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Most object-oriented systems lack two useful facilities: the ability of objects to migrate to new
environments and the ability of objects to acquire new operations dynamically. This paper proposes
Knos, an object-oriented environment that supports these actions. Knos’ operations, data structures,
and communication mechanisms are discussed. Kno objects “learn” by exporting and importing new
or modified operations. The use of such objects as intellectual support tools is outlined. In particular,
various applications involving cooperation, negotiation, and apprenticeship among objects are
described.
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1. INTRODUCTION

One of the main reasons for the advent of Office Information Systems is the lack
of equipment and tools in offices. It is often pointed out that the set of capital
equipment at the disposal of an average office worker is inferior to that of an
industrial worker. A collection of tools, including electronic mail, word processing,
spreadsheets, graphics, and database systems, is slowly changing the office
environment. All of these tools provide the office worker with the equivalent of
machine tools and power drills, that is, with superior tools for the mechanization
of routine aspects of office work. In the meantime, however, manufacturing
workers have progressed well beyond power tools. A formidable array of robots
is already revolutionizing manufacturing. Office workers are again one step
behind. They do not have the equivalent of “white-collar robots” to help them
do their daily work.

There are many reasons for this situation. First, the mechanization of office
activities came later than that of the factory. Second, office work is far less
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structured and rather difficult to automate. Third, intellectual work is not visible
(although it may have visible effects). What is not visible can be difficult to
understand and therefore difficult to automate. Finally, office work is considered
overhead by many organizations, and it is not receiving as close attention as
factory work.

All of these factors are slowly changing. We should therefore start exploring
the notion of “automated office assistants” for office workers. Since office work
is intellectual, we are not talking about robots performing mechanical tasks.
Instead, we are talking about computer tools that perform intellectual tasks.
These tools may replace some of the work by office workers, but the techniques
used by a person may differ from those used by the automated counterpart. For
example, electronic mail does not consist of little robots carrying paper messages.
A different medium and transport is used to achieve the same result, that is, to
transmit a message from one person to others. In trying to provide office workers
with intellectual computer tools, we are faced with the need to isolate the tasks
that can later be automated. In the same way, we first establish the need for a
particular result, as, for example, a hole, in manufacturing—we instruct a robot
to reach out and create that hole,

We can broadly define two categories of tasks. Low-level tasks usually involve
repetitive, routine work for which the inputs and outputs are well defined and
the procedures followed are relatively clear. This type of task can be automated
with the specification of automatic procedures, as has been proposed and imple-
mented in many systems [9, 18, 19].

High-level tasks, on the other hand, are neither clear nor routine. They involve
cooperation among many agents, negotiation among parties, confrontation and
argumentation, and the ability to set and reach goals. In addition, some high-
level tasks cannot be established a priori. We cannot, therefore, rely entirely on
an exhaustive study or modeling of offices that defines their procedures. The
tools we use should be capable of adapting and learning. If they cannot learn
from example (i.e., by extrapolating from specific instances), they should at least
be capable of apprenticeship. That is, they should be able to acquire new behavior
from other tools and from human beings [13].

Our goal is to build a system in which it is possible to model the following
several difficult problems effectively:

(1) problems in which knowledge about an overall system is distributed among
several environments (e.g., real-time remote sensing, understanding trends
in international finance, distributed office environments);

(2) problems in which information is fuzzy (e.g., language understanding, vision
systems);

(3) problems that require negotiation and strategy development and refinement,
(e.g., automated bargaining, planning, testing hypotheses);

(4) problems that require learning or adaptation, that is, problems in which
information is dynamically changing (e.g., automatically tailoring and opti-
mizing a user interface to a user, adapting to behavioral trends) or incomplete
(e.g., high-level office tasks).

(5) problems requiring simulation.
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In this paper we concentrate on advanced tools for office environments. We
propose tools that can be considered automated office assistants, that is, tools
that can take over some of the tasks in offices involving cooperation, negotiation,
and learning by apprenticeship. We occasionally consider analogies for such
tools. We establish these analogies for two reasons: first, in order to visualize
and remember the operation of such tools, and second, because the result of their
operation can be explained more easily in human or animal terms. For example,
consider a hole in an industrial product. It is easier to design and control the
robot that makes the hole if we have a visualization of a person reaching out
with a drill and making the hole. This metaphor could hinder us from thinking
about a better way to do the same thing (e.g., using a laser beam to make the
hole). It helps, however, in defining an initial solution and explaining the
operation.

