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Abstract
Finding effective interactive deformation techniques for complex
geometric objects continues to be a challenging problem in mod-
eling and animation. We present an approach that is inspired by
armatures used by sculptors, in which wire curves give definition
to an object and shape its deformable features. We also introduce
domain curves that define the domain of deformation about an ob-
ject. A wire together with a collection of domain curves provide
a new basis for an implicit modeling primitive. Wires directly re-
flect object geometry, and as such they provide a coarse geometric
representation of an object that can be created through sketching.
Furthermore, the aggregate deformation from several wires is easy
to define. We show that a single wire is an appealing direct manipu-
lation deformation technique; we demonstrate that the combination
of wires and domain curves provide a new way to outline the shape
of an implicit volume in space; and we describe techniques for the
aggregation of deformations resulting from multiple wires, domain
curves and their interaction with each other and other deformation
techniques. The power of our approach is illustrated using appli-
cations of animating figures with flexible articulations, modeling
wrinkled surfaces and stitching geometry together.
Keywords: deformations, implicit models, interactive graphics, an-
imation.

1 Introduction
The modeling and animation of deformable objects is an active area
of research [1, 2, 7, 8, 10, 12, 13, 15]. Free-form deformations
(FFDs) [13] and their variants [6, 7, 9, 10], for example, are popular
and provide a high level of geometric control over the deformation.
These approaches involve the definition and deformation of a lat-
tice of control points. An object embedded within the lattice is then
deformed by defining a mapping from the lattice to the object. The
user thus deals with a level of detail dictated by the density of the
control lattice. While very useful for coarse-scale deformations of
an object, the technique can be difficult to use for finer-scale defor-
mations, where a very dense and customized control lattice shape
[7, 10] is usually required. Arbitrarily shaped lattices can be cum-
bersome to construct and it is often easier to deform the underlying
geometry directly than to manipulate a dense control lattice.
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Axial deformations provide a more compact representation in
which a one-dimensional primitive, such as a line segment or curve,
is used to define an implicit global deformation [12]. Our approach,
called wire deformations, is related to axial deformations, although
we have a different motivation and formulation. Our main point of
departure is our desire to bring geometric and deformation model-
ing closer together by using a collection of wires as both a coarse-
scale representation of the object surface, and a directly manipu-
lated deformation primitive that highlights and tracks the salient
deformable features of the object. As can be seen in Figure 1, pro-
jections of the wire curves provide a sketch-like representation of
the object, which is how many artists prefer doing design.
Wire deformations may be likened to a constructive sculpting

approach in which the wires of an armature provide definition to
the object and control its deformable features. As in scuplture, the
wire curves themselves give a coarse approximation to the shape
of the object being modeled. A wire deformation is independent
of the complexity of the underlying object model while easily al-
lowing finer-scale deformations to be performed as either object or
deformation complexity increases. In fact, an animator can interact
with a deformable model, namely the wires, without ever having to
deal directly with the object representation itself. Wires can con-
trol varying geometric representations of the same object and can
be reused on different objects with similar deformable features.
There are two stages in the wire deformation process. In the

first, which is typically computed once, an object is bound to a set
of wires. In the second, any manipulation of a wire effects a defor-
mation of the object. Implicit function based techniques are used to
implement wire deformations. The deformation algorithm is con-
ceptually simple and efficient. Through several examples, we shall
illustrate the expressiveness of wires for feature based object design
and animation, including facial animation.
Section 2 presents the wire deformation algorithm. Section 3 in-

troduces the use of domain curves to refine the regions affected by
a wire. Section 4 describes the techniques used to provide user con-
trol over aggregate wire (or other) deformations. Section 5 demon-
strates the power of wires for the modeling and animation of wrin-
kled surfaces, flexible articulated structures and stitched surfaces.
Section 6 concludes with discussion of our results.

