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Many key problems in computer graphics require the computation of integrals. Due to the na-
ture of the integrand and of the domain of integration, these integrals seldom can be computed
analytically. As a result, numerical techniques are used to find approximate solutions to these
problems. While the numerical analysis literature offers many integration techniques, the choice
of which method to use for specific computer graphic problems is a difficult one. This choice must
be driven by the numerical efficiency of the method, and ultimately, by its visual impact on the
computed image.

In this paper, we begin to address these issues by methodically analyzing deterministic and
stochastic numerical techniques and their application to the type of one-dimensional problems
that occur in computer graphics, especially in the context of linear light source integration. In
addition to traditional methods such as Gauss-Legendre quadratures, we also examine Voronoi
diagram-based sampling, jittered quadratures, random offset quadratures, weighted Monte Carlo,
and a newly introduced method of compounding known as a difficulty driven compound quadrature.

We compare the effectiveness of these methods using a three-pronged approach. First, we com-
pare the frequency domain characteristics of all the methods using periodograms. Next, applying
ideas found in the numerical analysis literature, we examine the numerical and visual performance
profiles of these methods for seven different one-parameter problem families. We then present
results from the application of the methods for the example of linear light sources. Finally, we
summarize the relative effectiveness of the methods surveyed, showing the potential power of
difficulty-driven compound quadratures.
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1. INTRODUCTION

In computer graphics, many key problems require the solution of integrals for
which analytical solutions are not always available or tractable. For these rea-
sons, numerical techniques are needed to find approximate solutions. The choice
of numerical integration technique, whether it be deterministic, or stochastic,
must often be done on an ad hoc basis. In this paper, we present a novel ap-
proach to solving one-dimensional integration problems in computer graphics,
namely, difficulty-driven compound quadratures. We then present the results
of an in-depth study of this technique and of other current methods used to
solve the types of one-dimensional integration problems that occur in computer
graphics. This study demonstrates the power of the new technique, in the con-
text of certain classes of integration problems, as well as the strengths and
weaknesses of existing methods.

We will compare the effectiveness of these methods using a three-pronged
approach. First, we will use a frequency domain analysis tool, the periodogram,
to compare the frequency domain characteristics of the one-dimensional inte-
gration methods. We will then use a numerical analysis tool, performance pro-
files, to compare the performance of these methods over families of integration
problems, with each family consisting of a set of one-dimensional integration
problems with similar integration difficulties, and each family representing a
type of difficulty encountered in computer graphics problems. Finally, we will
compare the performance of the methods over four different types of linear
light source integration problems, each representing a family of problems with
a specific integration difficulty.

1.1 Numerical Integration in Computer Graphics

Before we can compare the relative performance of various integration methods,
we need to take into account some considerations that are specific to computer
graphics problems. While we do want to compare the numerical efficiency of
these techniques, we must do so in the context of needing to achieve a solution
that is visually acceptable. Toward achieving this goal, we will take into account
three important factors contributing to this efficiency: the need for a moder-
ately accurate solution, the need for a consistent solution, and the need for a
low-cost solution.

From a numerical point of view, the most important measure of the qual-
ity of a solution to an integration problem is its numerical accuracy. In com-
puter graphics, the most important feature of any solution to a rendering prob-
lem is the quality of the final rendered image. Quantifying this quality is an
extremely difficult problem [Rushmeier et al. 1995]: Whereas one can mea-
sure the numerical difference between images, there is no universally accepted
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metric for measuring the perceptual difference between images. While quan-
tifying perceptual difference is beyond the scope of the paper, we will, how-
ever, take into consideration the visual appearance of rendered images, such
as the presence of noise or other unwanted artifacts, in our evaluation of
numerical techniques.

Because of this dichotomy of the definition of quality, the desired accuracy
in computing an integrand can be quite moderate. For example, it is common
to allow eight bits of accuracy for each of the three color components of a ren-
dered image. This limited numerical accuracy suggests that, depending on the
subsequent usage of the result, the accuracy of each integration problem may
have to be only on the order of 1

256 . In general, numerical solutions in computer
graphics only need to be moderately accurate, say, within a relative error from
10−1 to 10−3.

In addition, numerical quality is not always positively correlated to visual
quality: It is possible for an image with superior numerical accuracy to ap-
pear noticeably worse, visually, than an image with inferior numerical accu-
racy. Perhaps even more important than the numerical accuracy of a solution
is the consistency of this accuracy. For example, if the numerical accuracy of
an approximation technique varies in a periodic fashion, unwanted artifacts
can become visible in a rendered image. In some cases, it is better, visually,
to have less variance in numerical results, even at the expense of poorer aver-
age approximations. At the end of this section, we provide an example which
demonstrates that results which are, in some sense, numerically equivalent,
may be visually quite different.

One final consideration controlling the choice of integration method is the
large number of integration problems that must be solved in the rendering
of a single image. For direct illumination alone, we may easily have to solve
millions of lighting integrals in order to achieve an acceptable image qual-
ity for even a moderately sized image. Given such a potentially large number
of problems to solve, it would be unacceptable to use thousands of function
evaluations to solve a single definite integration problem. We must there-
fore limit the number of function evaluations used to solve each problem;
in this study, we have chosen to consider at most 300 function evaluations
per integral.

1.2 Context of Work

As two-thirds of the analysis presented in this paper is presented in a gen-
eral context, we would like to stress that this general analysis is necessary
in several ways. First, the analysis leads to the the obvious application to the
problem of computing the integral resulting from a linear light, as will be seen
in Section 5. Next, there are other possible applications to one-dimensional
integration problems, such as motion blurring [Meredith-Jones 2000], and light
transport path integration in participating media [Pauly et al. 2000]. Finally,
the analysis lays the ground work for a similar analysis of two-dimensional in-
tegration problems, such as the computation of area light sources, the filtering
of textures, or antialiasing over a pixel.
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Fig. 1. Characteristic classification of a scene.

1.3 Examples

Finally, before we move on to the analysis sections, it is useful to present two
examples; the first illustrates the type of one-dimensional integration problem
that we will be investigating, whereas the second illustrates the difference
between numerical and visual error.

1.3.1 Integration Difficulties. Consider the scene in Figure 1(a) (also
shown at a higher resolution in Figure 28). It consists of an office environ-
ment illuminated by two linear light sources on the ceiling, and by a third
linear light source in the desk lamp. In order to render this scene, we need to
compute illumination integrals resulting from all three of these light sources,
for a number of points on the objects in the scene. The resulting integrands will
have different types of difficulties, depending on the geometry of the illumina-
tion problem, the nature of the surface, and the nature of the light source. If all
three light sources are diffuse, and if we are only interested in computing the
primary illumination for this scene, we can characterize the types of difficulty
present in the resulting integrands as shown in Figure 1(b) and 1(c).

In Figure 1(b), the black regions represent areas that have a continuous
integrand, because each light source is either fully visible or fully occluded.
The grey regions represent areas where one or more of the light sources is
partially hidden by another object in the scene, causing the resulting integrands
to have precisely one discontinuity. Finally, the white regions represent areas
of the scene where one or more of the resulting integrands has more than one
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Fig. 2. Integration plots for step function s(x, λ). For each of the five strips, the abscissa repre-
sents the parameter λ as it varies from 0 to 1, and the intensity of each pixel corresponds to the
evaluation/approximation of

∫ 1
0 s(x, λ) dx for the given value of λ.

discontinuity. The areas near the back of the chair result in integrands that
have many discontinuities.

In Figure 1(c), the grey regions represent the areas of the scene where the
integrand has a significant peak over the interval of integration. The brightness
of each pixel is directly related to the sharpness of the peak. These regions
correspond to those in Figure 1(a) that have significant highlights, such as the
area at the front of the desk. The black pixels all result in integrands that are
relatively smooth.

1.3.2 Numerical vs. Visual Error. Finally, we provide an example1 that
illustrates the difference between numerical and visual error. Consider the step
function s(x, λ),

s(x, λ) =
{

0 if x ≤ λ
255 if x > λ

λ ∈ [0, 1],

and its definite integral I (λ) over the interval [0, 1]. The definite integral has
an analytic solution, namely, I (λ) = 255(1− λ).

We computed this integral for 199 different values of λ, using three different
numerical integration techniques (T1, T2, and T3), giving three approximations,
I1(λ), I2(λ), and I3(λ). We repeated these calculations 21 different times, using
the same set of values for λ. Since the value of I (λ) is bounded above by 255, it
is straightforward to plot the results as a grey-scale intensity strip.

In Figure 2, we have shown the results in the following way. The image shown
consists of five strips of 21 scanlines, with each scanline being 199 pixels wide.
The ith pixel on a scanline corresponds to the parameter λi = i−1

198 and has
an intensity corresponding to either the quantity I (λi), or the approximation
calculated by the appropriate technique.

The top 21 scanlines, as delimited by the tick marks on the right hand side
and labeled T1, correspond to the 21 different calculations of the approximation,
each computed using technique T1. The next 21 scanlines are identical, and
correspond to the analytic solution I (λ). The following 21 scanlines correspond

1This example will be revisited in Section 4.
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to the 21 different approximations of I (λ) using technique T2. The next 21
scanlines are identical, and once again correspond to the analytic solution I (λ).
The last 21 scanlines correspond to the 21 different approximations of I (λ) using
technique T3.

For the strips generated by T1, T2, and T3, we calculated the average ab-
solute error with respect to the analytical strip I (λ). The average absolute
error for each of the three approximate strips is 0.60, that is, each strip has
the same numerical error. The T1 strip was generated using a determinis-
tic technique, and hence the 21 scanlines are identical. Visually, the error
shows up as bands of uniform intensity, with a noticeable discontinuity be-
tween bands. The T2 strip was generated using a space-filling technique. No-
tice that the scanlines are all different: this is due to the stochastic nature
of the integration technique. The visual error appears as uncorrelated noise
dispersed throughout the strip. Finally the T3 strip was generated using a
difficulty-driven compound quadrature.2 Once again, the visual error appears
as uncorrelated noise, but is less noticeable than for the T3 strip. Thus, even
though all three strips have the same numerical error, they all have different
visual errors. The strip generated by T3 is the less objectionable of the three
approximate strips.

In the remainder of this paper, we combine ideas from the numerical analy-
sis and computer graphics literature to analyze the effectiveness of a number
of one-dimensional integration techniques, and their application to families of
problems that occur in computer graphics image synthesis. In Section 2, we
present difficulty-driven compound quadratures, a novel method of approxi-
mating integrals in computer graphics, and provide an overview of existing
one-dimensional integration techniques that will be used in our analysis of one-
dimensional integration problems. We then compare the effectiveness of these
methods using three different approaches. First, in Section 3, we compare the
frequency domain characteristics of all the methods using periodograms. Next,
in Section 4, we apply ideas found in the numerical analysis literature [Lyness
and Kaganove 1976], and examine the numerical and visual performance pro-
files of these methods for seven different one-parameter problem families, with
each family representing a type of difficulty that can occur in computer graphics
problems. In Section 5, we present results from the application of the methods
to common one-dimensional rendering problems. Finally, in Section 6, we sum-
marize the effectiveness of difficulty-driven compound quadratures, present the
strengths and weaknesses of all the analyzed techniques, and suggest areas of
future research.