We will call the proposed tools Knos (pronounced “nose”) for KNowledge
acquisition, dissemination, and manipulation Objects [15]. Their purpose, loosely
speaking, is to manipulate fragments of knowledge with their own rules. They
can also negotiate, cooperate, and learn from other objects and from users. Such
object behavior is not easily realized by existing object-oriented systems. How-
ever, we have identified a number of characteristics that we believe are essential
to realizing Knos. These include

—data abstraction,

—dynamic instantiation of objects,

—object autonomy,

—inheritance,

—the ability to acquire new operations (i.e., to “learn”) dynamically,
—concurrency,

—a uniform communication mechanism,

—mnomadic object migration to other environments

Below, we describe the general structure of a Kno environment, a prototype
implementation in Zetalisp, a computational model of Knos, and a planned
implementation in terms of an object-oriented language. The application of
object-oriented methods to office systems has been explored by a number of
researchers [1, 2, 5, 6, 12]. As will be seen, Knos differ from these earlier
approaches in their high degree of autonomy, adaptability, and concurrency.

2. MACROSCOPIC VIEW OF KNOS

We first present Knos in a macroscopic way to get an idea of their behavior. In
this way the reader can get a feeling for the difference in behavior between Knos
and other object-oriented environments. In the next section we describe a Kno’s
internal structure in more detail.

A set of cooperating Knos exist within a context. Knos communicate within a
context by reading messages from or writing messages onto a blackboard. A Kno
can move itself to another context (assuming it is aware of the new setting).
Typically, a context is physically associated with a workstation. Multiple contexts
would then represent several workstations. Presumably, these contexts would be
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in some way connected, perhaps by a local area network or telecommunications
link. The administration of each context is controlled by an object manager. It is
the object manager’s job to oversee the local blackboard, to accept or reject move
requests, and to decide whether or not to acquaint itself with other contexts
(or object managers).

The fundamental novelty of Knos lies in the explicit support for two types of
move actions:

—the migration of Knos to new contexts,
—the migration of new operations into Knos.

We call the first form of migration a move action and the second form a learn
action. It will be seen later that Kno operations can similarly be forgotten, or

“unlearned.”

Figure 1 depicts three Kno contexts, S;, S, and S;. Several Knos can be seen
to be moving from one context to another, and a Kno can be seen receiving a
new rule from the blackboard. Under our workstation paradigm, a Kno would be
transported as a network message. Most object-oriented systems do not have
explicit move or learn operations. In other systems, all objects would typically be
under the jurisdiction of one object manager. The possibility of multiple contexts
either does not exist, or it is hidden from the objects. We cannot accept such an
environment. First, Knos are supposed not only to support office activities, but
also to generalize message systems. Messaging is closely related to moving and
changing a context. Moving is, therefore, very important. Second, networks exist
and cannot always be easily ignored. If the Kno paradigm were only intended to
support a set of tightly coupled workstations linked by a local area network, we
could still try to hide the network. However, Knos should be able to operate
within global and even heterogeneous networks. In such cases it is beneficial for
the existence of a network to be known explicitly.

Knos are persistent but mortal. A Kno dies as a result of a die action within

1 1IN inn +that han Wwna Aia thai
one of its rules. We are currently examining the notion that when Knos die, their

contents can be archived. Active Knos would then be able to consult the remains
of dead Knos (e.g., for post-mortem debugging, for history mechanisms, audit
trails). Hence the notion of a database Kno in Figure 1.

There are two special types of Knos that serve as external interfaces. A user
Kno is a Kno that can be manipulated by an external user. Other Knos are not
directly accessible to users, and in this way, common Knos are quite independent.
User Knos, on the other hand, are like marionettes. A human user can, figura-
tively, hold the strings and can directly control their behavior. A user Kno could
provide an animated sequence of images and sound that depicts the internal
operation of a Kno environment [4].

An agent Kno is manipulated indirectly by a Kno in another context. As
representatives of the object manager, agent Knos handle migration of Knos and
forwarding of messages to other environments. A context may be created with
one or more agent Knos that are acquainted with other contexts. Other agents
may be created dynamically.