2 Wire Definition and Algorithm
A wire is a curve whose manipulation deforms the surface of an
associated object near the curve. We define a wire as a tuple
hW�R� s� r� fi, where W and R are free-form parametric curves,
s is a scalar that controls radial scaling around the curve, and r is
a scalar value defining a radius of influence around the curve; the
scalar function f � R� � ��� �� is often referred to in implicit func-
tion related literature as a density function [15]. Normally, f is at
least C� and monotonically decreasing with f��� � �� f�x� � �
for x � � and f ���� � �� f ���� � �. 1

1Wire deformations on a surface preserve continuity up to the degree of
continuity of the function f . As an example, we use a C� function f�x� �
�x� � ���� x � ��� ��, in our implementation.



Figure 1: Wires: A geometric deformation technique.

The parameters f and r can be used to define a volume about a
curve bounded by an offset surface at a distance r from the curve
[4]. Together with a scale factor s, and given r and f , a wire is
defined by specifying a curveW and a congruent copy of the curve,
R. We refer toW as the wire curve andR as the reference curve for
a wire. When an object is bound to the wire, the domain of influence
of the wire is demarkated by the offset surface of radius r defined
around the reference curveR. The influence for points of the object
within this offset volume are calculated using the density function
f . Subsequent manipulation of W results in a change betweenW
and R, which is used along with s to define the deformation. The
actual deformation applied to a point is modulated by its influence
calculated when the object was bound to the wire.
Let C�u� be a space curve, parametrized without loss of gen-

erality by u � ��� ��. For any point P � R
� , let pC � ��� �� be

the parameter value that minimizes the Euclidean distance between
point P and curve C�u�. If there is more than one minimum, we
arbitrarily define pC to be the parameter with the smallest value.2
For any point P and curve C, we define the function F �P�C� as

F �P�C� � f

�
jjP � C�pC�jj

r

�
�

From the properties of f it is clear that F �P�C� varies from zero
for jjP � C�pC�jj � r (points on and outside the offset volume
defined by C and r), to F �P�C� � � when jjP �C�pC�jj � � (P
lies on C). F �P�C� defines the influence that a curve C has on a
point P . This is the usual function definition for implicitly defined
offset shapes [4], and it will be used below in defining the semantics
of the deformation.
As with any deformation, a wire deformation is a pointwise func-

tion mapping R� onto R� . For each object O, let PO be the point-
based representation to which the wire deformations will be ap-
plied. Typically PO contains all points necessary to construct or
approximate an object’s surface. PO could thus be a set of control
vertices for freeform surfaces, a set of vertices in a polymesh, or an
unstructured set of points in space.
When an object O is bound to a wire hW�R� s� r� fi, the param-

eters pR and F �P�R� are computed for every point P � PO . Only
points on the object within the offset volume of radius r from the
curve R will be deformed (i.e., points P with F �P�R� � �). Fig-
ure 3(a) shows how one wire with a larger r affects a larger region
of the object, the other deformation parameters being identical.

2In most cases, this is an effective choice, but it can be overly simple in
geometrically delicate situations, which we discuss in Section 6.
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Figure 2: Deformation of a point P to Pdef by a wireW .

The deformation at a point P is related to the deviation of the
closest point on the reference curve R�pR� from a corresponding
point on the wire curve W . We use a direct correspondence be-
tween curves R and W based on parameter value, but correspon-
dences such as an arc-length parametrization can instead be used.
The computation thus far defines the region of the object to be de-
formed.
WhenW is manipulated, the object is deformed for every point

P of the undeformed object for which F �P�R� � � (see Figure 2):
1. Uniformly scale P about point R�pR� resulting in point Ps.
Specifically, Ps � P��P�R�pR�� �����s��� �F �P�R���

2. Let C��u� be the tangent vector to curve C at u, and let �
be the angle between W ��pR� and R��pR�. Rotate Ps by
the modulated angle � � F �P�R�, around the axisW ��pR��
R��pR�, about pointR�pR�. This provides a screw-like defor-
mation, resulting in point Pr (see Figure 2). Rotational trans-
formations such as a twist along the wire can be easily speci-
fied as in Section 3, and composed with the rotation specified
here.

3. Finally add the translation �W �pR��R�pR���F �P� R� to the
result of the rotation Pr. The resulting deformed point Pdef

is thus Pdef � Pr � �W �pR��R�pR�� � F �P�R��



(a) Varying r (b) Varying s

Figure 3: Varying r and s on wires.

