Computer Graphics

Volume 17, Number 3

July 1983

A Parallel Scan Conversion Algorithm with Anti-Aliasing
for a General-Purpose Utracomputer

Eugene Fiume
Alain Fournier

Computer Systems Research Group
Department of Computer Science
University of Toronto
Toronto, Ontario, M5S 1A4

Larry Rudolph

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

ABSTRACT

Popular approaches to speeding up scan conversion
often employ parallel processing. Recently, several
special-purpose parallel architectures have been
suggested. We propose an alternative to these sys-
tems: the general-purpose ultracomputer, a parallel
processor with many autonomous processing ele-
ments and a shared memory. The ‘'serial
semantics /parallel execution' feature of this archi-
tecture is exploited in the formulation of a scan
conversion algorithm. Hidden surfaces are
removed using a single scanline, z-buffer algorithm.
Since exact anti-aliasing is inherently slow, a novel
parallel anti-aliasing algorithm is presented in
which subpixel coverage by edges is approximated
using & look-up table. The ultimate intensity of a
pixel is the weighted sum of the intensity contribu-
tion of the closest edge, that of the "losing' edges,
and that of the background. The algorithm is fast
and accurate, it is attractive even in a serial
environment, and it avoids several artifacts that
commonly occur in animated sequences.

CR Categories and Subject Descriptors: B.3.2
[Memory Structures]: Design Styles - Shared
Memory; D.3.3 [Programming Languages]: Language
Constructs - Concurrent programming strucitures:
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems -
Geomelirical problems and computalions; 1.3.1
[Computer Graphics): Hardware Architecture - Ras-
ter display devices; 1.3.3 [Computer Graphics]:
Picture/Image Generation - Disploy algorithms;
1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Visible line /surfoce algo-
rithm.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-109-1/83/007/0141 $00.75

141

1. Introduction

The performance of a raster graphics system is
strongly influenced by the inefficiency of scan
conversion. Several recent papers have proposed
speeding up scan conversion by employing special-
purpose hardware. These systems exploit parallel
processing in various ways, some of which are:

(1) "Intelligent” VLSI-based memory. This includes
systems such as PIXEL-PLANES, by Fuchs ef al.
[FuPo81, FPPB82], the smart memory architec-
ture by Gupta efal. [GuSS81], and the Rec-
tangular Area Filling Display System Architec-
ture by Whelan [Whel82].

(2) Hardware enhancements or graphics engines.
Clark’s geometry engine, although not a scan
conversion | system, illustrates the Ilatter
[Clar82], and Whitted’s enhanced frame buffer is
an example of the former [Whit81]. The pro-
posed systems of Fussell and Rathi [FuRa82],
and Weinberg [Wein81], are graphics engines.

(3) Special-purpose, multiple-processor systems.
These systems incorporate special-purpose
hardware to broadcast image descriptions to
the processors. Image memory is often parti-
tioned to enhance parallelism. Examples
include Fuch’'s central broadcast controller
[Fuch?7?], Parke's splitter tree, and Parke’s
splitter tree/broadcast controller hybrid
[Park80].

Obviously, any parallel-processing scheme should
demonstrably hasten scan conversion. The above
proposals are no exception. Several issues remain
open, however. First, few proposals address the
aliasing problem. Indeed, anti-aliasing is difficult
to perform on the systems of Fuchs et al., Fussell
and Rathi, Whelan, Fuchs, and Parke. Second,
display systems exploiting parallelism should
always exhibit subserial behaviour. Third, it is not
clear that a special-purpose system is the best
approach if similar computational power is required
for other tasks. It is likely that the feasibility of
large-scale display processors with special-purpouse
hardware will coincide with that of general-purpose
parallel processors. The ultracomputer, described
below, is one such processor. We wish to demon-
strate that the ultracomputer can be a very effec-
tive "graphics engine” in its own right. This is illus-
trated by presenting a parallel scan conversion

Computer Graphics

algorithm including anti-aliasing. The worst case
“behaviour of the algorithm is subserial.

Not all problems necessarily have faster parallel
implementations. However, problems such as scan
conversion, which naturally decompose into a large
set of independent subproblems, are good candi-
dates for parallel processing. The objective of a
general-purpose parallel processor design is to
maximise the degree of subproblem independence
over a wide class of tasks. Otherwise, the major
advantage of such a processor over special-purpose
systems is lost. In our ultracomputer model, sub-
problem independence is facilitated by a small
repertoire of powerful concurrent operations on
shared memory. To each processing element (PE) of
the ultracomputer, a concurrent operation appears
to execute indivisibly. In fact, an intelligent, multi-
stage network cleverly connects the PEs to shared
memory, and combines all operations simultane-
ously directed at a variable into one operation. Pro-
grams thus appear to have a serial semantics, but
parallel execution. Moreover, parallel programs are
simply expressed, unlike the often more compli-
cated techniques required to optimise computa-
tions on vector or pipeline processors. Because of
this "serial semantics/parallel exection" property,
the algorithms below can be implemented on any
processor capable of simulating the concurrent
operations, although the resulting programs may
run more slowly.