Knos communicate with one another by posting messages on a blackboard that
is managed by the object manager. A Kno can export a message to, or import a
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Fig. 1. Kno environment.

message from, the board. A message on the blackboard contains the sender Kno
ID and possibly a target Kno ID. It also contains information that is exported
from the sending Kno and imported by the receiving Kno.

Knos communicate through the blackboard for reasons of autonomy and
resilience. Knos may travel very far and find themselves in hostile environments.
If their only interface is the blackboard, no other Kno can force them to accept
or even to look at a message. Each Kno is in complete control of its own
operation. It chooses, when it wants, to accept a message from the blackboard
and perform some actions as a result. The only acquaintance a Kno has when it
migrates to a new context is the local blackboard by way of the basic message-
passing operations.

When a Kno is in a friendly or cooperating environment, it may choose to
make some of its behavior generally available to other Knos. These behaviors
are called operations. For one Kno to request an operation from a second Kno, it
must know the name of that Kno. An operation is a shorthand for a particular
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pattern of message-passing actions between two Knos, using the blackboard for
storing messages. Observe that there is at least as much concurrency within a
context as there are Knos (the internal operation of a Kno might itself be
concurrent).

All Knos are autonomous, except for one particular case. A Kno may grow
another Kno as a limb. A limb is by definition dependent on the Kno (the head)
that grew it. Limbs may move away from heads. A head and its limbs can span
different object managers. The head is always notified of a limb’s move (via an
agent). We currently insist that the head remain stationary. Moving heads and
limbs independently and arbitrarily gives rise to difficult distributed control
problems. A group of one head Kno and its Kno limbs is called collectively a
complex Kno. Complex Knos can be used for coordinating activities that occur in
different workstations. They facilitate the development of “worm programs” in
distributed environments [14]. For example, an active message gathering infor-
mation can be implemented as a complex Kno (8, 16].

A Kno system is constructed from a group of object managers and a Kno name
server. The object managers provide support for simple Kno behavior and allocate
processing resources to Knos. The name server is used to locate Knos within
object managers and object managers within the network.

3. KNO STRUCTURE

In this section we outline an initial Kno specification based on the LISP dialect
known as Zetalisp [17]. The reason for choosing Zetalisp is that it provides an
object-oriented programming facility (the flavor system) that can be used to
prototype Knos and illustrate their basic features. Knos as objects can be
implemented on top of a regular programming environment; for example, active
messages in I-mail were implemented with C and UNIX! [8]. It is, however, more
appropriate to implement messages in terms of an object-oriented environment,
since it will allow us to take advantage of features common to both Knos and
objects. Some details of the Kno structure presented in this section will change
as we migrate toward a concurrent, distributed object-oriented implementation.
The computational basis for this planned implementation is described in
Section 5.

Each Kno is an instance of one or more Kno classes. Kno classes specify the
(initial) structure and behavior of Knos. Kno structure refers to the instance
variables contained within the Kno, while a Kno’s behavior is determined by the
operations it can perform. In our Zetalisp implementation, each Kno operation
is composed of a set of production rules, described shortly. Typically, each Kno
is monitor-like, in that only one operation may be active at a time [7]. However,
it will be possible to provide a custom Kno handler (see Section 5) that can either
strengthen this assumption (e.g., each operation is indivisible) or weaken it (e.g.,
several operations within a Kno can execute concurrently). The (inherited)
default is a single-threaded execution within a Kno, but with operations not
necessarily indivisible. The general (Zetalisp} form of a Kno class and operation

! UNIX is a trademark of AT&T Bell Laboratories.
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specification is

(kno def (Kno class name)

\\ lllb Ld.[lhl: val luUlb‘ llbL) J
((inheritance list))

{(kno-op ((Kno class name) {Kno operation name))

({parameter list)})

((body)))
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class that provides basic structure and behavior common to all Knos. This
predefined class is called basic-kno and is specified as

(kno-def basic-kno

{kno-name kno-rules kno-limbs) ()
(kno-op (basic-kno :kno-init) () (...))
(kno-op (basic-kno :kno-learn) (kno-op) (...))
(kno-op (basic-kno :kno-unlearn) (kno-op) (...}
(kno-op (basic-kno :kno-die) () {...))
(kno-op (basic-kno :limb-death) (limb) (.. .))