Observe the following properties of our formulation.
� Objects are not deformed upon initial creation of wire and
reference curves: R, being a copy of W , coincides with it,
so no rotation or translation is applied. For a default scale
parameter of s � �, no deformation is applied to the object.

� Points on the object outside the offset volume of radius r from
the reference curve (points P with F �P�R� � �) are not de-
formed regardless of the value of s. This is because F �P�R�
attenuates each step of the deformation.

� Points on the object that are on the reference curve, when the
object is bound to the wire, track the wire curve precisely.
For a point P on the undeformed object that coincides with a
point on the reference curve, R�pR� is identical to P and thus
F �P�R� � f��� � �. The scale and rotation have no effect
as they are applied about point R�pR� itself. P thus moves to
P � �W �pR��R�pR�� or the pointW �pR� onW .

� The deformation of points on the object between those on
the reference curve and those outside its realm of influence is
smooth and intuitive. The factor F �P�R� controls the atten-
uation of the deformation, varying from precise tracking for
points on the reference curve to no deformation at or beyond
the offset volume boundary. The properties of the function f
dictate the behavior of F �P�R� and the smoothness proper-
ties of the deformation.

� For s � �, the cross-section of the deformed object surface
in a plane perpendicular to the wire curve at a point closely
resembles the profile of f (see Figure 3(a)). Manipulating
f provides intuitive control over the shape of the deformed
object surface and directly controls the degree of continuity
preserved by the deformed surface. Figure 3(b) also shows
how reducing s on one wire and increasing it on the other
provides sucking or bulging control over the deformation.

Axial deformations [12] also use the notion of a reference curve
R and closest point computation pR for a point P . The axial defor-
mation technique relates two Frenet frames attached at W �pR� on
the deformed curve and R�pR� on the reference curve. The defor-
mation imparted to point P is a portion of the transformation from
the reference curve’s Frenet frame to the Frenet frame on the de-
formed curve. The proportion is based on an interpolation of the
closest distance of P to the reference curve jjP �R�pR�jj between
two cut-off radii Rin and Rout .
While axial deformations and the deformation of a single wire

share some similarities, a wire has several differences. First, the
separation of the scale, rotation and translational components of
the wire deformation provides a user with more selective control
over the resulting deformation than the integrated transformation of
a Frenet frame. Second, Frenet frames are harder to control and
have orientation problems when the curvature of a curve vanishes.
Third, simple non-linear transformations can be incorporated seam-
lessly into the deformation algorithm at the appropriate point. For
example, as seen in Figure 4, an interpolated twist around the wire
can be implemented by rotating the point around the axis along the

reference-curve R��pR� by a specified angle as part of the rota-
tional step of the deformation algorithm. Fourth, using an implicit
function to control the spatial influence of the wire on the deformed
objects makes the technique accessible to more general implicit sur-
face animation techniques. The extensions in Section 3 will show
how implicit functions can be overlaid by a user to determine what
parts of the deformed objects are affected and by how much.
Figure 5 shows the effect of the various deformation parame-

ters. A cylindrical object with an associated wire is depicted in Fig-
ure 5(a). Figure 5(b) shows the deformation to the surface as a result
of moving a control point on the wire curve. A more global defor-
mation to the entire object as result of a large increase to r is illus-
trated in Figure 5(c). Another control point is moved in Figure 5(d).
When r is large, the entire object tracks the wire. Figure 5(e) de-
picts the effect of reducing the scale factor s on the configuration in
Figure 5(d). Figure 5(f) further illustrates how the three stages of
deformation can be tuned individually by attenuating the rotational
aspect and inducing a shear on the configuration in Figure 5(d).

3 Controlling Wire Parameters
Our technique was designed with usability and direct manipulation
in mind. We are thus interested in ways of giving finer user control
over the deformation parameters. Allowing a specified portion such
as a subset of control vertices on an object to be deformed affords
some degree of control. However, continuity properties may be
compromised in parts of the object surface defined by control ver-
tices that are selectively deformed. This is shown in Figures 6(a,b).
Usually one would expect a smoother dropoff based on the region
selected, such as that shown in Figure 6(c).