Section 2 outlines the basic ultracomputer archi-
tecture. A scan conversion algorithm that utilises
this parallel processing model is presented in Sec-
tion 3. A novel anti-aliasing algorithm is given as an
integral part of scan conversion. Lastly, the gen-
erality of the ultracomputer is illustrated by noting
other problems to which it can be applied. This is
discussed in Section 4, as are topics for future
research.

2. Ultracomputer Architecture

An uliracomputer is a parallel processor composed
of many processing elements (PEs), which have
multiple-cycle access to shared memory. Ultra-
computers are a good model of parallel computa-
tion. Schwartz has made an extensive survey of this
field, summarising various upper and lower bounds
for parallel sorting algorithms, set operations,
matrix multiplication, ete. [Schw80]. Ultracomput-
ers are more than just a theoretical model, how-
ever. Indeed, our ultracomputer model is based on
the work done at New York University, at which a
large-scale implementation is planned [GGKMS81].
The model we propose is a very slight extension of
the NYU model, incorporating additional concurrent
instructions.

An NYU Ultracomputer is composed of N =22 auto-
nomous PEs and connected to N shared memory
modules. Local memeory for each PE is provided by
means of a partitioned memory cache. PEs access
shared memory via a D =logyN -stage connection
network composed of an NxD array of "intelligent”
2-input, 2-output switches!. Switch interconnection

1. The entire architecture can be easily generelised to N = k2
PEs and a D = loge N -stage network using k-input, k-
output switches.

Volume 17, Number 3

142

July 1983

is based on Lawries’s omega-network [Lawr75],
illustrated in Figure 1.

Bege 11 Bege) Eeze?)
PEO00O o © [6 [} 5 DI MM 000

Figure 1. Routing through an omega-network for 8 PEs. Con-
nections between PEs, switches, and MMs are by means of a
shuffle-exchange: an object numbered dydz- - - dp in binary
is connected to the object numbered dz-- - dpd; in the next
stage of the network. A message transmitted from PE
Pp - -p1to MM mp - .. m uses output port my when leaving
the ¢* switch. Similarly for travelling from MM to PE. The
route from PE 5 {101z} to MM 2 (010g) is indicated.

The novelty of the NYU design rests in the intelli-
gent switches, which implement concurrent access
to variables in shared memory. The network easily
realises concurrent fetch or store operations.
Other more powerful concurrent operations can be
implemented. Presently, one such instruction is
supported: the replace-add, which creales the illu-
sion of indivisibly adding a value to a shared vari-
able, and returning the sum to the requesting PE.
Specifically, the format of the operation is
RepAdd(V,e)?, where V denotes a shared (integer)
variable and e is an integer expression. Let V have
value v. Suppose PFE; issues the command
S; =RepAdd(V,e;), and PE; issues the command
S; =RepAdd(V,e;) simultaneously. Then, assuming
V is not simultaneously updated by another PE,
either

S; =v+e;

S; =v+e; +ej,
or

S; =v+e; te;

S] =v + eJ- ,
and in either case, the new value of V is v+e; +e; .
Note that RepAdd(V,0) is a fetch instruction.

When operations on the same cell in shared memory
meet at a switch, they are synthesised into a single
instruction. This is sent to the next stage in the
network in one cycle. Instruction combining can
occur at any stage in the network. Hence of all the
operations simultaneously directed at a single vari-
able, V, only one curnulative operation actually
"reaches" V. Thus memory traffic is reduced and
network bandwidth is increased. Indeed, the pro-
cessor has the following surprising property: it is

2. The semantics of this operation has recently been modified in
the NYU design, and has since been renamed FetchAdd.
Since RepAdd can be easily constructed from FetchAdd, we
will continue to use RepAdd in our ultracomputer model.

Computer Graphics

particularly efficient when many operations are
concurrently issued on a small set of variables.
Simultaneous update of the same variable by all N
PEs is resolved in O(log N) time, compared to O(N)
time for typical parallel processors wusing
semaphore-like mutual exclusion. This is a useful
property which is often exploited. For example,
RepAdd makes an effective synchronisation primi-
tive [GoLR83]. Moreover, data structures allowing
parallel access are conveniently implemented using
RepAdd. A polygon display list can be nicely imple-
mented as a parallel queue. Suppose the index
NextPolygon is used as a subscript into a polygon
list. Then every PE executing
RepAdd(NextPolygon,1) is guaranteed to get a
unique value for NextPolygon.

The standard NYU ultracomputer model supports
the three concurrent instructions described above:
fetch, store, and RepAdd. To realise these opera-
tions, a switch only needs a small amount of
memory, and an adder. Implementation details,
together with a network performarnce analysis, are
found in [GGKMB1]. Although these instructions
have proved useful for constructing good parallel
solutions to scientific and operating system prob-
lems, we believe a concurrent, flexible comparison
instruction is needed. We propose a new concurrent
instruction, replace-mintmum, or RepMin, which is
easily realised by adding a comparator to each
switch. Its semantics is defined as follows. Let V
denote a cell of shared memory having value v, and
let e be an expression such that both v and e are
pairs (intensity,depth) of valuesS. Then RepMin(V,e)
causes all of V to be replaced by e iff e.depth <
v.depth. The value returned by RepMin will be dis-
cussed presently. The utility of RepMin in scan
conversion is obvious. Consider the following paral-
lel version of the z-buffer algorithm found in
[NeSp79]. Here, the entire z-buffer is assumed to
be addressable as an nxm array of shared memory.
Each PE executes the following.
while polygons remain do begin
get P from polygon list (use RepAdd)
Vpixels (x,y) € P do hegin

i := PolygonIntensity(P,x,y)

z := PolygonDepth(P,x,y)