)

In this case the bha
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of any limbs of the Kno. It is 1mportant to note that a Kno’s rules and operations
are kept as part of its instance data structure and thus may be modified by the
Kno.

In the above schema five operations are listed (the full specification is not
shown). These particular operations are used internally by the object manager
and are not normally invoked by Knos. The first operation, :kno-init, initializes
the instance variables of a newly created Kno. The operations :kno-learn and
:kno-unlearn modify a Kno’s set of operations. The :kno-die operation is invoked
when a Kno dies; the :limb-death operation is invoked when one of a Kno’s limbs
dies.

A particular class defines a specific set of operations. When a Kno is created,
its class and hence its operations are initially defined. Kno operations are similar
to methods in languages such as Smalltalk or Zetalisp. However, as we said
above, operations essentially denote certain patterns of message-passing behavior
through a blackboard. It is possible, for example, that when one Kno invokes an
operation from a second Kno, the two Knos need not be in the same context; the
two Knos may actually be on different machines. Communication between two
different contexts is handled by an agent Kno for the remote Kno.

Kno classes may inherit both structure and operations from other classes. In
this prototype the Kno inheritance mechanism derives directly from the Zetalisp
flavor system. Knos belonging to a certain Kno class would inherit all the
instance variables and operations of that class, together with those of the class
basic-kno.

In our Zetalisp implementation of Knos, we chose to code operations as
production rules. There are many reasons for choosing production rules for Knos.
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For example, production rules are simple to describe and read. On the other
hand, control flow can be difficult to understand. Knos are intended for appli-
cations in which the entities of interest modify their behavior according to
interactions between themselves and the environment. Production rules are well
suited for such applications. In our planned object-oriented implementation,
however, our target language will support features such as triggering [11],
and we are therefore considering an alternative, block-structured approach to
specifying Kno operations.
Kno production rules are of the form:
(rule (rule-name)

(trigger (trigger condition))

(action (action series)))

The (trigger condition) is a Boolean-valued expression that must be satisfied
before the rule can be executed.
The (action series) is a series of (actions). All actions are executed when the
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Kno actions are the atoms of Kno behavior. Actions are of five different types:

(1) local actions,
(2) communication actions,
(3) existential actions,

Ay 1 M 4+ 3
1\4) i1€arining acuioiis,

(5) limb actions.

Table I lists specific Kno actions according to their type.

A local action involves inspecting or changing an instance variable. Local
actions affect the instance variables of only one Kno: the one performing the
action.

3.1 Communication Actions

Communication actions allow Knos to pass messages among themselves using
the local blackboard as an intermediary. Each blackboard message consists of
three parts: a message type, a message body, and an expiry part. The message
type is simply a name given to the message by the Kno creating the message.
Typically, a set of reasonable message types would be placed in a library. The
message body is an arbitrary expression; it is the responsibility of the message
recipient to interpret the body. The expiry part indicates how long the message
can remain on the blackboard. A message may remain on the blackboard indefi-
nitely or be removed after it has been read or a certain time period has elapsed.

The export action allows one Kno to request an operation from a second Kno.
In order to issue an export, the first Kno should know the name of the second,
the name of the operation, and the parameters required by the operation. Export
is of the form

export[KnolD | any | *] [wait] MessageType MessageBody ExpiryTime MessageBody =
(OperationName parameters)

The target Kno of an export may be a specific Kno or any Kno willing to accept
the message; or the message may be directed to all (nonagent) Knos in the
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Table I. Kno Actions According to Type

Type Actions
Local Put, get
Communication Import, export
Existential Spawn, die, move, freeze, unfreeze
Learning Act, learn, unlearn
Limb Grow, kill, ship, teach, unteach

context. The optional “wait” subcommand states that the sender blocks until the
message is consumed. Otherwise, export does not block. If the KnolD specified
is that of an agent Kno, then the message can be forwarded by the agent to
another context.

The import action allows the receiving Kno to retrieve one or more messages
from the blackboard. It is of the following form:

import[KnolD | ¥] [OperationName | ] [1|$] #] [wait].