3.1 Locators
One solution involves using locators along a wire curve to specify
the values of parameters along the wire. An animator can position
locators along curves as needed to control locally not only the ra-
dius of influence r but any attribute related to wire deformation.
We calculate the attribute being localized at a parameter value p as
an interpolation between the attribute values specified at the two
locators that bracket p. Two wire locators are used to model the
cone-spherical shape of an Adam’s apple in Figure 7(a) by vary-
ing r. Local control over the amplitude of deformation causes the
transformation from an “l” in Figure 7(b) to an “i” in Figure 7(c).
Locators can also be used to incorporate non-linear transformations
such as a twist (see Figure 4), where they are used to control the
twist angle along the wire.
As mentioned in Section 2, the implicit function F can be com-

bined with other functions. In particular, we can get directional
control by modulating F with an implicit function for an angular
dropoff around an axis perpendicular to the wire. Both the direc-
tional axis and dropoff angle can be interpolated by locators.

3.2 Domain Curves
Locators provide radially symmetric local control along and around
a wire curve. Anisotropic directional control is provided by domain
curves as illustrated in Figure 6(c). Domain curves along with an
associated wire’s reference curve define an implicit primitive func-
tion over a finite volume. This provides incremental, direct control
over what parts of the object are deformed (using domain curves)
and by how much they are deformed (using wire curves). We shall
deal here with a single domain curve for a given wire. The use of
multiple domain curves will be discussed in Section 4.
As illustrated in Figure 6(c), a domain curve demarkates a region

of the object surface to be deformed, and along with the reference



Figure 4: Interpolated twist around a wire.

(a) no deforma-
tion

(b) deform with
small r

(c) increase r (d) more defor-
mation

(e) reduce s (f) attenuate ro-
tation

Figure 5: More variations of r and s on wires.

(a) sharp vertical decay (b) sharp horizontal decay (c) smooth decay

Figure 6: Region of influence of a wire.

(a) r (b) deformation amplitude (c) deformation amplitude

Figure 7: Varying deformation parameters along a wire.



curve it acts as an anchor for the deformation. More generally,
we defined the domain curve to be a free-form curve rather than
a closed curve on the object surface. Such a domain curve does
not unambiguously determine which control points on the object
surface will be deformed. Most animators, however, have a very
good idea of how a given domain curve will affect the region of the
object to be deformed, based on the spatial relationship between
the reference curve, domain curve and the object surface. In our
implementation we use distance and angle computations between
points on the object surface, the domain curve and reference curve
to determine if and by how much the point will be influenced.
In Figure 6(c), we chose the domain curve to have a one-sided

influence region affected by the wire. The other side is affected by
the conventional dropoff radius r. Our formulation of one-sided
domain curves is as follows.
We first determine if the domain curve D will be used to de-

fine the function f at a point P . Let cosangle � �D�pD� �
R�pR�� � �P � R�pR��. The domain curve will define the func-
tion if cosangle � �. This heuristic attempts to select points P
that are thought to lie on the same side of R asD (even though the
concept of side is not well-defined mathematically). As can be seen
in the Figure 8, this notion of same side tends to be captured by an
acute angle subtended at R�pR�, for the triangle with vertices at P ,
D�pD� and R�pR�. With this edge condition,

F �P�R� � f

�
jjP �R�pR�jj

jjR�pR��D�pD�jj

�
�

For points considered to be outside the domain defined by the
domain curve, the conventional dropoff radius calculation can be
applied. This formulation is likely to lead to a discontinuity in
the neighbourhood of points where cosangle � �. The discon-
tinuity may be removed by specifying a � � ��� ��, so that for
cosangle � ��� ��,

F �P�R� � f

�
jjP �R�pR�jj

Interp�cosangle�

�
�

where the function Interp gives a smoothly interpolated value
from r to jjR�pR��D�pD�jj as cosangle varies from � to �.
Figure 9 uses a domain curve under the eye to limit the influence

of the wire to the figure’s cheek. Domain curves can easily be used
to control other spatially variable parameters.