RepMin((x.y), (i.z))

end

Let us now discuss the value returned by a RepMin
operation. We only consider the case where n PEs
(0=n<N) simultaneously issue a RepMin for cell V.
Informally, of all the RepMin's simultaneously
directed at variable V, the value returned to a PE is
one which has "lost” in at least one comparison.
Moreover, any value sent by a particular PE is
returned exactly once. Perhaps surprisingly, this is
achievable in the switches, and can be shown by
induction on n.

The NYU ultracomputer also presently lacks con-
current logical bit operations. The scan conversion

3. To make the replace-minimum instruection quite general, the
extent of the intensity and depth subwords could be con-
trolled by a modifiable bit-mask stored in each switch.
Clearly, the names of the subwords, “intensity” and "depth”,
are illustrative. In practice, the subwords could be known by
arbitrary names.

Volume 17, Number 3

143

July 1983

algorithm below makes use of another concurrent
instruction, the RepAnd. This operation has the
same format as the RepAdd, but performs a logical
and of the arguments instead of an addition. Note
that in principle, only a few Nand gates in each
switch would be required to realise all 16 boolean
operations as concurrent instructions.

In general, an instruction supported by the connec-
tion network must be associative. Thus concurrent
floating point operations cannot be properly real-
ised*. There exist inherently non-associative opera-
tions, such as the group (or Fourier) commutator.
Defined as [a@ ,b] = aba ~18 7!, this operation is not
associative for non-commutative groups; thus a
"RepCom" instruction for matrices under multipli-
cation is inherently unrealisable.

The serialisation principle is a necessary property
of the connection network: The network ensures
that the effect of simultaneous operations by the
PEs is equivalent to some serialisation of the opera-
tions.

3. AFast Parallel Scan Conversion Algorithm

3.1. Preliminaries

Our definition of scan conversion is the traditional
one (e.g. [NeSp79]). Given a scene represented by P
simple polygons, determine the set of pixels and
their intensities that best approximates the scene.
The solution, based on the conventional single-
scanline z-buffer algorithm, performs hidden-
surface removal and anti-aliasing. Serial scanline
algorithms typically require a YX-sort of polygon
spans intersecting with a given scanline [SuSS74].
However, RepMin allows us to drop the X sort. The
shared memory storing ultimate scanline intensi-
ties is assumed to be available to a video controller,
by dual-ported memory, for instance.

3.2. The Algorithm

First we briefly outline the major steps performed
by each PE. As in traditional scanline algorithms, a
Y-scanline bucket is employed to determine polygon
segments that enter the scene at scanline y.

(1) Remove backfacing polygons.

(2) Convert remaining polygons into sets of span-areas, i.e.
trapezoidal or triangular regions. Insert each span-area
into the Y-bucket corresponding to its largest y-value.

(3) Scan convert span-areas:

for y := ymin to ymax do

(a) The span-areas from bucket y are inserted intc the
active span list (ASL).

(b) Process active spans for scanline y. Each PE takes a
span from the ASL. If the span is large, only a fraction
of it is taken at a time, thus permitting parallel pro-
cessing of the span. For each pixel in its portion of a
span, the PE computes intensity and depth values, and
performs a table look-up to approximate the portion of
the pixel covered by the span. The left and right end-
points of the span are then updated. If the span-area
is exhausted, it is removed from the ASL.

{c) Anti-aliasing. For each non-empty pixel, an approxi-
mate anti-aliasing procedure is performed by

4. In most computers, ((10%-10%)+1) » (10%+(—10%+1)), for
large a.

Computer Graphics

determining the intensity contribution of the closest
span, and adding in the average contribution of the
"losers”. The coverage information computed in step
(b) is used in these calculations.

3.2.1. Data Structures

For clarity, we only use static storage in shared
memory. Assume there are P input polygons found
in the array InputList. In what follows, let ¥; be the
aumber of vertices in input polygon F;, and let V
be the largest such V;. Assume the PEs are pro-
grammed in a high-level language such as Pascal or
Euclid which allows programmer-defined data
types. Note that arrays in shared memory are pos-
sible, since their starting addresses can be stored
in the local memory for each PE. The names
assigned to variables in shared memory begin with
an upper case letter. Local variables begin with a
lower case letter.

{ Polygon display list |
InputList: array 1..P of Polygon
Ngon: array 1..P of Polygon
- each polygon B, contains an array 1..¥; of (x,y,z).