All operands are optional. The object manager returns to the requesting Kno
a queue of all messages matching the import specification. An asterisk in
the specification matches any KnolID or OperationName. It can ask for the
(chronologically) first message matching the pattern (by specifying “17),
the last message (by specifying “$”), or every message (by specifying “*”). The
default is “1”. Finally, if no messages match the specification, the Kno can
instruct the object manager that it would like to wait until a matching message
arrives.

3.2 Existential Actions

Some Kno actions seriously affect Kno existence. They are related to moving
and generating other Knos. They are called existential actions. We discuss them
separately to emphasize their operation. There are five existential actions: move,
spawn, die, freeze, and unfreeze.

The move action specifies a new context for the Kno. The execution of the
action will move the Kno as a whole to the context of a new object manager.
When a Kno moves, its entry is updated on the Kno name server.

The spawn action creates a new Kno of a particular class. The spawned Kno
is from this point on like any other Kno. It then executes independently.

The die action is used by a Kno to terminate execution voluntarily. When a
Kno dies, all its limbs (see below) are killed.

The final two existential actions, freeze and unfreeze, are used to convert a
Kno to and from a static representation known as a Kno description. Using this
action, all information contained within a particular Kno can be embedded in
the structure of a second Kno. In this manner, it is possible to build Knos that
interpret other Knos.

Another use of freeze and unfreeze occurs in the implementation of the move
action. When a Kno moves from one context to another, it moves in a state of

LA nen a kxno moves rrom one context to another, 1T moves 1n a SVvAVe

suspended animation. Knos are frozen by the sendlng object manager and
unfrozen by the receiving object manager.
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3.3 Learning Actions

Knos can pass operations to one another in the various ways described earlier. A
receiving Kno can then add a new operation to its own list of operations if it so
desires. One can say that a Kno adapts or learns new operations. Observe that
our primitives support learning from other Knos, but not the potentially more
difficult notion of learning by example.

Knos can also pass Knos as values among themselves (as produced by the
freeze action). We have two mechanisms for enriching a Kno with rules and
descriptions. One is a mechanism for acting, and the other is for learning. Acting
implies the execution of foreign operations, but under constant monitoring by
the acting Kno. Essentially, the act action invokes a desired operation and traces
its effect on the instance variables of the Kno. This trace can then be presented
to the Kno for consideration.

Learning implies the incorporation of foreign operations in a Kno’s own body.
The learn action is used for this purpose. It takes an imported operation and
adds it to the Kno’s operation list. The imported operation subsequently has the
same status as the indigenous Kno operations. It is also possible, through the
use of the unlearn action, for a Kno to remove an operation from itself.

A Kno can use the learn action in a very simple fashion to add any new
operation it encounters to its operation list. It is also possible to specify more
complicated Kno learning behavior. An example would be a Kno that applies
various selection criteria to the operations it is asked to learn. The selection
criteria themselves may be specified using general operations. In this case, the
act action may be used to test out new operations and generically test the outcome
with Kno-specified selection criteria. We have applied this notion to cur Zetalisp

prototype to create a generic operation-testing mechanism that can be used by
all Knos.

3.4 Limb Actions

We wish to model situations in which knowledge about a concept is distributed
throughout several environments. Kno movement operations allow a Kno to
explore various environments and gather information. An alternative approach
is for a Kno to dispatch representatives throughout the universe of environments
and gather information concurrently. We have provided the following set of
actions to accomplish this task: grow, kill, ship, teach, and unteach.

The grow action generates a limb Kno. A limb Kno is similar to other Knos,
but there are two important differences. First, if it dies, a message is automatically
sent to the Kno that grew it. Second, the head Kno can control it to a certain
extent (this is the only case in which a Kno can force an action on another Kno).
The remaining Kno limb actions are those used by a head Kno to control its
limbs. The kill action kills a limb. Ship is used to force a limb to move to a new

context, and teach and unteach allow the head to modify the operation list of the
limb.