4 Multiple wires
Recall that our approach is driven by the interaction of multiple
wires that together provide an overall definition of the object’s

P

P2

R

D

cos(δ)
−1

P3
cosangle > δ

0< cosangle <δ

r
P1

cosangle <0

R(p )R

D(p )D

Figure 8: Implicit function defined using a domain curve.

shape (cf. Figure 1). We appeal to a sculptor’s armature metaphor
to give the expected behavior of a deformation in regions where
more than one wire has an effect. In an armature, an overall shape
deformation can be seen as a smoothed union of the deformations
caused by each wire. This behavior is evident in the X pulled out of
a plane by two wires in Figure 10(a). The results are distinct from
the traditional superposition of the deformations due to each wire
as in Figure 10(b). This behavior is analogous to that discussed in
[4] distinguishing implicit function based convolution and distance
surfaces. We further require that subdividing a wire curve into two
curves does not affect the deformation applied to the object (such
as an unwanted bulge where the two curves abut).
The problem of unwanted aggregate blobs is circumvented in [7,

10] by making deformations due to multiple deformers incremental.
While Coquillart’s technique for FFDs can be readily applied to
wires[7], it would defeat our main purpose of getting interesting
aggregate behavior from many interacting wires.
Our solution is as follows. Let the ith wire curve deforming an

object be hWi� Ri� si� ri� fii. Let us suppose the deformation of a
point P on an object induced by wire i results in Pdef i

(as defined
in Section 2). Let �Pi � Pdef i

� P . The deformed point Pdef as
influenced by all wires is defined as the following blend:

Pdef � P 	

Pn

i��
�Pi � jj�Pijj

mPn

i��
jj�Pijjm

�

The resulting behavior varies withm from a simple average of the
�Pi when m � �, converging to maxf�Pig for large m (see
Figure 11). Whenm is negative, it is technically possible to have a
singular denominator. But if we reformulate this expression as

Pdef � P 	

Pn

i��
�Pi �

Q
j ��i jj�Pj jj

jmj

Pn

i��

Q
j ��i jj�Pj jjjmj

�

we note that the singularity is removable. In practice, it is prefer-
able to use the original formulation even for negativem and simply
omit those�P ’s that are zero. Observe that asm gets increasingly
negative, the displacement approaches minf�Pig. Indeed, each
wire i could have its own exponentmi, giving finer control over its
contribution to the result in regions of interaction.
It is easy to verify that the above formulation has several desir-

able properties for typical values ofm � �:
1. In a region where only one wire is relevant, the result is pre-
cisely the deformation of that wire.

2. When several wires produce the same deformation, the result
is the deformation induced by any one of those wires.

3. In general, the result is an algebraic combination of the indi-
vidual wire deformations, with a bias (controlled by m) to-
ward the deformations of larger magnitude.

Figure 10: Multiple wires on multiple surfaces with differing de-
formations. Left, (a): integrated deformation that avoids blobby
superposition. Right, (b): the traditional additive deformation.



Figure 9: Using domain curves to animate a facial crease.

Many augmentations of our formulation are possible. For example,
we can blend the above deformation with an aggregation of wire
deformations given by Pdef � P �

Pn

i���Pi. We can also attach
different exponents to each domain curve, allowing us to introduce
domain curves that refine an implicit volume in an additive or sub-
tractive fashion controlled by the sign of each exponent.
Another useful variation is to introduce a local influence of a

wire at a point on an object’s surface relative to other wires. In the
formulation above, only wires that directly deform a point are of
consequence. In Figure 12(b), the central straight wire lifts a large
portion of the surface when it is translated upward. Because the
outer curve did not move, it did not influence the surface. In Fig-
ure 12(c), however, it acts as an anchor, exercising a local influence
on the surface that is independent of the deformation it imparts (in
this case none), but depends on the proximity of points in space
to the curve. We use F �P�Ri� as a measure of proximity or local
influence for the wire. The formulation used for this behavior is

Pdef � P �

Pn
i���Pi � F �P�Ri�

k

Pn

i�� F �P�Ri�k
�

The factor k has a similar effect that m had earlier. A parameter
localize combines this deformation with the others defined earlier.
A similar effect can be seen in Figure 13, where wires simulate

the behavior of an FFD lattice. A wire curve is generated along
each lattice line. Large dropoff radii ensure that planarity is pre-
served on the deformed cube when the right face of the lattice is
translated outward, as can be seen in Figures 13(b,c). The differ-
ence in behavior with and without the localized influence compu-
tation is evident from the more global deformation in Figure 13(c)
over 13(b). The formulations we have described are equally appli-
cable to other deformation techniques and can be used to combine
the results of different deformation approaches.