2. THE NUMERICAL INTEGRATION METHODS

We begin by presenting the different one-dimensional numerical integration
methods that we consider in the analysis found in this paper. While we can not
possibly consider every possible numerical integration technique, we have cho-
sen techniques that are representative of scientific computation. We have also

2The space-filling technique, which is Voronoi sampling, and the difficulty-driven compound
quadrature will be presented in Section 2.
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rejected methods which are not as well suited for solving the one-dimensional
integration problems that we are examining in this paper.

In this paper, given an integrand f and a domain of integration [a, b], we
want to find an approximation to the definite integral of f over this domain;
that, is we want to compute ∫ b

a
f (x) dx. (1)

We can approximate this integral by computing the weighted sum Q( f ), where

Q( f ) =
n∑

i=1

wi f (xi). (2)

The particular choice of the n point locations xi, together with the choice of the
n weights wi, defines a numerical integration method known as a quadrature
rule [Davis and Rabinowitz 1984; Kahaner et al. 1989].

A well-known method that we have decided to not examine in this paper
is the (pure) Monte Carlo method. In such a method, the weights are all 1/n,
and the point locations are random variables distributed uniformly over the
interval [a, b]. In one dimension, the convergence of such a method is only
O(n−1/2), whereas a convergence rate of O(n−1) can be achieved with a de-
terministic quadrature rule, even if the function f has a discontinuity. Note
that Bakhvalov’s theorem [Shreider 1966] states that these orders cannot be
improved, even if f has a bounded, continuous first derivative. Since the func-
tions that we consider are not very poor, that is, they are either continuous or
piecewise smooth, a pure Monte Carlo method is not indicated [Shreider 1966].

It should be noted, of course, that a pure Monte Carlo method may very well
be acceptable with integration problems of greater dimensionality. We will, how-
ever, examine several stochastic techniques for approximating integrals, includ-
ing variations of the Monte Carlo method such as jittered or stratified sampling.
In the remainder of this section, we define the one-dimensional integration
techniques that we will be examining, namely, regular compound quadratures,
difficulty-driven compound quadratures, jittered quadratures, randomly offset
quadratures, weighted Monte Carlo, and Voronoi sampling.

2.1 Regular Compound Quadrature Rules

As was stated in Eq. (2), a quadrature rule is an integration method defined
by a set of n point locations and weights. If the point locations and weights are
fixed, the method is a deterministic quadrature rule; otherwise it is a stochastic
quadrature rule. A deterministic quadrature rule Q is said to be of degree d
over the domain D if it integrates exactly all polynomials of degree d or less,
but fails to integrate exactly some polynomial of degree d + 1.

In one dimension, the Gauss (also known as Gauss-Legendre) quadrature
rule on n points is defined by the choice of n locations and n weights that gives
the quadrature rule of highest possible degree. An n-point Gauss quadrature
rule (Gn) has degree 2n− 1 [Kahaner et al. 1989]. In this paper, we will study
the Gauss quadrature rules on 1, 3, 5, 7, 9, 15, and 30 points.
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Note that the quality of a quadrature rule often relies on the smoothness
of the integrand over the domain of integration. Should a singularity or other
nonsmooth behavior arise, the quality of the quadrature is cast into doubt.

A compound quadrature rule is obtained if we subdivide D into panels and
apply a quadrature rule to each panel. The first type of compounding that we
shall study is regular compounding, in which for a given problem, the interval
of integration is subdivided into panels of equal size. Notice that a regular
compound quadrature rule with G1 applied to each panel is often referred to
as supersampling in the computer graphics literature.

2.2 Difficulty-Driven Compound Quadratures

Traditionally, the choice of the number of panels in a compound quadrature
provides something of a divide-and-conquer integration approach. It also al-
lows one to choose panel sizes and locations that can isolate a difficulty in the
integrand or can take advantage of the dispersion of quadrature sample points
to get better visual results for the same number of points. We shall exploit both
possibilities in the new technique we shall be presenting.

Suppose that we have a function to integrate over the interval [0, 1], and that
this function has an integration difficulty at a location λ ∈ [0, 1]. For example,
this difficulty could be a peak, a discontinuity, or a singularity. If we know
the approximate location of λ, we should be able to exploit this knowledge to
obtain a more efficient numerical integration technique and a more visually
reliable solution.

Let λ̃ be an estimate of the location of λ, and let P ≥ 2 be the total number of
panels desired for a difficulty-driven compound quadrature rule. We subdivide
the integration interval at λ̃ into two subintervals of integration, and apply
regular compounding to each of the resulting subintervals. We define P0, the
number of panels in [0, λ̃], and P1, the number of panels in [λ̃, 1], such that the
number of panels in each subinterval is proportional to its length, and each
subinterval has at least one panel. Specifically,

(1) P0 = max(P − 1, min(1, b 1
2 + (λ̃P )c)),

(2) P1 = P − P0.

For a variety of problems, we will examine the effects of difficulty-driven
compound quadratures that are based on the approximate location of the diffi-
culty λ̃. In particular, given an uncertainty ξ , we will approximate the location
of the difficulty by randomly choosing the value of λ̃ from a uniform distribution
over the interval [λ− ξ, λ+ ξ ]. When ξ = 0, we would be using exact knowledge
of the location of the difficulty.

In the problem families of Section 4, the integrands are defined such
that the location of the difficulty λ is known. In the integrands encountered
in Section 5, the location of λ must be determined using heuristics. The
specifics of these heuristics is beyond the scope of this paper, but the inter-
ested reader can find extensive details in Ouellette and Fiume [1999b] and
Ouellette [2002].
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2.3 Jittered Quadratures

Although the idea of jittering in itself is not new to computer graphics [Dippé
and Wold 1985; Cook 1986; Shirley 1991], the theory and application of jittering
to numerical quadratures is novel. Given an arbitrary (deterministic) quadra-
ture rule, we generate a (random) jittered quadrature rule by perturbing the
location of each sample. While these jittered quadrature rules are necessarily
suboptimal numerically, they can be useful in an undersampled context (e.g.,
when the integrand is dominated by high-frequency content). The interested
reader can refer to Shreider [1966] for a brief introduction to the general concept
of random quadratures and for pointers to additional references.

Let Q be an n-point quadrature rule, as defined in Eq. (2). Let Vi be the
Voronoi cell associated with xi, that is:

Vi = {x ∈ [a, b] | |x − x j | ≤ |x − xi|, for all j ∈ [1, n]}. (3)

We define the location jittered quadrature J to be

J ( f ) =
n∑

i=1

wi f (ui), (4)

where ui is a uniformly distributed random variable in Vi. We also define the
partial location jittered quadrature Jp to be

Jp( f ) =
n∑

i=1

wi f ((1− p)xi + pui), (5)

where p ∈ [0, 1]. Notice that J0 = Q and that J1 = J . We will use the ab-
breviation Jn to refer to the fully jittered quadrature rule based on Gn, the
n-point Gauss quadrature rule. Notice also that if Q is the Gauss quadrature
with 1 point and regular compounding, then J1 is the well-known jittered (or
stratified) sampling.

2.4 Random Offset Quadratures

An alternative to jittering every point of a quadrature is to add a common offset
to all point locations, giving in effect, a random offset quadrature [Pauley et al.
2000]. Once again, let Q be an n-point quadrature rule, as defined in Eq. (2).
Let ξ be chosen randomly from a uniform distribution over the interval [a, b].
We then define the random offset quadrature rule R to be

Q( f ) =
n∑

i=1

wi f (x̃i), (6)

where

x̃i =
{
ξ + xi if ξ + xi ≤ b,
ξ + xi − b+ a otherwise.

(7)

In Pauly et al. [2000], the quadrature Q is the 1-point Gauss quadrature rule,
and regular compounding is used. In the remainder of this paper, we shall only
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consider this particular version of random offset quadratures, and the term
random offset quadrature will refer to this version specifically. The abbrevia-
tion Rn will be used to denote a random offset quadrature rule (based on G1)
regularly compounded with n panels.

2.5 Weighted Monte Carlo

The weighted Monte Carlo method [Yakowits et al. 1978] is a variant of the pure
Monte Carlo method wherein the points are chosen in a similar fashion, but
the weights of a point vary according to the distance to its nearest neighbor(s).
In order to construct an n > 1-point weighted Monte Carlo method, n− 2 point
locations are chosen randomly from a uniform distribution over the interval
[a, b]. In addition, the end points a and b are used as sample points. If we let
x1, x2, . . . , xn be the resulting n sample points sorted in increasing order, then
the weight wi assigned to each point is

w1 = (x2 − a)
2(b− a)

,

wi = (xi+1 − xi−1)
2(b− a)

if 1 < i < n, (8)

wn = (b− xn−1)
2(b− a)

.

In Yakowits et al. [1978], this method is shown to have a convergence of O(n−4)
when the function f (x) has a continuous second derivative. Note, however, that
many of the one-dimensional integration problems that are encountered in this
paper, and in computer graphics in general, will not meet this requirement
(e.g., a discontinuous integrand). The abbreviation Wn will be used to denote a
weighted Monte Carlo method on n points.

2.6 Voronoi Sampling

The final method that we will examine is Voronoi sampling [Ouellette and
Fiume l999b; Deussen et al. 2000]. It is a method similar to the quasi-random
methods described in Spanier and Maize [1994], since the sequence of points
generated is uniformly distributed, that is, it ultimately assigns to each subin-
terval a number of points proportional to its length. Given an interval [a, b],
we construct a Voronoi sampling sequence by first randomly choosing a sample
point x1 from a uniform distribution over (a, b). We then choose sample points
iteratively by constructing the Voronoi cells corresponding to the location of the
sample points in the existing sequence, and augmenting the sequence by the
midpoint of the largest cell.

Formally, let x−1 = a, let x0 = b, and let x1, x2, . . . , xn−1 be the first n− 1
points of the Voronoi sampling sequence. Let Vi be the Voronoi cell of xi;
that is,

Vi = {x ∈ [a, b] | |x − x j | ≤ |x − xi|, for all j ∈ [−1, n]}, (9)

for i ∈ [−1, n]. It is clear that each cell Vi is a line segment. Let VM be the
longest such line segment, with the proviso that ties are broken randomly.
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Then the next sample point in the Voronoi sequence is mM , the midpoint of the
line segment corresponding to VM . In our implementation, the points are all
given the same weight. The abbreviation Vn will be used to denote a Voronoi
sampling sequence of n points.

We now define some general properties of Voronoi sampling that will be
needed in Section 4. Consider a specific instance of a Voronoi sampling se-
quence over the interval [0, 1]. Once the initial seed σ has been chosen, we can
determine precisely how many points will be chosen to the left and to the right
of this seed. If σ ∈ [1/3, 2/3], then it is easy to see that the Voronoi sequence
must be built by alternately subdividing the left range [0, σ ] and the right
range [σ, 1].

