface properties that can be simulated. Test
cases must therefore be chosen with care to exercise as many modalities as possible. We have employed
the following three test scenes.

Scene 1: A shiny ashtray (60% specular, 40% diffuse) lit by a directional light source that is at a 45
degree angle. The model consists of 600 triangles, and as a result many cells contain more than one
object. We employ directional light sources to illuminate this environment, which results in the creation
of caustics from concentration of light due to reflection. Figure 1(a) shows this scene computed at higher
subdivision to demonstrate the effect more clearly.

Scene 2: A room that has 3 walls, a red left wall, a blue right wall, a grey back wall, and a grey ceiling
and floor. There are 12 triangles in this scene. All surfaces in this scenes are mostly diffuse, and absorb
some of light falling on them. The scene is lit by a extended area light source that is where a front wall
would be if the room was closed all around. This scene shows colour bleeding, similar to that shown by
radiosity on the ceiling from the two side walls. Figure 1(b) shows this scene computed using the recon-
struction techniques that have been developed for FIAT, eliminating some of the artifacts.

Scene 3: The same as Scene 2, with the difference that the floor is now shiny (60% specular 40% diffuse)
and acts as a mirror. The image is similar to that presented in Figure 1(b), with a different floor.

For scenes 2 and 3 only a small number of sexels and cell subdivisions are employed. Because memory
requirements for these scenes can exceed real memory on some machines, it is occasionally necessary for
the purposes of analysis to use scene subsets. For scenes 2 and 3 the subset scenes have the floor and the
back wall removed, and for scene 3 the ceiling is shiny instead of the floor that is no longer present. We
refer to these scenes as scenes 2a and 3a respectively.

4.2.2. Profiling results.

By using standard profiling tools we have determined which functions for each corresponding part of the
balancing and shading computations are the most expensive, and are therefore prime candidates for paral-
lelism. The profiling results confirm what was expected from examining the structure of the algorithm.
These results show that overall more time is spent balancing than shading. In all cases 50-60% of the
execution time is spent in BalanceCell. Of this time, for Scene 1, about 40% is spent in applying
the local illumination model at the intersection point to determine the power outgoing in each direction (
PowerCalc and power assignments). The additional 10% is spent determining which sexel is affected.
For Scenes 2 and 3 the time is split almost equally between power calculations and determining the desti-
nation sexel. This discrepancy is due to the nature of the ashtray surface, that is highly specular, thus
reflecting light in a limited number of directions. The beam intersection operation is also somewhat
expensive (2-3% of the computation time).
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For shading the time is almost equally split between finding the sexel that affects the visible point being
considered ( FindHitSexel) and the time spent applying the local illumination model to shade the
point ( ShineBeam). This is true for all scenes.

4.3. Linearity of Light Interaction

In order to allow progressive updates to the light update buffer (LUB) that do not depend on the order of
application, we have assumed that light-object interaction is a linear operation [Four89]. For most
materials and light sources, this is a perfectly valid assumption. A consequence of this assumption is that
light beams can be propagated or distributed in any order, yielding the same cumulative result. This is
very important since it facilitates the reorganisation of a large amount of the computation in ways that are
more convenient for parallelism.

5. A Parallel Decomposition Strategy
To devise a good parallel decomposition strategy, one must identify (potentially) non-interfering portions
of the computation. It is often the case that although independent tasks exist, parallel execution can result
in corruption of some data structures that tasks access at the same time. The obvious first-order approach
is to require that a task acquire a lock before entering the critical region of code that modifies common
data. The gain in parallelism in this case is often suboptimal. Another solution involving more intensive
analysis is to reorganise the computation such that tasks no longer write the same memory locations,
either by using a private buffer in each processor or by eliminating the need for such a write. Finally a
scheme must be developed that actually assigns these parallel tasks to processors in a manner that keeps
each processor as busy as possible at all times. In discussing possible parallel strategies we will address
balancing and shading since they are independent computations.

5.1. Parallel Balancing.

For each incoming beam in a sexel we have to perform an intersection with the objects in the cell. The
intersection operation of an incoming beam is independent of any other intersection of the same form,
since no data is written apart from a temporary structure that contains the hit point information if such a
point exists. Thus, these intersections can be easily performed in parallel.

Most of the operations involved in the distribution of a light beam about an intersection point are
independent. These operations include invoking the local illumination model, finding the sexels to
update, and power computations. The complicating issue is that more than one intersection point may
contribute to the same outgoing direction of the same sexel (see Figure 4), since there is only one
representative of each direction for each sexel.