{ Y bucket. Yp gives next available position for scanline y |
Y: matrix ymin..ymax 1..PV of SpanArea
Yp: array ymin..ymax of 0..P

{ Active Span List. S reflects the number of spans. }
ASL: array 1..PV of SpanArea
S:1.PV:=0

{ Some indices }
Polyln, PolyOut, CurrentSpan: Integer

{ Locks for synchronisation. Assume they are initialised to 0 {
Lock1, Lock2: 0.P:=0

SpanArea: type

record of
yt ftopy}
dy | height of span-area |
x1 { current LHS |
xr | current RHS }
xm § multiplicity-see below; initially xm=xI1-M}

dxl § 2—; of LHS }

dxr | 2—;cf RHS |
by

dyt &2 of LHS |
Ay

dyr § e of RHS |

DepthInfo

IntensityInfo

3.2.2. Synchronisation, Initialisation, and Backfac-
ing Polygon Removal

Since the code in this section is familiar, it is a good
place to illustrate some principles of synchronisa-
tion and initialisation. Assume each PE has access
to a unique identifier in the manifest constant PEid,
which takes on a value between 1 and N. The follow-
ing code initialises Polyin and PolyOut, performs
synchronisation, and removes backfacing polygons
as in [NeSp79, Appendix IlI]. We assume the
polygons in the input list have undergone perspec-
tive transformation. The reader may wish to verify

144

Volume 17, Number 3

July 1983

that two locks are necessary to have fully reusable
locks for synchronisation.

i, j, p: integer
InputList, Ngon, Lock1, Lock2, Polyln, PolyQOut: shared

{ The first PE in initialises PolyIn, PolyOut
if RepAdd(Lock1,1) = 1 then Polyln := PolyOut := Lock2 := 0
while Lock1 < N do {nothing}

{ The last PE out resets Lock1 for future use |
if Lock2 = N-1 then Lockl := 0
RepAdd(Lock?2,1)
while Lock2 < N do {nothing}

p := RepAdd(PolyQut,1)
while p < P do begin
for p‘glygon InputList[p], calculate ¢
ei= ¥ (VIdacVIl 0Vl y+VIzy)
where j=i+1 if i<} ; otherwise j=1
if ¢ < O then {the polygon faces us, add it to Ngon]
Ngon[RepAdd(Polyln,1)] := InputList[p]
p := RepAdd(PolyQut,1)
end

In the average case, each PE processes about P/N
polygons. This algorithm assumes that N<P, since
otherwise those PEs with PEid>P do no work. The
amount of memory traffic this algorithm would
cause is suboptimal, since polygon definitions are
moved around, rather than their pointers.

3.2.3. Decomposition of Polygons into Span-areas

As presented in this paper, the scan conversion
algorithm presumes the input polygon list has been
decomposed into span-areas: trapezoidal or tri-
angular regions. This idea is not new (see [Lee81,
Wein81, WhWeB1]). Unlike polygons, span-areas have
a bounded, concise specification in terms of left and
right edges. Thus span-areas are useful in
scanline-oriented algorithms. However, desirable
properties of trapezoids such as planarity are not
necessarily preserved after geometric transforma-
tions. Consequently, the input polygon list is
preprocessed for each frame. This additional com-
putation can be circumvented if polygons are tri-
angulated once and for all, since triangles remain
(trivially) planar after geometric transformations
(see [FuRa82, Whit81]). The scan conversion algo-
rithm easily adapts to triangles, but since span-
areas are so simple to work with, the algorithm is
presented using span-areas. Both triangles and
span-areas can lead to fragmentation of very small
(pixel-sized) polygons, making anti-aliasing critical.
A maximum of V-1 span-areas are generated for a
polygon of V vertices. An O(V logV) serial algorithm
to decompose a simple polygon into span-areas was
recently published [LeeBi]. A straightforward,
polygon-per-PE parallelisation of this algorithm

would yield an O(T log V) average-case running

time. As each span-area is generated, it is inserted
into the Y-bucket corresponding to the largest y
value of the span-area. This can be determined on-
the-fly with no change in the order statistic.

Computer Graphics

3.2.4. Scan Conversion

Fach PE performs the following scan conversion
loop.
for y:=ymin to ymax do begin
UpdateASL(y)
InitialiseScanLine
ScanConvert(y)

<synchronise>
end for

UpdateASL places the contents of bucket Y[y] into
the active span list. All PEs synchronise at the com-
pletion of scan conversion for each scanline. This is
not necessary. If sufficient memory is available,
the algorithm easily generalises to k-scanlines, k =
1. We now consider the scan conversion process in
more detail.
procedure InitialiseScanLine

InitialiseXBucket

CurrentSpan := 1

<synchronise>
end InitialiseScanLine

procedure ScanConvert(y: ymin..ymax)
span: SpanArea
spansLeft: Boolean
X: shared

GetSpan(span,spansLeft)
while spansLeft do begin
V x € span calculate pixellnfo:
intensity, depth, and coverage mask
UpdatePixel(x, pixellnfo)
GetSpan(span,spansLeft)
end while
AntiAliasScanline(y)
end ScanConvert

The X bucket contains all required scanline informa-
tion. It will be discussed shortly, as will the rou-
tines UpdatePixel and AntiAliasScanline.