5 Applications
We shall illustrate the versatility of wires with three examples that
exercise different aspects of wire deformations. We show how wires
may be used to control wrinkle formation and propagation on a sur-
face. Such surface oriented deformations are localized to increase
surface detail. We apply wires to stitching and tearing geometry,
which again is a surface oriented deformation. Lastly, we describe
a volume oriented deformation, in which a flexible skeletal curve is

generated from a traditional joint hierarchy and is used to bind artic-
ulated geometry as a wire. Figures 5(b) and (c) distinguish between
surface and volume oriented deformations.

5.1 Wrinkles
Wrinkles and creases can greatly enhance the realism of animated
deformable objects. Cloth animation has become an important area
of computer animation, especially related to human figure anima-
tion [11]. We show here how wires are effective in animating the
crease lines along which wrinkles propogate. Wrinkle creases are
either drawn as curves on the object surface by the animator or au-
tomatically generated in a set of predefined patterns.
Typical properties such as wrinkle thickness, intensity and stiff-

ness of the material are easily captured by the various wire defor-
mation parameters. The extent of wrinkle propagation can also be
controlled. Figure 14(a) shows two wire curves as magnified wrin-
kles. Figure 14(b) shows the wrinkles propagating along the object
surface. While one wrinkle is pulled along, remaining anchored,
the other travels along the surface. The travelling wrinkle in Fig-
ure 14(b) is a result of pulling the reference curveR along the object
surface with the wire curveW .
Figure 15 shows wrinkles that are procedurally generated by

specifying parameters such as the number of crease lines, thickness,
intensity, stiffness, and resistance to propagation. The approach is
geometric and fast; it allows the animator to intuitively control over
many salient visual features of wrinkle formation and propagation.
Figure 16 illustrates this with a curtain animated using wires. A
dynamic simulation of the wire curves results in a bead-curtain like
animation. The wires then deform the object surface.

5.2 Stitching Object Surfaces
A wire-based geometry stitcher is a two step process. The first is
the creation of wire curves along two edges of the geometry to be
stitched. The wire curves are then blended pairwise to common
seams. The object surfaces track the common seam, resulting in a
stitch. We reparametrize the matching edges to a common domain
before defining the stitch. Figure 17 depicts the stitching of one
edge onto the other. Figure 18 demonstrates the levels of con-
trol available as various parameters are changed. These parameters
give control not only over the stitch but also over the tearing of the
stitch through the use and animation of locators along the seam (see
Figure 18(f)). Figure 19 shows the results of a four-way stitch.



(a) no deformation (b) localize � � (c) localize � �

Figure 12: Localized influence of wires.

(a) no deformation (b) deformation 1

(c) deformation 2 (d)m � �

(e)m � � (f)m � ��

Figure 11: Integration of two squash-stretch deformations using
wires and different values ofm.

Figure 13: Wires simulating a free-form deformation lattice.
Above, (a): no deformation. Middle, (b): deformed with
localize � �. Below, (c): deformed with localize � �.



Figure 16: Curtain animation.

(a)

(b)

Figure 14: Wrinkle propagation using reference curves.

There are two shortcomings of the above approach. The first is
that since each object is deformed independently, high orders of
surface continuity across the stitch cannot be guaranteed. The con-
trol afforded by wire parameters r,s and f in particular, alleviates
this to an extent. Second, seams are currently stitched pair-wise,
thus imposing a stitching order, which can be restrictive.