A more subtle problem appears if we choose to parallelise the actual distribution of light around an inter-
section point. In DistribLight (Figure 2(a)) we see that at every intersection point a power calcu-
lation occurs for each discrete direction in the sphere of directions placed on that point. An obvious way
to parallelise is to perform the power calculations for each direction in parallel. At a first glance this
seems a reasonable strategy. However FIAT requires that the local illumination model be normalised
such that the total power leaving an intersection point is no larger than the power entering it. In other
words if the power impinging at point P from a given direction was Pimp , and the model used assigns Pouti

power to be outgoing in direction i (Figure 5), we wish the total outgoing power Pout (if d is the number
of directions in the sphere around P ):

Pout =
i =0
Σ
d

Pouti
≤ Pimp .

In any physically-based local illumination model, power must be conserved. Unfortunately, few models
in computer graphics have this property, and so a pre-normalisation step is required. In the initial serial
implementation of FIAT, each Pouti

is multiplied by a scaling factor S defined as follows.
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Figure 4: Different Intersection Points Update Same Beam.

S =

i =0
Σ
d

Pouti

Pimphhhhhhh . (1)

Consequently,

Pout =
i =0
Σ
d

S Pouti
= S

i =0
Σ
d

Pouti
=

i =0
Σ
d

Pouti

Pimphhhhhhh
i =0
Σ
d

Pouti
= Pimp .

Normalisation guarantees conservation of power even for unrealistic illumination models. The final value
assigned to the destination sexel is S Pouti

.

In the serial case, the value S can be computed on-the-fly, since one processor handles all the Pouti
. This

is clearly not the case in a parallel solution, so one must arrange to precompute a representative S . Other-
wise some processors may have to wait for others to complete before being able to apply S to their outgo-
ing power values. Later, we shall see how a good value for S can be precomputed, so that this potential
barrier is removed entirely. We stress that this problem only arises when local illumination models that
do not conserve power are employed.
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Figure 5: Outgoing power in direction i
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5.2. First-Order Parallel Balancing

Without changing the structure of the initial algorithm, we can statically divide the processing of faces,
sexels or beams among processors. In such a scheme the main loop of BalanceCell() is executed
on every processor but only certain of the faces, sexels or beams are dealt with by each. Parallelism at the
face or sexel level is unsuitable for two main reasons. First, such an approach does not scale well (there
are 6 faces, and in the worst case there are 6 sexels in a cell). Second, it does not provide very good load
balancing as there may be one face or only a small number of sexels that contain all the incoming light.
At the beam (direction) level, things are much better as there are usually many beams (a typical instance
of FIAT has 192 such beams per sexel), and they are usually evenly distributed. However such a scheme
may suffer from the contention problem described in the previous section and illustrated in Figure 4. We
briefly describe three ways of addressing this problem without significantly altering the overall structure
of the initial serial algorithm.

Locks. Locking critical sections is straight-forward, but can cause excessive waiting. Moreover, the use
of many locks (as would be the case in FIAT if each sexel were to have a lock) would pose high addi-
tional memory requirements.

Private buffers: Perform all sexel updates in a private buffer, acquire a lock when the buffer is full, and
write the updates to the real sexels. This also suffers from the problem of potentially long delay on locks
as the lock must be acquired for the full duration of the buffer write-back. A severe practical drawback is
that in a memory-intensive application like FIAT, real sexel information migrates to distant locations in
memory while buffers are filling. In systems that use look-aside buffers for memory accesses, processor
faults are caused at an excessive rate every time the buffer has to be written back (typically thousands of
times a second). When this problem appears, the actual performance of this approach can even be sub-
serial.

Pooled Buffers. A third solution is to employ a two-pass approach. Each sexel is preassigned to a proces-
sor in some static manner. If there are n processors, each processor maintains n buffers. In the first pass
each processor propagates and distributes light, and when a sexel must be updated, it inserts the update
information in the buffer corresponding to the processor assigned to this sexel. In the second pass each
processor runs through the buffers containing updates for the sexel assigned to it on all the processors,
performing the real updates. This solution avoids the problem of frequently accessing distant memory as
the set of sexels that each processor accesses is smaller; during the first pass only local accesses are
required. This solution yields relatively good results but is limited by the buffer-management and syn-
chronisation overhead.

From the above discussion we see that simple solutions that do not alter the original structure of the serial
algorithm or have marginal changes are limited due to synchronisation, memory access or locking con-
straints. Shortly, we shall describe a solution that allows these problems to be circumvented so that satis-
factory speedup is achieved.