GetSpan does the obvious: it returns an unpro-
cessed span to the scan converter. However, the
routine is complicated by the fact that we wish to
get a subserial worst case behaviour. In particular,
large spans should receive parallel treatment, for
otherwise all PEs could wait for one PE to complete
a long span. One approach is for PEs to recursively
subdivide large spans so that each PE processes a
smaller portion of the span. However elegant this
solution appears, this approach is likely to increase
memory traffic substantially. The approach we
have taken avoids this problem. Assume there is a
constant M which denotes the maximum number of
pixels in a span that a PE is allowed to process at a
time. This value may be empirically or theoretically
determined, and represents a good balance between
the overhead in GetSpan and the increased effi-
ciency in parallel processing of large spans. Multi-
ple copies of a span may be returned; the index xm
is used to indicate the leftmost point of the unpro-
cessed portion of the span®. The following is one
possible implementation of GetSpan. It is some-
what tricky since it must cope with the unlikely
event that two PEs simultaneously try to get an
exhausted span.

5. See the definition of the SpanAree data type above.

145

Volume 17, Number 3

July 1983

procedure GetSpan(var span: SpanArea;
var spansLeft: Boolean)
gotSpan: Boolean
S, ASL, CurrentSpan: shared
M: Constant
newLHS: Integer

spansLeft := CurrentSpan = 5
gotSpan := false
while ~gotSpan and spansLeft do begin
span := ASL[CurrentSpan]
with ASL[CurrentSpan] do begin
{ calculate new LHS of span, and see if LHS>RHS |
newLHS := RepAdd(xm,M)
gotSpan := newLHS < xr
if ~gotSpan then

{ if span is exhausted, the first PE advances CurrentSpan

and processes the remaining span segment §
if newLHS-xr < M then
RepAdd(CurrentSpan,1)
spansLeft := CurrentSpan < S
end with/while
if gotSpan then span.xm := newLHS
spansLeft := gotSpan
end GetSpan

3.2.5. Anti-aliasing

The aliasing problem is immediately apparent to
anyone who has seen synthesised raster images.
Various aliasing artifacts are possible in both still
and moving images. An abundant literature
describes the problem and some of its solutions.
See [Crow??, Crow81] for a start. It is thus of prime
importance to examine whether anti-aliasing can be
incorporated into our algorithm. Since we
currently compute the picture scanline by scanline
without backtracking over scanlines, we cannot use
any scheme where the value at one pixel depends on
the value of some of its neighbours, unless we arbi-
trarily privilege the x directionS.

The best solution under the circumstances is what
we can call the Exact Area Sampling solution, where

the intensity for the pixel is /=50 4 . 4; and f

1
are the areas and intensities of the visible surfaces
within the pixel, and 4 is the total area of the pixel.
If colour is used, this formula is used for the three
primaries. As pointed out in [Catm?8], and imple-
mented there and in [FuBar79], this requires a hid-
den surface algorithm at the pixel level.

We can establish a more formal lower bound, by
showing that any algorithm that computes the EAS
can be used to determine the order of a list of n
non-negative integers. The reduction is as follows.
Given a list N1,N3, - - - N, of numbers, construct a
scene with n rectangles of depth »;, with the left,
top and bottom edges coincident with the pixel left,
top and bottom, and the right edge of rectangle i at
N; . Without loss of generality, assume that the pixel
right edge is at max(¥;). Let the intensity L of
each rectangle be D?~! where D is a constant
greater than max (¥;) - min (;).

The answer to the EAS problem is then:

8. The idea is not totally without merit, since as seen on broad-
cast television it produces decent images. Note, moreover,
thet a k-scanline version (k > 1) of the algorithm would per-
mit a multiple-pixel anti-aliasing scheme.

Computer Graphics

Hx¥D*"Y(N; —N,) where H is the height of the

k)

pixel, and N, is the predecessor of N; in the sorted
order. The predecessor of min{¥N;) is 0. This
transformation can be done in O(n) time. It is clear
that the answer, when expressed as a base D
number, contains N; —N, in the i th digit (from the
least significant), and that therefore in O(n) time
one can find, for every number, its predecessor in
the sorted order. Computing the answer to the EAS
problem allows sorting with a O(n) time transfor-
mation, and therefore takes at least O(rnlogn) time.
While this does not prove that it is necessary to
solve the hidden surface problem to solve the EAS
problem, this shows that nothing easier than sort-
ing will do it. For other results about the EAS, see
[FoFuB3].

In view of this result, we will aim for an approxi-
mate solution. Our approach will be to limit the
amount of computation and to utilise parallelism as
much as possible.

We subdivide the pixel into n xn subpixels. It is
convenient to have n a power of 2, for example
n =23=8. For each line which intersects a pixel, the
two intersection points along the boundaries of the
pixel are used as an index into a lookup table, whose
entries give the subpixels covered by the halfplane
defined by this line. We will call this entry the
mask for this halfplane. In our example, the mask
would be a 684 bit number. Each intersection with
the boundaries of the pixel is computed with & bits
of fraction (where there are 2* intervals, since the
fraction n/n=1 in the current pixel is 0 on the next
pixel). In our example, then, k=3. Thus each inter-
section can be fully described as a k£ +2 bit number,
2 bits to identify the boundary crossed, and & bits
to give the crossing position along the boundary
(see Figure 2). The total entry for a line is then a
2(k +2) bit number, which in our example is a 10 bit
number. This gives a 1K x84 bit table, which is small
enough to allow a copy for each PE. Alternatively,
several PEs could directly share such a read-only

table.
t 11 /

5

; Code= 1110100011
00 01 et L)
1 ' t 51 3

¥ r

b 10
Figure 2. Pizel-line intersection encoding.