4. EXAMPLE APPLICATION

The following application has been implemented in the Kno Zetalisp package.
We omit the details of this implementation and present instead an outline to
illustrate the way in which Knos can be used.
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We consider a part of an application that models stock market activity. Each
object manager represents a different stock market and contains information
about the local stock prices and accounts among buyers and brokers. In this
example we define two Kno classes, buyer-kno and broker-kno:

{kno-def buyer-kno
(state worth portfolio broker)
(basic-kno))

(kno-def broker-kno
(state worth clients credit open-fee interest commission)
{basic-kno))

Both buver-kno and broker-kno inherit from the basic-kno class. Each has an

il Ry i=xrlluv alld A1V 11212 XU Q31 SAAS3

instance variable that records its internal state (e.g., states of buyer are 'looking-
for-brokers' and 'investing'). Buyers have instance variables that record their
net worth, a list of stocks owned, and the name of their broker. Broker instance
variables are used for a client list and for charging information. Some of the
operations supported by these Kno classes are

(kno-op (broker-kno :accept-client) (kno-name)
; accept a new buyer as a client

)

(kno-op (broker-kno :buy-stock) (kno-name amt)
; buy a stock for a client

)

7

For example, broker Knos can perform operations called :accept-client and :buy-
stock. The :accept-client operation takes two parameters: the name of the client
(a buyer Kno) and the fee being paid by the client. The parameters to :buy-stock
are the name of a buyer Kno and the name and amount of a stock.

Some of the rules used in this application are

(rule find-broker-rule
(trigger(eq (kno-get 'state) 'looking-for-broker))
{action
; see if any brokers on blackboard
; if so register as a client

)

(rule buy-stock-rule
{trigger (eq (kno-get 'state) 'investing))
{(action
; choose a stock and buy it

)

(rule find-client-rule
(trigger (eq (kno-get 'state) 'looking-for-clients))
(action
; put an advertisement on the blackboard

)

The find-broker-rule and buy-stock-rule are used by buyer Knos, and the find-
client-rule is used by broker Knos. For example, when a broker Kno is created,
it is in the state 'looking-for-business'. When this Kno is allowed to execute, it
will fire its find-client-rule, This exports a message containing the name of the
broker to the blackboard. At some later time a buyer Kno will inspect the
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blackboard, find the name of the broker, and send it an accept-client message.
Once the buyer and broker know each other, the broker can start serving the
buyer’s :buy-stock requests.

Several interesting additions to this framework follow:

—Buyers can monitor their portfolios and try new brokers if their assets are not
improving.

—Buyers can also move to new markets (object manager contexts) or send
representatives (i.e., limbs) to these markets.

~—One can add advisor Knos that sell buyer Knos information. An advisor Kno
would advertise its presence over the blackboard. When contacted by a buyer
(sending the appropriate fee), the advisor returns a rule that replaces the
buyer’s initial buy-stock operation (or just the buy-stock-rule). This leads
naturally to the problem of learning operations. For instance, one can add
metarules that monitor the performance of a buyer Kno’s choices and decide
when to seek a new strategy for buying stock.

—One may wish to unlearn strategies. If a broker has been applying a strategy
for buying oil stocks that, for example, depend on a particular political
situation, then a change in that situation (such as the sudden departure of an
influential oil minister) could invalidate that strategy.

5. A COMPUTATIONAL MODEL FOR KNOS

LIRS

The Zetalisp implementation of a Kno application provided a convenient test
bed for our ideas. A number of fundamental concepts, such as concurrency, were
missing from this environment, however. In this section we show how Knos can
be readily mapped to a concurrent object-oriented environment in which objects
are the active entities.

Hybrid is an object-oriented programming language that we are currently
developing {11, 12]; it attempts to unify a number of object-oriented concepts
into a single framework that incorporates concurrency and distributed environ-
ments. In particular, the following object-oriented ideas are fundamental to
Hybrid:

—data abstraction with instantiation,
-—multiple inheritance,

—aggregation,

—dynamic (i.e., run-time) object binding,
—active objects,

—persistence,

—message-passing,

—distributed environments.

Objects in Hybrid are like objects in Smalltalk or other object-oriented systems
to the extent that they have an interface, which is a collection of methods
(i.e., operations or procedures), each of which may be invoked, and a hidden
representation that encodes the state of the object. Objects are classified into
types according to their interface. There may be any number of instances of an
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object type. Object types are objects as well, thus providing a mechanism for
introducing new types within the framework. Furthermore, the instance variables
of an object’s state are also objects and thus provide a natural object-structuring
mechanism (i.e., aggregation). Multiple inheritance [3] is available so that new
types may inherit methods from multiple supertypes.