5.3. Parallel Shading

Shading presents much less difficulty than balancing. The reason for this is that the only data being writ-
ten in the shading process are the LUB pixels. Therefore if a scheme is found that assigns each pixel to a
processor, there is no contention, and each processor can process the pixels assigned to it independently
without requiring any synchronisation or locking.

6. A Fast Low-Contention Parallel Balancing Scheme
To obtain maximal parallelism and minimal memory contention, reorganisation of the computation from
the initial serial algorithm is required. Both propagation and distribution of light around an intersection
point are based on a global sphere of directions. In the case of propagation, the set of directions within a
sexel are defined such that a beam originating from one sexel always updates the beam of a sexel on a
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different face that has the same direction as the source beam (see Figure 6(a)). In the case of distribution
around an intersection point P , the power outgoing in direction i is assigned to a sexel (or sexels) in
direction i (Figure 6(b)). These two observations lead to a natural task decomposition scheme for paral-
lelism:
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Figure 6: Assigning directions.

Each direction is assigned to a different processor, making this processor responsible for
all updates in this direction on any sexel, as a result of either propagation or distribution.

For propagation, this scheme is simple, since the serial counterpart can remain intact with each processor
simply working only on those beams that are assigned to it. For distribution of light around intersection
points it is necessary for the all intersection points to be available to all processors. In this way each pro-
cessor can perform the computation for the directions assigned to it for all intersection points.

To allow this, a two-phase buffering scheme is used. In the first phase each processor performs the inter-
sections of the beams it is responsible for, saving the intersections in a private buffer residing in shared
memory. When the buffers fill, the processors synchronise and the second phase begins. At this point,
each processor runs through the buffers corresponding to all the processors and for every intersection per-
forms the power calculations only for the directions assigned to it and updates these directions on the
relevant sexels.

As described earlier, we must ensure that the local illumination model is properly normalised before dis-
tribution, for otherwise all processors would have to synchronise at every intersection point to use the
total outgoing power for the scaling factor. This would create unnecessary waiting and would severely
degrade performance. Fortunately, a good candidate for a normalisation constant is at hand. We shall
derive an upper bound for the amount of power that can possibly leave a point P on a given surface if
incoming power Pimp impinges on P . This upper bound was developed for other purposes in [Ouel89],
but however is exactly what is necessary to overcome this problem. Assuming a Blinn-like reflection
model for a surface with constant n > 0, an upper bound Pu on outgoing power is:

Pu =
0
∫
2π

0
∫

π/2
cosn x dx dy = 2π

0
∫

π/2
cosn x dx.

We can use Pu in place of
i =0
Σ
d

Pouti
in equation (1), giving us a revised value of S :

S = Pu

Pimphhhhh . (2)
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Pu can be precomputed once for each distinct n using a numerical integration package, or an analytical
derivation if n is integral, and stored with the surface description. To perform normalisation each process
needs only to apply equation (2), and synchronisation is avoided.

We summarise our approach by the following pseudo-code. On each processor the code shown in Figure
7 is executed.

ParallelBalanceCell()
{

for each face
for each sexel

for beams in directions assigned to this processor
P = BeamIntersect
if something is intersected at point P {

BufferIntersection(P)
if ( BufferFull )

BufDistribute();
}
else

PropagateLight(beam)
}

BufDistribute()
{

for each processor’s buffer
for each intersection in buffer

for each direction d assigned to this processor
calculate power reflected/refracted in direction d
normalise using Pu
assign power to beam in corresponding sexel

}

Figure 7: Parallel Balancing Scheme.

6.1. Goals Achieved by the Parallel Approach

The solution just described achieves the goals set out at the beginning of this paper:

g All expensive portions of the computation are performed in parallel (i.e. beam intersections, power
calculations, destination sexel determination for distributing).

g The scheme has a satisfactory ‘natural load balancing’ property, because load distribution is tied to dis-
tribution of directions.

g Memory contention is minimised and locks are almost entirely avoided. This solution also has the
benefit that there are very few barriers at which the processors have to synchronise. The only required
synchronisation point occurs when the intersection buffer fills.

g The solution can in principle be scaled to the number of processors equal to the number of directions.
However the benefit of this order of parallelism would quickly be overcome by the overhead of main-
taining and synchronising a large number of processors. Although we report results on machines con-
sisting of 4 processors or fewer, it seems that any number of processors that fit on a single-bus system
(less than 32 in most existing systems) would perform well.