The order of the intersections ig relevant, since the
line should be oriented. We adopt & convention that
the inside is to the right when going from the first
intersection to the second. The size of the table can
be reduced by making it into a triangular array, and

Volume 17, Number 3

Mask= F8FOE0CO80000000
X

146

July 1983

using an extra bit to indicate the direction, which
will tell whether to complement the mask or not.
The table is of course precomputed, and each bit is
on if the subpixel corresponding to it is more than
half-covered by the halfplane described by the
index.

Of the four edges of a normal span-area, two are
horizontal, and are relevant only at the start and at
the end of its scanning. For these, a small special
lookup table can be used, with the ¥ fraction used
as the index. For the other two edges, updating the
intersection information from pixel to pixel is fairly
simple, and requires only additions and subtrac-
tions.

The coverage mask has interesting boolean proper-
ties. Indeed, the mask for the intersection of a
span-area with a pixel is the end of the masks of the
span-area’'s edges which cross the pixel. Thus we
get an accurate representation of the subpixels
covered by a given span-area. It is also easily seen
that the mask for the background (indicating the
subpixels where the background is seen) is the com-
plement of the or of all the span-area masks for
this pixel. It is unfortunately impossible to go much
farther without making some approximations. The
problem is that we do not want to compute the Z
values at the subpixel resolution, since it would be
tantamount to going to a higher resolution. Each
span-area at a given pixel is then associated with
only one Z value, namely its Z at the centre of the
pixel. Given that, we cannot guarantee that the
depth comparison allows the visible areas to be
exactly determined, unless the planes of support of
the span-areas do not intersect within the pixel (see
Figure 3). We will give two approximation algo-
rithms, and discuss where they succeed, and where
they fail. Let weight (mask) be the fraction of the
pixel covered by a mask (this can be easily com-
puted by counting the number of one bits in the
mask). The span-area with the smallest Z value is
called the winner, the others are called losers.

There are two ways to compute the final pixel inten-
sity. One way necessitates the use of an X-bucket to
hold pixel information for each span-area intersect-
ing with the current scanline; a pass over the con-
tent of this bucket would be performed at the end
of the scanline, since the final intensity cannot be
computed until the winner is known. The other
approximation can be computed on-the-fly, and is
almost as accurate as the first. The two methods
calculate intensities 7'y and I, respectively, as fol-
lows.

Computer Graphics

I, = PinnerComp + LoserComp s + BackgroundComp
Ip = WinnerComp + LoserComp 2 + BackgroundComp

WinnerComp = L, xweight (masky)
BackgroundComp = l xweight (~AllMasks)
LoserComp 3 = Cor 1% 3, &k xweight (mask; Amasky)
ol 1 i,
ILoserComp z = Cor gxweight (maskw)XMI‘:‘IZ xweight (mask;)
Cory= weight (masks Amasky)
‘?;‘weight (mask; Amaskw)

weight (masks Amasky)

Corg=
2 Z} weight (mask;)
afl’1

The subscripts w,l, and b, stand for "winner"”,
"loser”, and ‘background”, respectively. The
correction factors are ratios of the actual coverage
by the losers compared to the sum of their indivi-
dual coverage as computed by each algorithm.
Therefore the correction factors give a measure of
the amount of overlap of the losers, hence of the
possible error.

3.2.5.1. First approximate anti-aliasing algorithm

This solution requires an X bucket. For each pixel,
several additional pieces of information are kept:
the current winner, background data, the losers’
intensity, and their sum of coverage-mask weights.
The following data structures are used.

{ X bucket. Xp contains list of number of span-areas per pixel }

X: matrix xmin..xmax 1..PV of Pixellnfo
Xp: array xmin..xmax of 0..PV := 0

{ Additional pixel information |
Pixels: array xmin..xmax of
Winner, Back: Pixellnfo
Loserlnt, SumOfWeights: Integer

Pixellnfo: type record of

Depth
Int { intensity {
Mask { coverage mask |

end Pixellnfo

The ScanConvert routine above executes the follow-
ing version of UpdatePixel and AntiAliasScanline.
Recall that each PE executes ScanConvert.

procedure UpdatePixel(x: xmin..xmax, pix: Pixellnfo)
{ Add pixel from this span into bucket }
X[x,RepAdd(Xp[x],1)] := pix
{ pix may be a "winner” }
RepMin(Pixels[x].Winner,pix)
{ Determine how much background is covered by pix |
RepAnd(Pixels{x].Back.Mask, pix.Mask)

end UpdatePixel

147

Volume 17, Number 3

July 1983

procedure AntiAliasScanline(y: ymin..ymax)
x: Integer
winner,pix: Pixellnfo

Initialise Cx to xmin
while Cx < xmax do begin
{ Many PEs work on each pixel (i.e. X bucket) {
x := RepAdd(Xp[Cx],-1) + 1 { get pixel info for span |
winner := Pixels[Cx].Winner
while x > 0 do begin
pix := X[Cx,x]
if pix # winner then begin
{ pix is a loser, calculate its contribution |
newMask := pix.Mask A winner.Mask
newint := Weight(newMask) X pix.Int
RepAdd(Pixels[Cx].Loserint, newInt)
RepAdd(Pixels[Cx].SumOfWeights, Weight(newMask))
end if
x := RepAdd(Xp[Cx], -1) + 1
end while
if x = O then begin
{ PE with x=0 adds background and losers’ contrib]
for Pixels[Cx], compute:
¢ := Weight(Back.Mask/\ Winner.Mask)/ SumOfWeights
RepAdd(Winner.Int, cxLoserInt + Back.Int)
RepAdd(Cx,1)
end then
else <synchronise> {all other PEs wait}
end while
end AntiAliasScanline