Hybrid differs from Smalltalk, and most other object-oriented systems, in that
objects are active. In fact, the only active entities are objects, since there is no
notion of “files,” “programs,” or “processes.” Passive objects are simply active
objects that only do something when they are told to do so.

To understand how much concurrency this gives us, suppose that at a “lower
level” we have actors [2] (i.e., message-passing processes) and passive data
objects. We may then map a “top-level” Hybrid object, together with its instance
variables, to one (or more) actors. We have, then, exactly as much concurrency
as there are actors. Furthermore, each actor provides a granularity of mutual
exclusion for the objects “on top of” it. A top-level object may be “compiled into”
actors that handle the messages for that object and (recursively) all its subobjects.

Truly active objects are those that respond to events through a triggering
mechanism. There are many kinds of triggering events, including user input
events, clock ticks, object updates, and anything that might cause a constraint
to be violated.

Hybrid is designed with distributed environments in mind. A collection of
Hybrid objects exists in a local environment under the supervision of a single
“system object,” which deals with scheduling, message passing, creation of new
instances, and so on. The environment of a system object is a “virtual worksta-
tion.” Objects may also pass messages to objects in other environments, if both
objects are acquainted. Although objects may use location information explicitly
to move themselves to another environment, for example, it is convenient for the
system objects to provide some distributed functionality by transparently han-
dling message passing and transactions across environments.

The notion of object persistence means that we can do away with files. Message
passing becomes the only paradigm for communication. The system object is
responsible for ensuring that objects are reliably saved in stable storage.

We now show how the concept of Knos maps to a Hybrid environment.

5.1 Contexts and Object Managers

A Kno context is illustrated in Figure 2. Each Kno context is mapped to a
specialized Hybrid environment. The object manager (OM) is a Hybrid object
that is the basic context manager. It handles all blackboard transactions. Some
of the work that is done by the object manager in the Zetalisp implementation is
subsumed by the Hybrid system object. (In particular, object scheduling is
handled by the system.) All Knos are acquainted with the object manager.

Agents are also Hybrid objects that communicate with the object manager and
the outside world. When a new context is created, it may be initialized with
agents that are aware of other contexts. At the very least, each context is created
with an agent that knows the address of a name server. It, in turn, knows the
addresses of other contexts and may allow one context to become acquainted
with others. Knos are a complex of Hybrid objects and are described next.
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Fig. 3. Hybrid model for Knos.

5.2 Kno Representation

A Hybrid model for a given Kno is illustrated in Figure 3. Each Kno is realized
by several objects: a Kno manager (KM), an object for each instance variable
(publicly addressable by all operations), and an object for each operation. A Kno
manager synchronously asks the object manager pertinent messages and dis-
patches operations accordingly. It decides when the operations it manages are to
be triggered. The default Kno manager enforces monitor-like semantics on
internal operations in that it ensures that, at most, one operation is active at a
time within its domain. Programmers may wish to override this default to enhance
or restrict concurrency further by providing their own Kno manager objects. At
some point, we may provide a choice of Kno managers from a library.

5.3 Moving and Learning

Under the model illustrated above, moving and learning actions can be captured
in a straightforward way. Assuming a Kno manager has chosen to accept a new
operation, the manager simply unfreezes the operation by creating a new
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operation instance from the imported value, updating its list of valid operations,
and making the operation executable within its domain. Hybrid’s dynamic
binding enables the Kno manager to deal with operations of a previously unknown
(object) type, as well. Moving a Kno to a new context is an analogous operation
that requires the cooperation of object managers in the source and destination
contexts.

6. CONCLUDING REMARKS

In this paper we have outlined the facilities for a powerful object-oriented
environment. Knos (KNowledge acquisition, dissemination, and manipulation
Objects) are active, nomadic, and adaptive objects and can be used to model
many situations and provide general applications support tools. An example Kno
implementation was outlined using Zetalisp, and a basic skeleton of the Kno
environment was represented as Hybrid objects.