The initial subdivision of a range generates one point, namely, the midpoint
between the seed and the appropriate endpoint of the range. The nth subdi-
vision adds 2n points to the range, which are simply the midpoints between
those points produced by the preceding subdivision. If not all 2n points need
to be added to attain the desired number of points, the points to be added are
chosen randomly. We say that a subdivision is full if all points have been added,
and that it is partial otherwise. For example, if a Voronoi sequence is gener-
ated from a seed σ ∈ [1/3, 2/3], then such a sequence will be full with both
191 and 255 points, but will be partial at all values in between. Similarly, if
σ ∈ [1/5, 1/3]∪ [2/3, 4/5], then the resulting subdivisions will be full with both
159 and 191 points, but will be partial at all values in between.

3. FREQUENCY DOMAIN ANALYSIS

It is common to study sampling strategies using frequency domain analysis. It
is less common to do the same for quadrature schemes, despite their evident
connection to sampling. In this section we compare the integration methods by
examining their characteristics in the frequency domain [Ziemer and Tranter
1990]. To do this, we treat both deterministic and stochastic methods as sam-
pling patterns over the interval [0, 1], and assume that each pattern is made
periodic by tiling the unit interval over R. We will use a frequency analysis
tool called the periodogram to compare all methods. A full derivation of the
definition of the periodogram is given in the Appendix.

Given a set of N points {x j } together with their weights wj , for j = 1 . . .N ,
we define the sampling pattern s(x) : [0, 1] 7→ R to be

s(x) =
N∑

j=1

wj δ(x − x j ). (10)

Here, δ is the Dirac delta function, and s(x) is made periodic by tiling the unit
interval over the entire real line. Since s(x) is real and periodic, it is equivalent
to its Fourier Series representation. That is,

s(x) =
∞∑

k=−∞
ckei2πkx , (11)

ACM Transactions on Graphics, Vol. 20, No. 4, October 2001.



On Numerical Solutions to One-Dimensional Integration Problems • 243

where the Fourier Series coefficient ck is

ck =
N∑

j=1

wj e−i2πkx j . (12)

Since the sampling function s(x) is periodic, its spatial autocorrelation func-
tion R(τ ) is defined to be

R(τ ) =
∫ 1

0
s(x)s(x + τ ) dx. (13)

The Fourier Series coefficients of the autocorrelation function are equivalent
to the magnitude squared of the Fourier Series coefficients of the original sig-
nal s(x). The plot of the Fourier Series coefficients of R(τ ) with respect to the
frequency k is called a periodogram. We obtain the periodogram of s(x) by
plotting ‖ck‖2 as a function of the frequency k. Because s(x) is a real func-
tion, ‖ck‖2 = ‖c−k‖2, and therefore the periodogram of s(x) is symmetric about
the origin.

We use the periodogram to analyze the energy in the autocorrelation func-
tion of the sampling pattern corresponding to each integration method. For
instance, power closer to the origin represents low-frequency energy in the au-
tocorrelation function and long-distance spatial correlation. For sampling pat-
terns, low-frequency energy is responsible for disturbing visual artifacts known
as aliasing, which is manifested as coherent replicated noise patterns. When
energy is dispersed equally in all frequencies, the resulting incoherent distribu-
tion of error is called white noise. The pure Monte Carlo method is an example
of a sampling pattern with a white noise characteristic. A blue noise sampling
pattern, as defined by Ulichney [Ulichney 1987], has the characteristic of a low
noise floor in the passband, with a higher, well-distributed noise floor in the
high frequencies. The resulting errors in an image tend to be less visually ob-
jectionable, that is, there is less coherent aliasing for high-frequency signals.
The Voronoi sampling technique is an example of a pattern with a blue noise
frequency characteristic.

We now present periodograms for the various one-dimensional numerical
integration techniques. On each periodogram, the abscissa is the frequency k,
and the ordinate is the corresponding value of the coefficient ‖ck‖2. Note that
given a sampling rate of 2N , Shannon’s Sampling Theorem states that a func-
tion can be reconstructed exactly provided that the function is 0 outside the
frequency interval [−N , N ] [Pratt 1991]. On each periodogram, we will denote
the Nyquist frequency as N , where 2N is the number of samples used by the
methods being illustrated. In our analysis, we will calculate the average peri-
odogram from 1000 instances of periodograms for a particular random process.

In Figure 3, we illustrate the periodograms for the deterministic quadra-
tures G3 through G30. The ranges for all periodograms were truncated to in-
clude up to three times the Nyquist frequency. Outside of the plotted range,
the periodograms for all of the Gauss quadratures are jagged. Notice that all
the quadrature rules have a band of low frequencies with low energy that is
delimited by the Nyquist frequency.
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Fig. 3. Periodograms for deterministic quadratures. The abscissa is the frequency k, and the
ordinate is the magnitude squared of the Fourier Series coefficient, that is, ‖ck‖2. The Nyquist
frequency is denoted by the symbol N on the abscissa. Note that these are also the periodograms
for the random offset quadrature based on the given quadrature rule.

In Figure 4 we compare the effects of regular compounding with deterministic
Gauss quadratures. Each Gauss rule was compounded a number of times to
bring the total number of point samples as close as possible to 30. This can
be done exactly for G1, G3, G5, G15, and G30. Four panels were chosen for
G7, for a total of 28 points; three panels were chosen for G9, for a total of 27
points. Note that since G30 already uses 30 points, the resulting periodogram
is that of Figure 3(f). Observe that the 30-point compound quadrature based
on G1 has a low-frequency band that is twice as large as for any of the other
compound quadratures, extending all the way to twice the Nyquist frequency.
On the other hand, the height of the spike in G1 is much higher than in any of
the other quadrature rules. In general, the height of the spikes decreases with
increasing degree of the quadrature. For all of the compound quadrature rules,
the energy fluctuates greatly in the frequencies above the low-frequency band.

In Figure 5, we compare all of the compound quadrature techniques with
full location jittering. On each periodogram, we compare consecutive pairs of
jittered compound quadratures J1 through J30. For clarity, the vertical range
has been truncated at 0.1 instead of 1. Notice that all of the quadrature rules
exhibit the blue noise response to some degree, with attenuation of the low
frequencies and evenly distributed energy in the higher frequencies. All of the
quadrature techniques have a similar noise attenuation zone in the lower fre-
quencies. With the exception of J7 and J9 (the two methods that use fewer than
30 points), the height of the noise floor is directly related to the number of points
in each quadrature rule, and is at its lowest for J1.
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Fig. 4. Periodograms for regular compound quadratures, with the same deterministic technique
being applied to each panel. Note that these are also the periodograms for the random offset
quadrature based on the given quadrature rule, with the given compounding factor.

Fig. 5. Periodograms for compound jittered quadratures, with approximately 30 points.
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Fig. 6. Average periodograms for jittered 9-point Gauss quadrature. Ordinate is truncated at 0.4,
and jitter varies from 0 to 1, by increments of 0.25.

If we compare the periodograms of the deterministic compound quadra-
tures in Figure 4 to their jittered counterparts in Figure 5, we can notice
the following:

—Each deterministic quadrature has a lower and flatter noise floor than its
jittered counterpart.

—Beyond the low-energy band, the energy in each jittered quadrature is nearly
constant, but oscillates greatly in the deterministic counterpart.

It is informative to take a closer look at how gradual jittering affects the
periodogram of a quadrature rule. Since the effect is similar for all quadratures,
we will only present the results for the compound quadrature based on G9. In
Figure 6 we have shown the periodogram for the jittered quadrature with jitter
values 0, 0.25, 0.5, 0.75, and 1, with an abscissa ranging from 0 to 3 times
the Nyquist frequency, and the ordinate ranging from 0 to 0.4, for clarity. The
periodograms in Figure 6 illustrate what happens when we progressively jitter
the location of the points for G9. There are a few interesting observations to be
made from this figure:

—The nonjittered quadrature (0.00) has no power in the lowest frequencies,
but has energy that oscillates in all other frequencies.

—As the jitter is increased from 0.25 to 1.0, the power in the noise floor in-
creases slightly and the power in the higher frequencies becomes more uni-
form.

—All of the jittered quadratures exhibit the blue noise characteristic to some
degree.

As we will see in later sections, the practical effect of jittering will be to reduce
the aliasing that would result from the application of G9 to a difficult integral,
but to introduce noise where an application of G9 to a simpler integral would
have resulted in a correct numerical solution.

By definition, the sampling pattern generated by a random offset quadra-
ture is simply a shifted version of the sampling pattern generated by the origi-
nal quadrature rule. For example, a random offset quadrature R30 (i.e., based
on G1 compounded with 30 equal panels) is a shifted version of G1 regularly
compounded with 30 panels. Since Fourier transformations are shift invari-
ant, both R30 and G1 compounded with 30 panels have exactly the same pe-
riodogram, namely, Figure 4(a). Therefore, the periodograms for the random
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Fig. 7. Periodograms for weighted Monte Carlo and Voronoi sampling, compared to jittered
quadratures, with ordinate truncated at 0.4.

offset quadratures based on G3 through G30 are found in Figure 3, and the pe-
riodograms for the random offset quadratures based on G1 through G15, with
regular compounding, can be found in Figure 4.

In Figure 7 we illustrate the periodograms for a weighted Monte Carlo
method and a Voronoi sampling, for 9, 15, and 30 samples, respectively. For
comparison purposes, we have included the jittered periodogram of J9, J15,
and J30, respectively. Each periodogram includes up to six times the Nyquist
frequency and for clarity, the ordinate has been truncated at 0.4. Notice that
both the Voronoi and the weighted Monte Carlo method exhibit a blue noise re-
sponse first observed in the jittered quadrature periodograms of Figure 5. The
Voronoi samplings all exhibit a blue noise response, with attenuation of the
low frequencies up to and slightly beyond the Nyquist frequency and evenly
distributed energy in the higher frequencies. This method also has a midfre-
quency peak (at about twice the Nyquist frequency), a characteristic of Poisson
Disk [Cook 1986; McCool and Fiume 1992] sampling distributions. Note that
the attenuation is also present in both the jittered quadrature and weighted
Monte Carlo periodographs, but to a lesser degree in each, respectively.

4. PERFORMANCE PROFILES

One of the many difficulties in comparing the effectiveness of quadrature rules
in solving integration problems is that for each technique, there are problems
for which it will work perfectly, and problems for which it will not work at all.
As is pointed out in Lyness [1981], it is possible for a technique to perform ad-
mirably on one problem, only to fail completely for a slightly different problem.
In computer graphics, where inconsistent results can cause visual artifacts in
rendered images, the behavior of a particular technique on a family of inte-
grands is as important as its behavior on a particular member of such a family.

The idea of a performance profile, as taken from the numerical integration
literature [Lyness and Kaganove 1976; Lyness 1981], is to test a one-parameter
set of numerical problems called a problem family, examining some aspect of
the performance of one or more quadrature rules. The performance profile is
then a plot of a chosen aspect of the performance, the abscissa being the varying
parameter, conventionally denoted by λ.
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Fig. 8. Simple scene illustrating a family of integration problems with a discontinuity as a common
difficulty.