From the above we see that from the point of view of design this scheme has the desirable properties that
are required from the parallel balancing scheme. As we shall see in the section on timing results the solu-
tion performs satisfactorily on a real parallel system.

7. A Parallel Approach to Shading
From Figure 3(b) we can see that parallelising the shading computation is an easy task. All that is
required is to assign each pixel to a different processor that then performs the ray intersection and the
power calculations when collecting light from the relevant sexels in parallel. If we have n processors, the
parallel shading algorithm executed on processor i in parallel is shown in Figure 8. For every scan line
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each processor with processor-id i shades pixels i + jn where n is the number of processors and a ≤ j ≤ b
such that a = min k : xmin ≤ (i + kn ) and b = max k : (i + kn ) ≤ xmax .

The shading scheme successfully achieves the goals put forward:

g Shading expense is determined by light collection, which requires a power calculation for the light
shining from the relevant sexels, finding these sexels and in the intersection of the ray from the eye.
All are performed in parallel.

g The load balancing is dependent on the values of xmin, xmax, ymin, ymax.

g This scheme requires no locking or synchronisation for the duration of the shading computation.

g The parallel shading approach we have proposed scales theoretically to as many processors as there are
pixels in a region of the LUB related to a cell, although diminishing returns would likely set in well
before this upper bound is reached.

/* shading code */
ParShadeCell ( i)
processor-id i
{

for y = ymin to ymax
x = xmin + i
while ( x < xmax ) {

intersect ray from eye through centre of pixel (x,y)
if object hit inside cell

collect light from all relevant sexel beams
shade pixel (x,y)

x += n
}

}

Figure 8: Parallel Shading Scheme.

8. Effect of the Parallel Solution on the Serial Algorithm
As we tested the parallel implementation, we discovered an interesting result. The parallel algorithm was
tested initially for various test cases that fit in the real memory of the systems used. As soon as subdivi-
sion levels in FIAT are raised the memory used quickly becomes much larger than real memory, therefore
incurring the overhead of paging. Surprisingly, comparisons with the original algorithm appeared to be
giving the parallel version speedup 2-2.5 times the number of processors. For example, on a 4 processor
system the speedup was 9.8. It quickly became clear that the reorganisation of the computation by buffer-
ing intersection points and separating the direction space into sections equal to the number of processors
provided better memory-access patterns. By simulating the parallelism in the uniprocessor case the serial
version achieved much better performance when paging overwhelms the computation. Thus our parallel
algorithm improved serial performance as well.

9. Timing Results
Tables 1-5 show the timing results for the three selected test scenes. Also shown is speedup and proces-
sor utilisation (efficiency), and scaled speedup and scaled processor utilisation. Let tn be the running time
of the implementation on n ≥ 1 processors. We define the speedup Sn = tn / t 1, and the processor utilisation
PUn = Sn / n . The serial time reported in the results is the time in which the parallel algorithm must run in
serial on one processor, and includes things such as the time spent reading in the scene, which is obvi-
ously large for the 600 triangles in scene 1. The serial time is the average of the reported times spent in
serial mode for each run that differed by a maximum of .5 seconds. If s is this serial time we define
scaled speedup as S′n = (tn − s ) / (t 1 − s ) and scaled processor utilisation is PU′n = S′n / n .

Tables 1-3 were computed on an IRIS 4D/240 with 4 16MHz MIPS R3000 processors and 64 Megabytes
of real memory, while the results reported in Tables 4 and 5 were computed on an IRIS 4D/120S with 4
10MHz MIPS R2000 processors and 16 Megabytes of main memory. The implementation is in ‘C’ using
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the system-provided parallel support library routines for parallel tasks and semaphores.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 1: Timing results for Scene 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

# Procs Tot. Time Ser. Time S PU S’ PU’ Size (MB)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 15:28.7 - - - - - -
2 9:09.4 35.0 1.69 84% 1.73 86.5% 29.0
3 7:20.9 35.0 2.10 70% 2.20 73.3% 29.2
4 6:22.4 35.0 2.43 61% 2.57 64.3% 29.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 2: Timing results for Scene 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

# Procs Tot. Time Ser. Time S PU S’ PU’ Size (MB)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 47:39.0 - - - - - -
2 26:38.5 27.3 1.78 89% 1.80 90.0% 44.7
3 19:10.3 27.3 2.4 80% 2.52 84.0% 44.1
4 16:09.0 27.3 2.95 73% 3.0 75.0% 44.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 3: Timing results for Scene 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