An environment based on Knos can be useful for sophisticated application
support tools that take over user operations. We are currently investigating the
properties of useful Kno species. That is, families of prepackaged Knos that can
perform useful jobs in an office information systems context. Knos provide
behavior that is rather different from an environment based on automatic
procedures and passive messages and data. Office tools based on active agents
like Knos are extremely important. We are severely limiting the scope of office
information systems if we only consider mechanization of office work or provide
procedures for repetitive office work. Office tools should provide the option of
performing more difficult tasks, such as information acquisition, negotiation,
cooperation, or apprenticeship.

The following outlines other interesting operations that can be provided by
Knos:

(1) A Kno can consider learning, even in a potentially hostile environment, by
testing out possible new operations on a representative of itself (i.e., a limb)
that it knows exists in a safe environment. The result of the operation may
be evaluated in the safe context, and the choice as to whether or not to accept

the operation in the other context can be a more informed one.

(2) A Kno can “do recursion” by leaving messages for itself on the blackboard.

(3) A complex Kno can cut off or multiply its limbs that may reside in foreign
contexts. In this way, it can react appropriately to hostile or benevolent
environments.

(4) A Kno can export its whole body, or a part of it, to another “doctor” Kno.
Later on, it can reimport all its body or the exported part. In this way, the
Kno can let the “doctor” Kno “fix” some of its rules or data structures, do
garbage collection, optimize operations, and so forth.

The environment provided by Knos is somewhat strange by programming
language standards. It is not, however, strange in terms of user experiences, for,
if the goal of an object-oriented system is to allow one to structure a system in
direct correspondence with reality, then surely Knos bring us closer to that goal.
Programming problems may change considerably when looked at in a Kno
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environment. What is lacking at present is a methodology for programming with
concurrency, migration, and dynamic operation acquisition.

The notion of security in most systems and programming languages is based
on “walls” of security protecting passive objects (e.g., files, records, messages
[7, 10]). Knos are active, so they can defend themselves. Not only can a Kno
fend off attempted intrusions, but it can erase itself if threatened. A Kno can
even provide “disinformation” by giving information that differs from what it is
carrying.

The notion of consistency is absent in a Kno population. A Kno needs to be
consistent with itself. It does not need to be consistent with other Knos. As a
matter of fact, the inconsistency possible among Knos is extremely interesting.
Each Kno can carry a different opinion or belief. The problem of consistency
gives way to a problem of reconciliation. Suppose many Knos presenting different
opinions appear within the context of an object manager. We need to study ways
of exchanging information among them to provide a consensus rather than
enforcing consistency.

Resource management does not appear at the Kno level. Knos live in an
environment of seemingly unlimited resources. On the other hand, we cannot
escape the fact that if useless Knos proliferate, they can adversely affect the
operations of useful Knos. The problem of resource management is translated
into a problem of “pest” control. It is not clear, however, how this can be realized
without violating the notion of Kno autonomy.

The evolution of Knos de-emphasizes static class structure and inheritance.
Traditional static class inheritance becomes less important if Knos can change
their operations and data structures during their lifetimes. Class inheritance
should provide only generic, prototypical behavior. The rest, which is, in effect,
dynamic inheritance and class evolution, can be “learned” by Knos. The problem
of class inheritance gives way to the problem of adept learning, that is, providing
Knos with the capability of separating useless or dangerous new operations from
those that are useful. What is required is the development of a programming
methodology to provide guidelines for the disciplined use of the powerful features
of Knos.

The behavior of Knos is not always easy to understand. Formal tools and a
rigorous semantics will help (and are planned), but alternative ways of under-
standing object behavior are also required. For that reason, we are working on a
facility to allow the behavior of Knos to be illustrated using computer animation
tools. This facility is interesting in itself, since it includes a temporal scripting
language for animated objects (that are themselves Knos) and an interactive
environment for defining graphic objects and specifying their motion [4]. Expres-
sions of the scripting language are directly executable, and thus the execution of
Kno operations can be used to generate animation expressions dynamically.
Moreover, the tools can be used for other purposes. The environment for
specifying graphic objects and their motion can be used to create libraries of
prepackaged animation. They can then be instantiated and coordinated using
the scripting language to create complex multimedia Kno objects, which can be
transmitted to other contexts and/or stored on compact disks. Last, the temporal
scripting language can be used not only to generate behaviors satisfying a
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temporal specification, but also to specify the desired coordination of object
activities.
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