In this section, we define seven different families of problems that each pos-
sess a difficulty that can be encountered in one-dimensional integration prob-
lems in computer graphics. We then define two different types of performance
profiles, and use these tools to analyze the seven families of problems.

4.1 Problem Families

Before we define the seven families of one-dimensional integration problems
that we will be analyzing, it is useful to present an example corresponding
to a well-known integration problem in computer graphics. Consider a scene
consisting of a round table, a fluorescent lamp on this table, and a floor, as
shown in Figure 8. As we move along the floor from point 1, to point 2, to
point 3, we are able to see a progressively smaller portion of the lamp. The
problem of determining the portion of the light that is visible from neighboring
points on the floor corresponds to the problem of finding the location of a jump
discontinuity in an integrand.

The location of the jump discontinuity is defined by the location of the edge
of the table as it blocks the view of the light source, and is different for each
instance of the visibility problem.3 Thus these visibility problems form a fam-
ily of similar yet distinct one-dimensional integration problems. The prob-
lem of finding these discontinuities has been previously examined, notably in
Ouellette and Fiume [1999b] and Heidrich et al. [2000] for linear light sources,
and in Hart et al. [1999] and Ouellette and Fiume [1999a] for area light sources.

We define a problem familyF as a set of functions to be integrated, each with
similar difficulties such that

F = { f (λ, x) | λ ∈ [L, H]}. (14)

3The computation of a discontinuity mesh isolates continuous domains of integration, but their
computation is prohibitive for complex scenes or scenes with nonpolygonal objects [Drettakis and
Fiume 1994; Stewart and Ghali 1994].
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Table I. Problem Families and Difficulties

Family [L, H] Difficulty Rendering Problem Example

1 [0, 1] C2 discontinuity at λ C2 discontinuity in a shadow, used as a
secondary light source

2 [0, 1] C1 discontinuity at λ C1 discontinuity in a shadow, used as a
secondary light source

3 [0, 1] C0 discontinuity at λ Linear light source partially hidden
4 [0, 1] Oscillating function High-frequency texture used as a light source
5 [0, 1] Peak at λ Specular reflection from a glossy surface
6 [1, 2] Sharp peak at λ Specular reflection from a very glossy surface
7 [0, 1] Weak singularity at λ Form factors between adjoining surfaces

The parameter λ, chosen from the domain [L, H], controls the location of the
difficulty. For each problem family, the domain of the parameter λ coincides with
the limits of integration, that is, we will want to compute definite integrals of
the form

I (λ) =
∫ H

L
f (λ, x) dx. (15)

The problem families we study all have analytic solutions and all have dis-
tinct difficulties that are related to problems encountered in computer graphics.
A list of problem families, difficulties, and an examples of corresponding render-
ing problems can be found in Table I, and a sample member from each family
is shown in Figure 9. For each family, the actual definition of f (λ, x) is given
further on in this section.

For each problem family, we create similar yet distinct integration problems
by varying the parameter λ. The purpose is to determine the behavior of each
integration method on a set of these distinct problems, instead of on just one
particular member of a family. This allows us to evaluate the consistency of
the performance of each method on the entire family. From a visual point of
view, such tests can provide valuable insight, as slowly varying the location
of the parameter λ corresponds to varying the location of a difficulty in the
computation of an image.

4.2 Performance Profiles

In this paper, for each of the chosen problem families, we will study two differ-
ent aspects of the performance of the integration methods. Since each problem
family has an analytical solution, we can easily compare a numerical approx-
imation to the exact solution. The two aspects that we will examine are the
numerical and the visual convergence of the approximate solutions. To study
both aspects of the performance, it is useful to prescale the problem families
such that the results can be readily interpreted. In our tests, each problem
family is prescaled such that the integration of any of its members results in a
value in the range [0, 255]. This results in values that are suitable for plotting
as a grey-scale intensity.

Since each family is prescaled to achieve a maximum definite integral value
of 255 within the domain [L, H], an absolute tolerance of ε corresponds to a
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Fig. 9. Plots of a sample member from each problem family, with λ = L + 0.55. Family 1: C2

discontinuity; family 2: C1 discontinuity; family 3: C0 discontinuity; family 4: oscillating function;
family 5: function with a peak; family 6: function with a sharp peak; family 7: function with a weak
singularity.

relative error of ε/255. The absolute tolerance that will most often be used is
ε = 0.5, since this implies exact solutions for images that only require 8 bits of
accuracy per color. Notice that an absolute error of 0.5 corresponds to a relative
error of 0.2%.

4.2.1 Numerical Convergence. The first aspect that we examine is the nu-
merical convergence of each technique as a function of the number of function
evaluations used by the technique. For quadrature rules, this is done using
an increasing number of panels resulting from either a regular or difficulty-
driven compound rule. The same quadrature rule is used over each panel. For
the Voronoi and the weighted Monte Carlo methods, an equivalent number of
function evaluations is used.

To define the numerical convergence over a problem family, we subdivide
the domain [L, H] into n segments, and for each λ = L + j

n (H − L) such that
j ∈ {0, 1, . . . , n− 1}, we compute the integral I (λ). We thus evaluate each tech-
nique for n different members of a problem family. For a given absolute tolerance
ε, we will plot the percentage of members that were integrated within ε as a

ACM Transactions on Graphics, Vol. 20, No. 4, October 2001.



On Numerical Solutions to One-Dimensional Integration Problems • 251

function of the total number of function evaluations used to approximate the
integrals. A method has achieved 100% numerical convergence with respect to
ε if all of the members are integrated within ε. On all the convergence plots,
the abscissa is the number of function evaluations, and the ordinate is the
percentage of convergence.

Note that our definition of numerical convergence is closely related to the
information-based ε-complexity discussed in Traub et al. [1988]. In essence, we
have defined a class of problems, and we want each problem from that class to be
solved within a tolerance of ε. Achieving 100% numerical convergence is akin to
finding the cost, in terms of function evaluations, of the worst case ε-complexity
of the family. In other words, the worst case ε-complexity of a problem family
is the cost associated with solving the member of the family that requires the
greatest number of function evaluations in order to solve it. Similarly, achieving
a lower convergence rate, say, 100% − δ, is akin to finding the probabilistic
ε-complexity of the problem, that is, finding the number of function evaluations
required so that all but at most a fraction δ of the problems have been evaluated
within a tolerance of ε.

4.2.2 Visual Convergence. We will examine the visual convergence of each
numerical integration technique by plotting the result of the integration of the
n different members of a problem family. Since the families were prescaled such
that these values range between 0 and 255, we can display them as an 8-bit
grey-scale intensity line. An obvious but important observation is that given
a choice of members to integrate, the resulting intensity line will be uniquely
defined if the technique is deterministic. If the technique is stochastic, each
application of the technique results in a potentially different intensity line.

In computer graphics, integrands are often highly correlated, and depending
on the type of solution employed to approximate each integral, different visual
characteristics will emerge for different types of solution. Typically, approxi-
mate solutions derived from deterministic techniques may be prone to banding
or aliasing, where as those derived from stochastic techniques may instead be
prone to noise. For these reasons, it is important to study the visual convergence
of several intensity lines for a given problem family.

For a given number of function evaluations, we examine the visual conver-
gence of each technique by defining an intensity strip consisting of a catenation
of intensity lines. Given a set of n different members (to be integrated) from a
problem family, and a desired number of intensity lines h, we define a strip4

of width n and height h. This strip is an array of values S[i, j ] such that the
entry corresponding to [i, j ] is the j th computation of I (L + i

n (H − L)), us-
ing a given numerical integration technique. If the technique is deterministic,
S[i, j ] = S[i, k] for any value of j and k, and the intensity lines are all identical.
If the technique is stochastic, S[i, j ] and S[i, k] are not necessarily the same,
and we can potentially have h different intensity lines.

We define the true strip to be the intensity strip generated by the analytical
solution of the same set of integration problems. Since the analytical solution

4In our study, we generate strips of width n= 199 and of height h= 21.
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is deterministic, the true strip will consist of a catenation of identical intensity
lines. To examine the visual convergence of different numerical integration
techniques, we generate an intensity strip for each numerical technique. We
then create an image by catenating these intensity strips, with a true strip in-
serted between every numerically generated intensity strip. This enables us to
compare the visual convergence of the various techniques by comparing their
strip to the true strip. We will say, informally, that a numerical method has
converged visually if its corresponding intensity strip is perceptually nearly
indistinguishable from the true strip. In all visual profiles, the true strip will
appear, unlabeled, between each pair of intensity strips generated by a numer-
ical integration technique.

4.3 Performance Profiles of Test Families

In this section we examine the performance profiles resulting from the appli-
cation of the previously introduced numerical methods to seven different prob-
lem families. For each family, we will present the most relevant numerical and
visual results.

Note that in both the numerical and visual profiles, the following abbre-
viations will be used to indicate the method used: Gn for the n point Gauss
quadrature, Jn for the fully jittered n point Gauss quadrature rule, Rn for the
random offset quadrature, V for the Voronoi method, and W for the weighted
Monte Carlo method. In addition, a partially jittered quadrature will be indi-
cated as either Jn p, where n indicates an n-point Gauss quadrature rule, and
p indicates the amount of jittering, or simply as p if the Gauss quadrature rule
is clear.

4.3.1 Problem Family 1: C2 Discontinuity. The first problem family is the
following:

f1 =
{

x2 if x ≤ λ
2λx − λ2 if x > λ

λ ∈ [0, 1],

I1 =
∫ 1

0
f1 dx = 1

3
λ3 − λ2 + λ.

This is a piecewise continuous function, with a second derivative discontinuity
at λ.

This family is very well behaved for all choices of λ ∈ [0, 1]. As a result, all
of the deterministic quadratures with 5 or more points achieve 100% conver-
gence without compounding. The 3-point Gauss and the 1-point Gauss method
converge almost as fast; they achieve 100% convergence after using a total
of 6 and 15 function evaluations, respectively. Since all methods with 3 or
more points converge fully using at most two panels, there is no advantage to
be gained by using a difficulty-driven compound quadratures scheme based
on the knowledge of λ, the location of the difficulty. After 30 function evalua-
tions, the resulting strips are identical to the true strip if we use any of the
deterministic methods. The jittered quadratures, on the other hand, require
180 or more function evaluations to converge numerically.
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Fig. 10. Numerical convergence plots for problem family 1, with ε = 0.5, for partially jittered
quadratures J3 and J15. The random offset, weighted Monte Carlo, and Voronoi methods are
included for comparison.

Fig. 11. Visual convergence plots for problem family 1, after 30 function evaluations.