5.3 Kinematics for flexible skeletons

Inverse kinematics on joint chains driving attached object geometry
is popular for articulated-figure animation. Most IK solvers, espe-
cially efficient single chain solvers, have a problem with segments
that scale non-uniformly during animation. This is essential if, for
example, we wish to model a character with partially elastic bones.
We replace a joint chain with a curve passing through it, so the con-
trol polygon of the curve acts like an articulated rigid body. We
also introduce a rubberband like behavior by transforming the con-
trol points of the curve proportionally along the joint chain based
on the motion of the end effector. The result is a semi-elastic skele-
tal curve. The curve then deforms the object geometry associated
with the joint hierarchy as a wire. We use a large dropoff radius r
so we can assume that every point on the geometry will track the
curve equally and precisely (see Figure 5(b)). This in itself takes
care of smoothing the regions around joints that often require spe-
cial techniques to solve. Further, the arc-length of the wire curve is
used to modulate the wire scale factor s, providing visually realistic
volume preservation of the geometry on elastic deformations. Fig-
ure 20 shows the deformation to an arm as the kinematic solution is
varied from perfectly rigid to perfectly elastic.



Figure 15: Procedural wrinkles. Top, (a): Tangential. Middle, (b):
Radial. Bottom, (c): Ripple.

Figure 17: Simple stitch on two surfaces.

(a) blend weight=0 (b) blend weight=0.5

(c) blend weight=1 (d) Varying r

(e) Varying s (f) Tear propagation

Figure 18: Control over stitch parameters.

6 Discussion
This paper has presented an effective geometric deformation tech-
nique, employing space curves and implicit functions that cleanly
aggregate to deform an object. Our system has been completely
implemented as a module in Aliasjwavefront’s Maya production
modeling, animation and rendering graphics product. The slow-
est part of the algorithm is the closest-point on curve [14] calcula-
tion pR for points P of the object geometry. Fortunately, this can
be precomputed for each point P and must be recalculated only if
the reference curve R is changed. In such cases, many values can
be preprocessed, reducing the online wire deformation algorithm
to a few vector operations per control vertex of the object geom-
etry. Multiple wire interactions are accumulated incrementally in
one pass.
Wire deformations work very well alone or in combination with

existing techniques. FFDs, for example, are well suited for volume-
oriented deformations. Arbitrarily shaped lattices can be cumber-
some to construct for finer surface-oriented deformations. FFD lat-
tices also usually have far more control points than wire curves for
deformations of similar complexity. Wire curves can help by pro-
viding higher level control for lattice points to make complex FFD
lattices more tractable (see Figure 21). Conversely, wires can emu-
late FFD lattices (see Figure 13).
Wires allow one to localize the complexity of a deformation on

an object, and they provide a caricature of the object being mod-
eled. The coupling of deformation and geometry is a significant
advantage of wires. The technique also makes it easy to work in a



Figure 19: Four-Way stitch. Above, (a): the individual patches.
Below, (b): the stitched patches.

Figure 20: Inverse Kinematics for highly flexible skeletons.

multi-scale fashion. At the highest level a user may simply create
a few wire curves, associate them with an object and move them
around to verify that the object’s surface properly tracks the mo-
tion of the curves. The region of the surface to be influenced can
then be refined by adding domain curves and locators to the wires;
finer-scale deformations can be added with more wires.
A point of comparison to our approach is “curve on surface”

manipulation techniques that are found in some CAGD systems.
There, least-squares techniques are used to isolate the control ver-
tices relevant to a curve placed on or near a surface so that motion
of the curve displaces the control points, which in turn changes the
surface. Wires in most ways are a superior interaction technique
because they are easier for a user to control, they are efficiently
computed, and they apply to more general object representations.
For surface patches with a low density of control points, changing a
surface by deforming control points may not be as precise as a least
squares solution, and it can suffer from aliasing artifacts.

Figure 21: Deformation of a lattice by a wire.

In our implementation, some of our geometric algorithms could
be made more efficient. Both finding the closest-point on curve and
finding the region of influence of domain curves are good candi-
dates for reworking. In our formulation in Section 2, we noted that
there may be several closest points on a curve to a point in space.
In cases of wire curves with of high curvature, the policy of picking
the closest point with the smallest parameter value can cause singu-
larities in the deformation. Such cases can be handled heuristically
by breaking a wire curve into multiple wire curves in regions of
high curvature.3 While subdivision is rarely necessary, it is worth
improving our policy to see if extreme cases can be handled auto-
matically.
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