# Procs Tot. Time Ser. Time S PU S’ PU’ Size (MB)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 1:09:11.0 - - - - - -
2 37:53.2 28.5 1.82 91.0% 1.84 92.0% 47.6
3 28:21.6 28.5 2.43 81.3% 2.46 82.0% 48.1
4 22:53.4 28.5 3.02 75.5% 3.06 76.5% 47.7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 4: Timing results for Scene 2aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

# Procs Tot. Time Ser. Time S PU S’ PU’ Size (MB)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 13:11.8 - - - - - -
2 6:55.1 12.5 1.91 95.5% 1.93 96.0% 14.7
3 4:53.7 12.5 2.69 89.6% 2.86 95.3% 14.8
4 3:52.7 12.5 3.40 85.0% 3.54 88.5% 14.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 5: Timing results for Scene 3aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

# Procs Tot. Time Ser. Time S PU S’ PU’ Size (MB)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 12:58.7 - - - - - -
2 7:10.6 12.6 1.80 90.0% 1.83 91.5% 14.8
3 4:57.0 12.6 2.62 87.0% 2.69 89.6% 14.8
4 3:56.9 12.6 3.28 82.0% 3.41 85.2% 14.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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The speedup and efficiency achieved are generally satisfactory. There are two factors affecting speedup
that can be noted from the results.

Light source and surface types. Our solution depends on the type of light sources and the type of surfaces
existing in the scene. The results for scene 1 are worse overall, since the light source is directional and
the surfaces are specular. This means that a limited number of directions have more power than others
and as a result processor utilisation is suboptimal.

Large memory requirements and hardware. In scenes 1-3 we see worse performance than scenes 2a and
3a. The reason for this is the memory system hardware of the specific systems used. The special fast
look-aside buffers are strained with the memory requirements of FIAT in each cell, and since there is only
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one memory servicing all the requests there is an effect of serialisation when memory requirements are
acute. This fact is confirmed using the system monitoring facilities that report look-aside buffer faults in
the range of 3000-4000 faults/second. This is one of the problems that affects the degradation of
efficiency as the number of processors grow.

The following graphs present speedup by the number of processors from 2 to 4. Graph 1 shows the
speedup for the scenes 1, 2 and 3 and graph 2 for scenes 2a and 3a. We see from these that the speedup
for the small scenes (2a, 3a) is better, and there is little degradation as the number of processors grow.
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Graphs 1 and 2: Speedup for Scenes 1, 2 and 3 and for Scenes 2a and 3a.

The following two graphs show processor utilisation for the two sets of scenes, again scenes 1, 2 and 3
that have larger memory requirements (Graph 3), and scenes 2a and 3a in Graph 4. From these graphs,
which use the same scale for purpose of comparison, observe that the penalty for each extra processor for
the large memory cases is 6-12% while for the scenes with low memory requirements it is much less
varying from 2-5%. This means that if the memory requirements are smaller the solution can scale to a
larger number of processors.
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Graphs 3 and 4: Processor utilisation for Scenes 1, 2 and 3 and for Scenes 2a, 3a.

10. Conclusions and Future Directions
We have presented an approach that allows the use of parallelism for FIAT, a complex global illumina-
tion space-subdivision algorithm, and have successfully demonstrated significant speed-up with the addi-
tion of processors. The techniques readily migrate to other parallel environments: we have recently
migrated the parallel implementation of FIAT to a 7-processor DEC Firefly. We also believe that our
techniques to reduce memory contention and locking can be employed in other applications.
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FIAT has evolved since the approach described in this paper was originally developed. Reconstruction
techniques are used in both the propagation and distribution phase and in the shading, to allow a better
representation of light flux using the discrete samples. The methods described in this paper are directly
applicable to the new technique, with one exception: there is no longer a one-to-one correspondence
between the originating sample (direction) and the destination sample, since more than one sexel and
more than one direction are affected. This problem can be overcome with some additional effort.

In [Dret90] a full hierarchical solution is designed and implemented. The octree structure used to
represent the cell subdivision is distributed across a network of parallel processor stations. The tightly-
coupled solution described here is run on each such station, and special algorithms and techniques are
developed to allow maximal benefit by distributing both memory and computation.
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Figures 1(a)-(b). Figure 1(a) depicts Scene 1 calculated at high subdivision, showing a caustic in the cen-
tre of the ashtray. Figure 1(b) depicts Scene 2, calculated using the new reconstruction techniques
for both distribution and shading. Colour bleeding is clearly shown.