Figure 10 illustrates the relative convergence rates of partial location jitter-
ing for an absolute tolerance of 0.5, for both J3 and J15, with the jittering vary-
ing from 0.00 (deterministic) to 1.00 (fully jittered). For both quadrature rules,
the rate of convergence decreases as the amount of jittering increases. This is
true for all of the quadrature rules. The Voronoi method converges at about
the same rate as the slightly jittered quadratures. Numerically, the weighted
Monte Carlo method converges at about the same rate as the Voronoi method,
and the random offset method converges at the slowest rate, both numerically
and visually.

All of the quadrature based strips (both deterministic and jittered) have
converged visually after 30 function evaluations, as well as both the Voronoi
and weighted Monte Carlo methods. Figure 11 shows the resulting strips after
30 function evaluations have been used with the Voronoi and random offset
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Fig. 12. Numerical convergence plots for problem family 2, with ε = 0.5.

methods, interspersed by the true strip. The jittered quadratures and the
weighted Monte Carlo methods gave strips similar to the Voronoi strip, and
only the random offset method did not converge visually after 30 function
evaluations.

4.3.2 Problem Family 2: C1 Discontinuity. The second problem family is
the following:

f2 =
{

x2 if x ≤ λ
λ2

1−λ (1− x) if x > λ
λ ∈ [0, 1],

I2 =
∫ 1

0
f2 dx = 1

2
λ2 − 1

6
λ3.

This is a piecewise C2 function, with a first derivative discontinuity at λ.
The members of this family are also relatively easy to integrate for all values

of λ ∈ [0, 1]. As shown in Figure 12(a), all of the deterministic quadrature rules,
as well as the random offset method, achieve over 90% convergence after 30
function evaluations, for a tolerance of 0.5. The convergence rates of all these
methods are nearly indistinguishable. The Voronoi and the weighted Monte
Carlo methods have a slightly slower convergence rate. Increasing the jittering,
as shown for the 5-point Gauss quadrature J5 in Figure 12(b), decreases the
convergence rate for all quadrature rules.
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Fig. 13. Visual convergence plots for problem family 2, after 30 function evaluations.

The intensity strips for the deterministic quadratures have all converged
visually after 30 function evaluations. The Voronoi strip and the random off-
set strips are almost converged, whereas the weighted Monte Carlo and jit-
tered strips are slightly noisier. The strips in Figure 13(a) show the results
after 30 function evaluations for the Voronoi and random offset methods,
and those in Figure 13(b) show the results after 30 function evaluations for
weighted Monte Carlo and for the fully jittered quadrature J5. Notice that the
weighted Monte Carlo strip (W) has more noise in the form of bright black and
white dots.

For this problem family, using a difficulty-driven compound quadrature is
only slightly advantageous. From a numerical perspective, if we subdivide the
interval of integration into two panels, with the boundary coinciding with λ,
then we will integrate any function exactly provided that we are using a method
of degree at least 2. This is evident since any member of the problem family will
be continuous over each panel, and will be of degree at most 2. From a visual
perspective, we can only fairly compare the methods after at least 30 function
evaluations have been used, since the basic quadratures tested have up to 30
points. Since the regular compound quadratures have all converged visually by
this point, there is little advantage to be gained by knowing the location of λ: for
the quadratures with less than 15 points, we would, however, achieve earlier
visual convergence.

4.3.3 Problem Family 3: C0 Discontinuity. The third problem family is the
following:

f3 =
{

0 if x ≤ λ
1 if x > λ

λ ∈ [0, 1],

I3 =
∫ 1

0
f3 dx = 1− λ.

This is a step function with a discontinuity at λ.
Figure 14(a) shows the convergence plots for an absolute tolerance of 0.5

for all of the deterministic quadratures, as well as the plots for the random
offset, Voronoi, and weighted Monte Carlo methods. All of these techniques
have similar convergence rates, with random offset and weighted Monte Carlo
having a slightly slower rate.

Figure 14(a) shows that the compound quadrature rules that converge most
quickly use fewer points in the base quadrature. For a given number of func-
tion evaluations, the number of panels over which we apply the base method
is inversely proportional to the number of points used by this method. Since
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Fig. 14. Numerical convergence plots for problem family 3, with ε = 0.5.

the function is constant everywhere but at the discontinuity, all of the base
quadrature rules will integrate the function exactly over any panel that does not
contain the discontinuity. Conversely, the only error incurred will be bounded
by the length of the panel containing the discontinuity. Since the length of this
panel is inversely related to the number of points in the the base quadrature
rule, the error will also be inversely related to the number of points. Since the
integrand has a discontinuity, Bakhvalov’s theorem tells us that the O(1/n)
convergence rate is the best that we can achieve. Therefore, for this particular
problem, the regular compound quadrature based on G1 (i.e., super sampling)
achieves the optimal convergence rate.

The effect of jittering the location of the quadrature points is similar for
all quadrature rules. Figure 14(b) illustrates the convergence plots for one of
the quadrature rules, namely, J9, with the amount of location jittering varying
from 0 (deterministic) to 1 (fully jittered). All of these methods have similar
convergence rates, with the convergence rate being inversely related to the
amount of jittering. The convergence rates are similar to the rate for the Voronoi
method, but slightly poorer.

Figure 15 shows some of the resulting strips after 30 function evaluations
have been used with each technique. The strips on the left-hand side were
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Fig. 15. Visual convergence plots for problem family 3, after 30 function evaluations.

generated using all the deterministic quadratures with regular compounding,
with the exception of the last strip, which was generated using a difficulty-
driven compound quadrature based on G15, with an uncertainty of 5%. Notice
that slight banding occurs in all of the deterministic strips. Banding is not
visible for the difficulty-driven strip.

The strips on the right-hand side were generated using random offset,
Voronoi, weighted Monte Carlo, partial location jittering of J9, and a difficulty-
driven compound quadrature based on the G15, with an uncertainty of 10%.
The Voronoi strip is visually pleasing, with no banding, and only a small amount
of noise. The random offset strip is slightly noisier than the Voronoi strip, but
less noisy than the weighted Monte Carlo strip. In the J9 strips, banding is
progressively reduced as we increase the amount of jittering; the aliasing pat-
terns are transformed into less visually objectionable random noise. Since the
percentage of numerical convergence actually decreased as we increased the
jittering, this illustrates the fact that numerical accuracy and visual accuracy
are not always positively correlated.

For this problem family, the difficulty-driven compound quadrature schemes
are helpful as long as the uncertainty for the location of the difficulty is
less than 10%, that is, as long as we guarantee that a panel border will be
located within 10% of the jump discontinuity. For a given uncertainty, the
choice of the underlying quadrature rule does not affect the visual quality of
the results. For this reason, we have chosen to illustrate these results using
only one of the quadratures rules, namely, G15, and using only two uncer-
tainties, namely ξ = 5% and ξ = 10%. The 5% difficulty-driven strips are al-
most visually perfect, with only a minute amount of noise, whereas the 10%
strips are of similar quality to the V30 strip. Finally, since the integrand is
constant everywhere but at λ, a difficulty driven quadrature with zero un-
certainty will converge numerically with a total of at most two panels, even
for G1.
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Fig. 16. Numerical convergence plots for problem family 4, with an absolute tolerance of ε = 0.5.
Only the deterministic quadratures G3 through G30 converge at all.

4.3.4 Problem Family 4: Oscillating Function. The fourth problem family
is the following:

f4 = cos(λ+ 100x), λ ∈ [0, 1],

I4 =
∫ 1

0
f4 dx = 1

100
sin(100+ λ)− sin λ.

This is a rapidly oscillating function in the interval [0, 1], with slightly less than
16 full cycles in that interval.

Figure 16 shows the convergence plots for an absolute tolerance of 0.5 for
all of the deterministic quadratures, and for the random offset, Voronoi, and
weighted Monte Carlo methods. The convergence is either fully achieved or
not achieved at all. As we can see in Figure 16, only the deterministic Gauss
quadratures with 3 or more points converge. Due to the particular difficulty
of this integral, the higher-degree quadratures converge faster, as can also be
seen in Figure 16.

None of the jittered quadratures, random offset, Voronoi, or weighted Monte
Carlo methods achieve full convergence. The highest percentage of convergence
achieved by any of the stochastic methods is only 6%, namely, by the random
offset quadrature.

In Figure 17, we show the resulting intensity strips generated with deter-
ministic compound Gauss quadratures, and the random offset, Voronoi, and
weighted Monte Carlo methods. The strips in Figure 17(a) were generated us-
ing 30 function evaluations, and the strips in Figure 17(b) were generated using
60 function evaluations.

The strips after 30 function evaluations are completely different from the
true strip. The deterministic strips are either black or white, while the random
offset, Voronoi, and weighted Monte Carlo strips are very noisy. This is aliasing
due to the undersampling of the high-frequency sinusoid.

After 60 function evaluations, G9, G15, and G30 have converged completely;
G7 is too bright; G5 is almost converged; G3 is too dark. The G1 strip is almost
completely black, and the ones generated by the random offset, Voronoi, and
weighted Monte Carlo methods are still very noisy. We found that even after
300 function evaluations, the strips generated by these methods, as well as by
the jittered methods, were very noisy.
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Fig. 17. Visual convergence plots for problem family 4 for deterministic quadratures, random
offset, Voronoi, and weighted Monte Carlo, after 30 and 60 function evaluations.

This problem family appears very sensitive to jittering. Only the determinis-
tic quadratures are able to provide converged solutions. Through experimenta-
tion, we found that partial jittering as low as 0.1 results in very noisy images.
This problem family is the only one in which the parameter λ does not cor-
respond to the location of a single difficulty. Examining the integrand reveals
that the parameter is a phase factor which shifts the cosine wave. There is no
advantage to be gained by subdividing the interval of integration based on the
parameter λ, since this location does not correspond to a single difficulty of
the integrand.

4.3.5 Problem Family 5: Function with a Peak. The fifth problem family is
the following:

f5 = e−8|x−λ|, λ ∈ [0, 1],

I5 =
∫ 1

0
f5 dx = 1

4
− 1

8
(e−8λ + e8λ−8).

This is a function with a moderate peak at λ.
Figure 18 shows the convergence plots for an absolute tolerance of 0.5 for

all of the deterministic quadratures, and for the random offset, Voronoi, and
weighted Monte Carlo methods. Once again, we find that all of the deterministic
quadrature rules have faster numerical convergence than the stochastic meth-
ods. The deterministic quadratures have similar convergence rates, with the
lower-degree methods converging slightly faster than the higher-degree meth-
ods. The Voronoi method clearly has a faster convergence rate than the jittered
quadratures (J1 shown), random offset, and weighted Monte Carlo methods.
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Fig. 18. Numerical convergence plots for problem family 5, with an absolute tolerance of ε = 0.5.

Fig. 19. Visual convergence plots for problem family 5, after 30 function evaluations.

The latter three methods have similar convergence rates, although initially the
random offset method converges faster.

Figure 19(a) illustrates the results after 30 function evaluations for a variety
of methods. All deterministic methods show aliasing in the form of banding;
these bands are least visible with the 1-point Gauss quadrature. Notice also
that the Voronoi strip shows no aliasing and is only slightly noisy, whereas the
weighted Monte Carlo strip has a lot of noise in the form of bright black and
white dots.