3.2.5.2. Second approximate anti-aliasing algo-
rithm

No X bucket is required in this solution. We only
keep four pieces of information for each pixel,
Winner, Back, SumOiWeights, and Losers. Winner,
Back, and SumOfWeights are as in the first solution;
Losers is used to keep track of the losers’ coverage
and intensity contributions on-the-fly.

procedure UpdatePixel(x: xmin..xmax, pix: PixelInfo}
loser: Pixellnfo

loser := RepMin(Pixels[x].Winner, pix)

intContrib := loser.Int X Weight(loser.Mask)

RepAdd(Pixels[x].Losers.Int, intContrib)

RepAnd(Pixels[x].Back.Mask, loser.Mask)

RepAdd(Pixels[x].SumOfWeights, Weight(pix.Mask))
end UpdatePixel

procedure AntiAliasScanline(y: ymin..ymax)
{ each PE handles a pixel, so if N > X, some PEs are idle |
x := PEid + xmin - 1
while x < xmax do begin
pix := Pixels[x]
{ compute background and losers’ intensity contrib |
backInt := pix.Back.Int x Weight(pix.Back.Mask)

¢ := Weight(pix.Back.Mask/\pix.Winner.Mask)/ pix.SumOfWeights

loserInt := pix.Losers.Int X Weight(pix.Winner.mask) X ¢
RepAdd(Pixels[x].Winner.Int, backInt+loserInt)
x:=x+N
end while
end AntiAliasScanline

3.2.5.3. Analysis of the approximations

These approximations, and indeed all approxima-
tions of this kind, should be characterised in three
ways: when they are right (here right is to be under-
stood exact within the subpixel resolution), when
they are wrong and how wrong they can be, and
when they are consisfently wrong. The last is
important, since aliasing is particularly noticeable

Computer Graphics

in motion, by crowling , scintillation and other
annoying artifacts. If an algorithm computes a
wrong shade, but is consistent as the polygons
move, then these artifacts will be avoided.

Both solutions will be right when there is only one
span-area within the pixel, whether it covers the
whole pixel or not. As long as a span-area covers at
least one subpixel (1/84 of a pixel in our example),
it will contribute to the total intensity of the pixel.
Both solutions are also right when none of the
span-areas overlap. This is especially important,
since we might have cut a polygon into numerous
small span-areas. Fortunately we will not have to
pay a heavy price in aliasing problems. In fact, the
problems, if any, will be at the silhouette edges of
the objects, and not against the background, but
against each other. The first solution has the addi-
tional advantage of being right when the winner
overlaps the losers, but the losers do not overlap
each other. The second algorithm will be right in
case of overlap by the winner if the loser coverage
ratio is sensibly the same under the winner as in
the rest of the pixel.

Figures 3 and 4 give examples of wrong cases, and
the errors made by each algorithm. Figure 3 shows
the worst case for both algorithms, where the
amount of overlap of the losers and the area they
cover is maximal. Figure 4 shows a case where the
first algorithm is right and the second is wrong.

Figure 3. The worst case for both algorithms. Span 1, the
winner, covers a sliver of the pixel. Losing span 2 obscures
another loser, 3.

Z1€Z <73
Correct Answer ~ I 213

Computed Answer = La+ls

Error =

I = I3
2

Figure 4. A dad case for algorithm 2 only. Winning span 1,
covering half the pixel, obscures losing span 3. Losing span 2
covers half the pixel as well.

Z1\<Zp<Zg

Correct Answer = L‘-—;—IE-

Algorithm 1 = Litle

I+ ITo+ls 2
Algorithm 2 = 2

2

Error 2 = I_Z__i
4

A gross estimate of the extent of the errors for 108
polygons, covering an average of 108 pixels each, and

Volume 17, Number 3

July 1983

with 102 boundary pixels each, on a screen with 10®
pixels, shows that less than 5% of the pixels would
have an error, and that for these the average error
would be less than 10% of the shade of the pixel.

As the polygons move with respect to each other, we
avoid the numerous problems of point sampling.
Since the wrong cases are computed from averages,
the errors made will not exhibit large discontinui-
ties, but will be consistent from frame to frame. In
the example of Figure 3, as polygon 3 moves out of
the pixel, its contribution to the pixel intensity will
go smoothly from Iz’- (which is wrong), to O (which is

right).