The random offset method and the jittered quadratures are moderately suc-
cessful at removing banding artifacts while not introducing too much noise,
but are not as visually acceptable as the Voronoi strip. Strips generated with
the random offset method and some of the jittered techniques are shown in
Figure 19(b). The location jittered quadratures are all successful at removing
the banding artifacts. The 0.75 location jittered quadratures give the best re-
sults; this is illustrated for J15 and J30 in Figure 19. The exception is the J1
quadrature, which achieves better results with full jittering.
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Table II. Numerical Convergence Plots for Difficulty Driven Compound Quadratures After
30 Function Evaluations, with an Absolute Tolerance of ε = 0.5

λ uncertainty G1 G3 G5 G7 G9 G15
10% 19.5% 21% 23% 25% 29% 50%

5% 19% 21% 32% 44.5% 49.5% 60%
2.5% 18% 41.5% 50.5% 51.5% 65.5% 82%

1% 30% 58.5% 66% 81.5% 91% 98.5%
0% 0% 100% 100% 100% 100% 100%

Even though numerical convergence is not achieved before at least 90 func-
tion evaluations, all deterministic methods have converged visually after 60
function evaluations; however, the stochastic strips are still slightly noisy.

Finally, for this problem family, knowing λ, the location of the peak, is ad-
vantageous as long as our uncertainty for the estimation of the location of the
peak is at most 10%. When this is the case, all the deterministic techniques
used in combination with the difficulty-driven compounding have converged
visually after at most 30 function evaluations. This is illustrated by the last
two strips of Figure 19: the last strip of Figure 19(a) was produced using a 10%
error and the 15-point Gauss quadrature with two panels, and the last strip of
Figure 19(b) was produced using a 10% error and the 9-point Gauss quadra-
ture with three panels. If more than 10% error is allowed for the approximate
location of the peak, the strips become slightly noisy.

In Table II the degree of numerical convergence achieved by each quadrature
rule is shown for a variety of uncertainties on the value of λ, the location of the
peak. Recall that the numerical convergence is the percentage of problems of
the problem family that were integrated with an absolute error of less than
0.5. The results in this table show that G1 is not well suited to this particu-
lar type of difficulty-driven compounding. This is to be expected, since all the
other deterministic methods are of higher degree and will be more successful
at integrating the peak than G1. In particular, the degree of numerical con-
vergence increases with the degree of the basic method used, even though the
total number of points used (30) remains constant. Given that no traditional
method achieved even 25% convergence after 30 function evaluations, the re-
sults achieved by the difficulty-driven compound quadratures are significant
improvements over those of the former methods.

4.3.6 Problem Family 6: Function with a Sharp Peak. The sixth problem
family is the following:

f6 = 0.01
(x − λ)2 + 0.0001

, λ ∈ [1, 2],

I6 =
∫ 2

1
f6 dx = arctan(100λ− 100)− arctan(100λ− 200).

This is a function with a sharp peak at λ. It is a shifted and scaled variant of
Runge’s function [Kahaner et al. 1989]

R(x) = 1
1+ 25x2 . (16)
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Fig. 20. Numerical convergence plots for problem family 6, with an absolute tolerance of ε = 0.5.

Figure 20 shows the convergence plots for an absolute tolerance of 0.5 for all
of the deterministic quadratures, for J1, and for the random offset, Voronoi, and
weighted Monte Carlo methods. We find that all of the deterministic quadra-
tures converge faster than their stochastic counterparts, except for the random
offset method. Notice also that the jittered quadratures (J1 only shown) and
the weighted Monte Carlo methods converge at very similar rates.

Most of the deterministic quadrature rules have similar convergence rates,
although the higher-degree methods converge slightly faster, with super sam-
pling being the exception. As shown in Figure 20, G1 converges much faster
than the other deterministic quadratures, until it reaches 95% convergence af-
ter 125 function evaluations. It then slowly converges to 98% after 300 function
evaluations. Conversely, the other deterministic quadratures have converged to
less than 40% after 130 function evaluations, but have converged fully after at
most 213 function evaluations. While G1 is better at quickly isolating the peak
in a single interval, it cannot evaluate the area under this peak very reliably.
The random offset method has a very similar behavior, which is to be expected
since it consists of a shifted version of G1.

This particular problem family results in a peculiar behavior for the Voronoi
method. If we examine the convergence plot of the Voronoi method in Figure 20,
we notice that the convergence is nonmonotonic. This is especially evident in
the range 155 to 190, and again from 190 to 255. In both ranges, the convergence
of the Voronoi method actually decreases as we increase the number of samples,
before beginning to increase again.

This decrease can be explained if we recall the way in which the points are
generated for the Voronoi method. For this problem family, Voronoi sequences
that result in partial subdivisions are on average less accurate than Voronoi
sequences where the points generated by these partial subdivisions are simply
removed (see Section 2.6 for definitions of the terminology).

We now present the results of an experiment using Voronoi processes over
the interval [0, 1] whose initial seed σ was constrained by σ ∈ [1/3, 2/3]. We
examined 100,000 integration problems from family 6, each generated by choos-
ing a random value of λ ∈ [1, 2]. For each problem, we generated a random seed
σ ∈ [1/3, 2/3], and constructed the Voronoi sequences ranging from 191 to 255
points. We then approximated each integral using each Voronoi sequence and
determined if a tolerance of 0.5 had been achieved.
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Fig. 21. Voronoi experiment: the abscissa is number of points in each method (minus 191); the
ordinate is the percentage of numerical convergence, with a tolerance of ε = 0.5.

Fig. 22. Visual convergence plots for problem family 6, for G1, J1, G3, J3, G15, J15, random offset,
Voronoi, and weighted Monte Carlo methods.

As was shown in Section 2.6, a Voronoi process whose seed is constrained as
stated in our experiment will have full subdivision if 191 points are generated.
As we increase the number of points from 191 to 255, the number of partial
subdivisions increases from 0 to 64, with 64 being once again a full subdivision.
In Figure 21, we illustrate the percentage of convergence for the Voronoi pro-
cesses, with the number of points in the sequence ranging from 191 to 255. It
is instructive to show the number of partial subdivisions as the abscissa.5 Due
to the nature of the problems from family 6, increasing the number of partial
subdivisions actually decreases the accuracy of the calculated integral! This
accuracy is at its worst when roughly half the intervals are being subdivided,
and only increases once the subdivision has become almost full again.

As for visual convergence, some of the resulting strips after 60 function
evaluations are shown in Figure 22(a), and after 90 function evaluations in

5The number of points in the Voronoi process is the sum of the abscissa and of 191.
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Fig. 23. Difficulty-driven visual convergence plots for problem family 6. Top left: 30 function eval-
uations. Bottom left and bottom right: 60 function evaluations. Top right: 90 function evaluations.

Figure 22(b). With fewer than 120 function evaluations, none of the meth-
ods tested achieved visual convergence. Whereas numerical convergence is
achieved after 120 function evaluations only for G1, visual convergence is
reached at 120 function evaluations for all of the deterministic methods.

After 60 (and 90) function evaluations, all of the deterministic quadratures
produce aliasing in the form of bands of brightness. The deterministic and
jittered quadratures G1, G3, G15, the random offset, Voronoi, and weighted
Monte Carlo methods were used to generate the strips in Figure 22. In general,
we find that the low-degree Gauss quadratures respond better to jittering than
the higher-degree quadratures. This is evident in Figure 22 if we compare the
location jittered strips for J1 and J3 to the location jittered strip for J15. The
banding is removed in the first two strips, but not in the latter. Observe also
that after both 60 and 90 function evaluations, the weighted Monte Carlo and
the jittered quadrature strips are the noisiest, the Voronoi strip is less noisy,
and the random offset strip one is the closest, visually, to the true strip, and
has almost converged visually after 90 function evaluations.

This particular problem family benefits from difficulty-driven compounding.
For this family, the parameter λ indicates the location of a sharp peak. After
30 function evaluations, we obtain results that are far superior to both regular
quadrature compounding and the stochastic methods. In Figure 23(a), the top
five test strips all use 30 function evaluations, with the last strip, R30, included
as a reference. We include the random offset strip as a reference since it was the
method which came the closest to achieving visual convergence. If λ is known
exactly and difficulty-driven compounding is used, G1 and G3 (G3 shown)
both show banding, whereas G5 through G15 (G15 shown) are all smooth, but
have not converged visually. When we increase the uncertainty on λ to 1%, G5
through G15 (G15 shown) become slightly noisy, but less noisy than R30. If we
further increase the uncertainty to 2.5%, all strips become slightly noisier, while
only G15 (G15 shown) remains band-free. For uncertainties of 5% or more, the
difficulty-driven compounding gives results equivalent to or worse than R30.
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After 60 function evaluations, we again obtain results that are superior to
both regular quadrature compounding and the stochastic methods (i.e., jit-
tered quadratures, random offset, Voronoi, and weighted Monte Carlo). In
Figure 23(a) and Figure 23(b), the bottom three test strips all use 60 function
evaluations, with the last strip, R60, incorporated as a reference. If λ is known
exactly and difficulty-driven compounding is used, G1 through G5 (G5 shown)
are very smooth, but have not converged visually. The strips for G7 through G30
have all converged visually. When we increase the uncertainty on λ to 1%, G1
through G9 (G5 shown) become slightly noisy, but less noisy than R60, whereas
G15 and G30 have converged. If we further increase the uncertainty to 2.5%,
G1 through G9 (G5 shown) are both as noisy as R60, whereas G15 and G30 are
very slightly noisy (G15 shown). For an uncertainty of 5%, only G30 (shown)
remains better than R60, with the other techniques giving results similar to
R60. Finally for uncertainties of 10% or greater, no advantage is obtained via
difficulty-driven compounding.

After 90 function evaluations, we obtain results that are slightly supe-
rior to both regular quadrature compounding and the stochastic methods. In
Figure 23(b), the top five test strips all use 90 function evaluations, with the
last strip, R90, incorporated as a reference. If λ is known exactly and difficulty-
driven compounding is used, all methods have converged visually. If λ is known
within an uncertainty of 1%, all strips except G3 have converged visually; G3
(shown) is too dark, and of quality slightly worse than R90. With an uncertainty
of 2.5%, only G1, G15, and G30 (G30 shown) are still better than R90, with all
three of them with very slight noise. When the uncertainty is increased to 5%,
G1 and G30 (G30 shown) are unchanged, whereas the other techniques are no
better than R90. Finally, with an uncertainty of 10%, G1 (shown) is unchanged
and very slightly noisy, and slightly better than R90.

Numerically, the difficulty-driven compound quadrature rules of higher-
degree converge faster than the regularly compounded quadratures, and than
the stochastic methods. The plots in Figure 24 show that G15 and G30 both
converge noticeably faster with difficulty-driven compounding. The speed of
convergence increases as we decrease the uncertainty of the location of the
peak. The intermediate methods G7 and G9 also converge faster than both the
stochastic methods and the regularly compounded quadrature, provided that
the uncertainty is at most 1% and 2.5%, respectively. The intermediate method
G5 only converges significantly faster than the Voronoi or the regularly com-
pounded method if the location of the peak is known exactly. Numerically, the
convergence of either G1 or G3 is not improved by using difficulty-driven com-
pounding. Note that we have included the Voronoi plots, and not the random
offset plots, since in the examined range, the former method actually converges
faster numerically.

4.3.7 Problem Family 7: Function with a Weak Singularity. The seventh
problem family is the following:

f7 = |x − λ|− 1
2 , λ ∈ [0, 1],
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Fig. 24. Numerical convergence plots of difficulty-driven compounding, for a tolerance of
ε = 0.5, for Voronoi (V), regular compounding (Gn), and difficulty-driven compounding with various
uncertainties (10%, 5%, 2.5%, 1%, and 0%).

I7 =
∫ 1

0
f7 dx

= 2(
√
λ+

√
1− λ).

This is family 1 as taken from the test suite in [Espelid and Sorevik 1989]. It
has a weak singularity at λ.

This is the most difficult6 problem family. Even after 300 function evalua-
tions, none of the methods have achieved more than 2.5% convergence within
a tolerance of 0.5. In Table III, the maximum convergence for the deterministic
quadrature rules, the random offset, Voronoi, and weighted Monte Carlo meth-
ods have been listed. The degree of convergence increases as the tolerance is
relaxed: a tolerance of 50.0 represents a maximum intensity error of 50, on a
scale of 0 to 255.

This problem family was also found to be the most challenging in terms of
achieving good visual results. Figure 25(a) shows some of the strips generated
after 30 function evaluations, while Figure 25(b) shows some of the strips af-
ter 300 function evaluations. Even after 300 function evaluations, none of the

6In practice, techniques such as singular value decomposition and special quadrature rules can be
used to evaluate such integrals [Davis and Robinowitz 1984; Schröder 1993].
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Table III. Maximum Numerical Convergence for at Most 300 Function Evaluations, as a
Function of Tolerance ε

ε G1 G3 G5 G7 G9 G15 G30 R V W
0.5 2% 1% 1% 1% 0% 0% 2% 3% 3% 3%
1.0 2% 2% 2% 1% 1% 1% 2% 4% 3% 5%
5.0 9% 10% 10% 10% 11% 11% 12% 15% 13% 16%

10.0 20% 21% 22% 20% 24% 21% 24% 25% 24% 25%
50.0 94% 94% 94% 92% 94% 93% 90% 96% 98% 93%

Fig. 25. Visual convergence plots for problem family 7, for G1, J1, G30, J30, random offset, Voronoi,
and weighted Monte Carlo.

techniques produced a strip visually indistinguishable from the true strip. This
is not surprising considering the numerical convergence results for this prob-
lem family. After 300 function evaluations, all deterministic methods still show
aliasing in the form of bands, as shown for G1 and G30.

The location jittered versions of all of the deterministic methods show error
in the form of incoherent noise, as illustrated for G1 and G30, but are successful
at removing the banding artifacts. The random offset, Voronoi, and weighted
Monte Carlo methods are about as equally effective at removing the banding
while introducing the least amount of uncorrelated noise in the strip.

This family is the most difficult test because of the weak singularity in the
integral. If we know the location of the singularity, we can get better numerical
and visual convergence, especially if the uncertainty for λ is 0%. In such a case,
we don’t have convergence for low values of epsilon; however, we do obtain
convergence for an epsilon of 10, after 210 function evaluations for G15, and
after 120 function evaluations for G30. Even though numerical convergence is
still very slow, it is an improvement over both regular compounding and the
other stochastic methods.

In Figure 26, we have shown the visual convergence for one of the quadra-
ture rules (G15) assuming an uncertainty of 0% on λ. The strips are shown in
progression from 30 function evaluations to 300 function evaluations. Even
with an uncertainty of 0%, we do not obtain visual convergence using the
difficulty-driven compounding. We do, however, have much less objectionable
artifacts. The results for all quadratures tested (G1 through G30) are very
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Fig. 26. Visual convergence plots for difficulty-driven compounding, using a 0% uncertainty with
G15, and the number of points indicated.

similar. Notice that in each strip, the grey-scale gradation is too dark, but none
the less smoother than any of the strips previously shown in Figure 25.

5. APPLICATIONS

In this section, we will compare the performance of the various one-dimensional
integration techniques by using them to solve linear light source integra-
tion problems that occur in the course of rendering the office scene shown in
Figure 28. We compare deterministic quadratures (based on both regular com-
pounding and difficulty-driven compounding), jittered quadratures, and the
random offset, Voronoi, and weighted Monte Carlo methods. The integrands
examined will have one or more of the following four characteristics: smooth,
single discontinuity, high-frequency oscillation/variation, or a sharp peak. Since
we are considering only the integrals resulting from the computation of pri-
mary illumination from linear light sources, none of the integrals will contain
a singularity.

Let us first review the problem of computing the direction illumination
from a linear light source. This is a problem that has been the subject of sev-
eral research papers in computer graphics [Nishita et al. 1985; Poulin and
Amanatides 1990; Ouellette and Fiume 1999b; Heidrich et al. 2000]. As illus-
trated in Figure 27, we define a linear light source to be the line between two
points L1 and L2, which emits light along its entire length, and illuminates an
element of area dA. Consider an element of the light source dL, consisting of an
infinitesimally small segment of the light source. As illustrated in Figure 27,
dL subtends an angle of dα with respect to dA.

Let α12 be the angle defined by L1, dA, and L2, as illustrated in Figure 27.
Let dα be an element of angle measured in the plane defined by dA, L1, and L2,
and at an angular distance of α from the edge defined by dA and L1. Let L(α)
be the radiance received through dα by dA, and fr (α; θr , φr ) be the radiance
reflected by dA through an element of solid angle dωr in the direction defined
by the pair of polar angles (θr , φr ). Then Lr , the total radiance reflected through
dωr , is defined as

Lr =
∫ α=α12

α=0
Li(α) fr (α; θr , φr ) cos θi(α) dα, (17)

where cos θi(α) is the angle of declination as measured from Z , the surface
normal with respect to dA, and is a function of the parameter α.

ACM Transactions on Graphics, Vol. 20, No. 4, October 2001.



On Numerical Solutions to One-Dimensional Integration Problems • 269

Fig. 27. Linear light source illumination problem.

We will now compare the effectiveness of numerical methods in handling the
integrand derived from the illumination integral associated with one or more
linear light sources. We have designed an office scene such that each of the four
previously mentioned types of integrand characteristics is represented. This
scene consists of an office illuminated by three diffuse linear light sources, as
shown in Figure 28. Two of the sources are located on the ceiling (and out of
view), and the third is located in the desk lamp. The scene is rendered using
a ray caster that calculates the primary illumination by computing the light
integral associated with each light source.

The resulting light source integrals present one or more of the integration dif-
ficulties that were present in the problem families of the previous section. Each
box in Figure 28 corresponds to one of the outlined classes. The surfaces that are
not in shadow and that do not have a significant highlight (e.g., Figure 28(a))
give rise to a smooth integrand. The regions that are in penumbra and that do
not have a significant highlight (e.g., Figure 28(b)) produce a smooth integrand
with a single discontinuity. The regions that have a high-frequency occlusion
pattern obscuring the light source (e.g., Figure 28(c)) have an integrand with a
high-frequency variation. Finally, the regions that show a significant highlight
(e.g., Figure 28(d)) have an integrand with a sharp peak.

5.1 Smooth Integrands

For smooth integrands, numerical quadratures of low precision will integrate
the primary illumination integral with high accuracy. In the following example,
the region of the wall to the right of the painting, as delimited by box (a) in
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Fig. 28. Test regions of an office scene, with no antialiasing performed.

Fig. 29. Smooth region, approximated with at most 2 function evaluations.

Figure 28, has been chosen to compare the effects of the various quadrature
rules on integrals of smooth integrands.

Figure 29(a) shows the exact solution. Figure 29(b) shows the solution if only
a 1-point quadrature is used to integrate each linear light source. This solution
is almost identical to the true solution, both visually and numerically (no pixel
differs by more than 3). If we increase the quadrature rule to a 2-point quadra-
ture, no pixel differs by more than 1. If instead of a quadrature rule, we use a
stochastic method, then Figure 29(c) and (d) show the results for the Voronoi
and the random offset method, respectively. Notice that the Voronoi method is
visually accurate, but the random offset method is fairly noisy. Since we cannot
generate a weighted Monte Carlo method with fewer than 2 points, this method
was not considered for this test. For this type of smooth integrand, jittering the
quadrature’s point location provides no benefit, since the convergence of the
deterministic quadratures is achieved immediately.

5.2 Single Discontinuity

In this example, the penumbral region of the floor in front of the filing cabinet,
as delimited by box (b) in Figure 28, has been chosen to compare the effects
of the various quadrature rules on integrals whose integrand contains a single
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Fig. 30. Discontinuous region, approximated with 4 function evaluations.

discontinuity. The points on the floor have a view of the two ceiling light sources
that is partially obstructed by the filing cabinet and the desk, and a completely
occluded view of the desk lamp. Since the chair does not affect the primary
illumination of this area, it has been removed to allow a better view of the
penumbral region.

Figure 30(a) shows the exact solution for the area in front of the bottom
of the filing cabinet. The other images have all been computed using at most
four function evaluations per light source. In Figure 30(b), 30(c) and 30(d), we
used a 2-point Gauss quadrature rule, compounded using a difficulty-driven
algorithm. In each case, the discontinuity was calculated within the given
uncertainty,7 the light source was subdivided into two panels at this discon-
tinuity, and a 2-point Gauss quadrature rule was used to integrate both panels.
The results are surprisingly good even for a 25% uncertainty. Notice that in
all three cases, the handle on the filing cabinet drawer causes more than one
discontinuity in the light source integrand, which explains the presence of ar-
tifacts in the shadow cast by the handle. Figure 30(e) shows the results of
applying a 4-point Voronoi method; the image is noticeably noisier than the
previous three images. Figure 30(f) shows the result of applying a regular two
panel compounding with the same 2-point Gauss quadrature. The image is not
noisy, but has artifacts in the form of banding. Jittering the location of the

7See Ouellette and Fiume [1999] for a discussion of the problem of approximating the location of a
discontinuity.
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Fig. 31. High-frequency region, approximated with 7 or 30 function evaluations.

quadrature points (J2× 2) eliminates the banding, replacing it with noise as
shown in Figure 30(g). The 4-point random offset method (R4) shown in Fig-
ure 30(h) has a similar amount of noise as J2× 2, but both are slightly noisier
than V4. Finally, notice that the weighted Monte Carlo method produces the
noisiest image, as shown in Figure 30(i).

5.3 High Frequency

In this example, the shadow region on the seat of the chair, as delimited by box
(c) in Figure 28, has been chosen to compare the effects of the various quadra-
ture rules on integrals with multiple discontinuities. The points on the chair
have a view of one of the ceiling light sources that is partially obstructed by one
or more of the bars on the back of the chair. The resulting integrands are similar
to, but different from, the oscillating functions of the fourth problem family: the
integrands are discontinuous and have a lower frequency. Figure 31(a) shows
the exact solution for the shadow on the chair.

This signal is difficult to integrate due to the numerous discontinuities (there
are up to 13 discontinuities in the integrand). As a result, convergence is slow.
In Figure 31(b), (c), (d), and (e), we compare the convergence of four different
methods using seven function evaluations per integral. In Figure 31(b), apply-
ing the 7-point Gauss quadrature (G7) causes aliasing: The shadow appears to
be projected from several point light sources. In Figure 31(c), the aliasing is
eliminated by using the same technique but with jittering of the sample points;
however, the image is fairly noisy. Applying a 7-point random offset method
results in an image without coherent aliasing, and that is a little cleaner than
Figure 31(c). Using a 7-point Voronoi method provides the best visual result
of any of the 7-point methods. Figure 31(e) is crisper than Figure 31(c), and
marginally better than Figure 31(d), in that it is better at preserving features
apparent in the exact image of Figure 31(a), notably the directional shadow
near the back of the seat, and the solid shadow in the top-right corner of the
image. The application of a 7-point weighted Monte Carlo method resulted in an
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Fig. 32. Highlight region, approximated with six function evaluations.

image (not shown) slightly noisier than Figure 31(c), but without banding. Fi-
nally, none of the methods converge (visually or numerically) with fewer than 30
function evaluations. Figure 31(f) shows the result of using a 30-point Voronoi
method, the best method among all 30-point methods.

5.4 Peak

In this example, the highlighted region on top of the desk, as delimited by box (d)
in Figure 28, has been chosen to compare the effects of the various quadrature
rules on integrals with a peak in their domain of integration. The points on
the desk have an unobstructed view of the desk lamp. Note that most of the
irradiance falling on these points comes from the desk lamp.

It should be noted that for this type of problem, it is sometimes possible
to apply importance sampling [Sobol 1994; Veach and Guibas 1995] to find
an approximate solution. Essentially, if we know a function that is somewhat
proportional to the integrand, and yet simple enough to model, we can use it
to sample the integrand in a more efficient fashion. However, such functions
are not always readily available, and increase in usefulness with an increased
dimensionality of the integration problem.

Figure 32(a) shows the exact solution for this area. Figure 32(b) was gen-
erated using a 3-point Gauss quadrature rule, compounded using a difficulty-
driven algorithm. For each integral, the domain of integration was split at the
location where the integrand peaked, and the 3-point quadrature rule was ap-
plied to each resulting panel. In Figure 32(c), the same technique was applied,
but the domain of integration was split exactly in half. Notice the resulting
fragmentation of the highlight. Even if we use a deterministic 9-point Gauss
quadrature on each half, the highlight is still not smooth, as can be seen in
Figure 32(f). In Figure 32(d), a 3-point jittered quadrature is compounded on
two intervals, resulting in a noisy highlight, without fragmentation. Applying a
1-point jittered quadrature compounded on six intervals results in a very simi-
lar image, as seen in Figure 32(e). If we use a random offset or Voronoi method
with 6 points, we obtain a slightly cleaner highlight, as shown in Figure 32(g)
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and (h). Finally, if we use a 6-point weighted Monte Carlo method, the image, as
shown in Figure 32(i), is noticeably noisier. The difficulty-driven compounding
is the clear winner for all the methods using at most 6 points per integral.

6. CONCLUSIONS

In this paper, we have presented a thorough study of the comparative effec-
tiveness of deterministic and stochastic numerical techniques for solving one-
dimensional integration problems that commonly occur in computer graph-
ics. We favorably compared a new type of numerical integration technique,
difficulty-driven compound quadratures, to traditional deterministic quadra-
ture compounding and to several stochastic techniques, namely, jittered quadra-
tures, random offset quadratures, Voronoi sampling, and weighted Monte
Carlo sampling.

We first used periodograms to compare the frequency domain characteristics
of both deterministic and stochastic techniques. We observed that the blue noise
characteristics of the jittered quadratures and of the Voronoi method and, to
some degree, of the weighted Monte Carlo method, foreshadowed their effec-
tiveness at eliminating aliasing. Similarly, the deterministic nature of Gauss
quadrature was reflected in their periodograms, and these were an indica-
tor that these techniques would have problems integrating signals with high-
frequency content.

Applying ideas from the numerical analysis community, we then compared
the same techniques using the concept of performance profiles. This allowed us
to examine the behavior of each technique over entire classes of problems, sim-
ilar to problems encountered in computer graphics. For seven different types of
integration problems, we examined both the numerical and the visual perfor-
mance profiles.

In general, we found that for smooth integrands (families 1 and 2), tradi-
tional deterministic quadratures were the best choice. For integrands where
the location of a single difficulty corresponded to the value of a parameter λ,
difficulty-driven compound quadratures outperformed all other methods, even
if the location of λwas only known to a tolerance of 5–10%. For these same prob-
lems, the random offset and/or the Voronoi method were the next best alterna-
tive, and jittered quadrature was slightly less useful. Finally, for the problem
family with a highly oscillating integrand, the best choice was again traditional
deterministic quadratures, provided that a sufficient number of function eval-
uations were used. In general, we also observed that the weighted Monte Carlo
method often had the slowest numerical convergence, and the noisiest images.
The results are summarized in Table IV.

Finally, we compared the performance of the same numerical techniques for
four different types of illumination integrals. These integration problems were
obtained by considering the primary illumination from linear light sources, for
four different regions of a scene. The four regions were chosen such that the re-
sulting integrands would form four distinct classes of integration problems. In
general, our conclusions were similar to those of the previous section. For prob-
lems with a single difficulty (e.g., integrand with a peak or a discontinuity),
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Table IV. Summary of Problem Family Results

Family Difficulty Best Choice(s) Next Best Alternative
1 C2 discontinuity Low-degree quadrature Voronoi, weighted Monte Carlo
2 C1 discontinuity Low-degree quadrature Voronoi, random offset
3 C0 discontinuity Low-degree quadrature with Voronoi, random offset,

difficulty-driven compounding or jittered quadrature
4 Oscillating High degree quadrature
5 Moderate peak Moderate-degree quadrature with Voronoi, random offset,

difficulty-driven compounding or jittered quadrature
6 Sharp peak High-degree quadrature with Random offset

difficulty-driven compounding
7 Weak singularity High-degree quadrature with

difficulty-driven compounding

Table V. Summary of Primary Illumination Results

Integrand Characteristic Best Choice(s) Next Best Alternative
Smooth and continuous Low-degree quadrature Voronoi
Single discontinuity Low-degree quadrature with Voronoi, random offset,

difficulty-driven compounding or jittered quadrature
Multiple discontinuities Voronoi or jittered quadratures
Moderate peak Low-degree quadrature with Voronoi or random offset

difficulty-driven compounding

difficulty-driven compounding outperformed all other methods. For smooth
integration problems, a deterministic quadrature was sufficient, whereas for
high-frequency problems, a stochastic method such as the Voronoi or the ran-
dom offset method gave more convincing results. Once again, the weighted
Monte Carlo method provided the noisiest results for a given computational
cost. The relative effectiveness of these methods is summarized in Table V.

The results of both the problem families and the rendering problems
have demonstrated the potential effectiveness of difficulty-driven compounded
quadratures. In computer graphics problem, we seldom expect to know the ex-
act location of a difficulty, with discontinuity meshes in polygonal environments
being an exception. However, our results demonstrate that even using approxi-
mate knowledge of the location of a difficulty can greatly increase the effective-
ness of numerical techniques. We have also shown that stochastic techniques
such as Voronoi sampling, random offset quadratures, and jittered quadra-
tures can provide decent solutions where deterministic quadratures suffer
from aliasing.

In the immediate future, we will continue our investigation of efficient algo-
rithms for the approximate location of difficulties that arise in the computation
of integrals, in common rendering problems. A priority is to investigate both
the cost of determining the type and location of the difficulties, and also the
degree of quadrature rule that is best suited for each particular situation.

As future research, we also would also like to extend this study to two-
dimensional integrals. Of particular interest are the integration problems as-
sociated with rendering area light sources, and the potential benefits that can
be derived from difficulty-driven compounding.
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APPENDIX: DERIVATION OF PERIODOGRAM FORMULATION

In this appendix, we provide a formal derivation of the definition of a peri-
odogram. Given a sampling function s(x) that is periodic over the interval [0, 1],
its spatial autocorrelation function R(τ ) is defined to be

R(τ ) =
∫ 1

0
s(x)s(x + τ ) dx. (18)

Since s(x) is also real, it is equivalent to its Fourier Series representation, that
is,

s(x) =
∞∑

k=−∞
ckei2πkx , (19)

where

ck =
∫ 1

0
s(x)e−i2πkx . (20)

If we substitute this representation into the definition of R(τ ), we can derive
the identity: R(τ ) =∑∞k=−∞ ‖ck‖2ei2πkτ .

R(τ ) =
∫ 1

0
s(x)s(x + τ ) dx

=
∫ 1

0

∞∑
k=−∞

ckei2πkx
∞∑

m=−∞
cmei2πm(x+τ ) dx

=
∞∑

k=−∞

∞∑
m=−∞

ckcm

∫ 1

0
ei2πkxei2πm(x+τ ) dx

=
∞∑

k=−∞

∞∑
m=−∞

ckcmei2πmτ
∫ 1

0
ei2π (k+m)x dx. (21)

Since
∫ 1

0 ei2π (k+m)x dx is 1 if m = −k, and is 0 otherwise, the identity reduces to

R(τ ) =
∞∑

k=−∞
ckc−kei2π (−k)τ

=
∞∑

k=−∞
c−kckei2πkτ

=
∞∑

k=−∞
‖ck‖2ei2πkτ . (22)

The last equality holds because s(x) being a real periodic signal implies that
c−k = ck . The above identity shows that the Fourier Series coefficients of the
autocorrelation function can be obtained by computing the magnitude squared
of the Fourier Series coefficients of the original signal s(x). The plot of the
Fourier Series coefficients of R(τ ) with respect to the frequency k is called a
periodogram.
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Given a set of N points {x j } together with their weight wj , for j = 1 . . .N ,
we define the sampling pattern s(x) : [0, 1] 7→ R to be

s(x) =
n∑

j=i

w j δ(x − x j ). (23)

Here, δ is the Dirac delta function, and s(x) is made periodic by tiling the unit
interval over the entire real line.

The Fourier Series for s(x) is
∞∑

k=−∞
ckei2πkx , (24)

where

ck =
∫ 1

0
s(x) e−i2πkx

=
∫ 1

0

n∑
j=1

wj δ(x − x j ) e−i2πkx

=
n∑

j=1

wj

∫ 1

0
δ(x − x j ) e−i2πkx

=
n∑

j=1

wj e−i2πkx j , (25)

by the sifting property of the Dirac delta function. A periodogram of s(x) can
now be defined as the plot of ‖ck‖2 as a function of the frequency k.
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