3.2.6. Discussion

An implementation of this algorithm has been made,
demonstrating that the approach works, and illus-
trating a realisation in a pseudo-concurrent
language. The implementation is written in Con-
current Euclid, a language developed at the Univer-
sity of Toronto which supports processes and moni-
tors. Concurrent operations such as RepAdd are
simulated using monitors. The only relevant aspect
in which our implementation differs from one on an
ultracomputer is speed. The lack of "true" con-
currency, and the O(N) performance of concurrent
operations (compared to O(logN) on an ultracom-
puter), make our implementation somewhat slower
than would be expected on an ultracomputer.

The algorithm above has several appealing proper-
ties. It is independent of N, the number of PEs in
the ultracomputer. Indeed, the speed of the algo-
rithm is inversely proportional to N, up to a lower

bound constant when N 27. A good serial algo-

rithm is obtained when N=1. We emphasise the fact
that the anti-aliasing techniques presented here
easily transfer to serial environments, as illus-
trated here. Another property of the algorithm is
that although it scan converts polygons, the general
approach adapts to other scene representations
(e.g. scanline methods for parametric surfaces as in
[BCLW80]).

Several improvements could be made to the algo-
rithm. An issue deserving of attention is space
complexity and memory traffic. By using dynami-
cally allocated shared memory and pointers, the
amount of storage required would be drastically
reduced; memory traffic would decrease, since
pointers would travel through shared memory.
However, indirect shared memory references
require two passes through the connection network.
A solution is to make greater use of the cache
memory local to each PE. A copy of the static
pointers may be placed in the local memory for
each PE, thus saving the O(log N) connection net-
work cycle time.

4. Other Ultracomputer Applications and Future
Research

As the plethora of published parallel algorithms
shows [Schw80], the ultracomputer is truly a power-
ful, general-purpose tool. Fast parallel algorithms
exist for matrix multiplication, sorting, linear pro-
gramming, fluid dynamics, etc. We hope to have
demonstrated that the ultracomputer has great

Computer Graphics

potential in the computer graphics field. Other
applications would also significantly benefit from
ultracomputer implementation. For instance, a
parallel queue could be exploited to parallelise ray-
tracing algorithms [Whit80]. Since the processing
of one ray (or alternatively, one pixel) is an indepen-
dent task, we believe significant speed-up in ray-
tracing can be achieved on an ultracomputer. Simi-
larly, we believe many problems in irmmage process-
ing, signal processing, and artificial intelligence are
likely to benefit.

5. Acknowledgements

We wish to thank John Amanatides and Peter
Schoeler for their suggestions, which have
improved the clarity of this paper. The first two
authors gratefully acknowledge the financial sup-
port of the Natural Sciences and Engineering
Research Council of Canada.

References

BCLW80 Blinn, J.F., L.C. Carpenter, .M. Lane, and T. Whitted,
"Scan line methods for displaying parametrically
defined surfaces”, Comm. ACM 23, 1 (Jan. 1980), 23-
34.

Catmull, E., "A Hidden-Surface Algorithm with Anti-
Aliasing”, Computer Graphics (ACM), 12, 3, (Aug. 78),
6-11.

ClarB2 Clark, J.H., "The geometry engine: a VLSI geometry
system for graphics”, Computer Graphics (ACM) 18,
3 (July 1982), 127-134.

Crow?? Crow, F.C.,, "The Aliasing Problem in Computer-
Generated Shaded Images", Comm. ACM 20, 11 (Nov.
1977), 799-805.

CrowB1 Crow, F.C.,, "A Comparison of Antialiasing Tech-
niques”, IEEF Computer Graphics and Applications,
1, 1 (Jan. 81), 40-49.

FPPB82 Fuchs, H., J. Poulton, A. Paeth, and A. Bell, "Develop-
ing PIXEL-PLANES, a smart memory-based raster
graphics system”, 1982 Conference on Advanced
Research in VLSI, MIT, January 1982, 137-146.

FoFuB3 Fournier, A. and D. Fussell, "On the Power of the

Frame Buffer”, unpublished manuscript, 1983.

FuBar?8 Fuchs, H. and J. Barros, "Efficient Generation of
Smooth Line Drawings on Video Displays”, Computer
Graphics, 13, 2, (Aug. 79), 260-269.

FuPo81 Fuchs, H.,, and J. Poulton, "PIXEL-PLANES: a VLSI-
oriented design for 3-D raster graphics”, CMCCS
Conference Proceedings, (June 1881), 343-348.

FuRa82 Fussell, D., and B.D. Rathi, "A VLSI-oriented architec-
ture for real-time raster display of shaded
polygons”, Graphics Interface ‘82, May 1982, 373-380.

Fuch?? Fuchs, H., "Distributing a visible surface algorithm
over multiple processors’, Proceedings of ACH 1977,
Seattle {Oct. 1977), 449-451.

GGKM83 Gottlieb, A.,, R. Grishman, C.P. Kruskal, K.P. McAu-
liffe, L. Rudolph, and M. Snir, "The NYU
Ultracomputer--designing an MIMD shared memory
parallel computer”, IEEE Transactions on Comput-
ers, C-32, 2 (Feb. 1983), 175-189.

Volume 17, Number 3

149

GuSS81

LeeB1

NeSp79

Park80

Schw80

SuSS574

Wein81

WhWeB1

Whel82

Whit80

Whit81

July 1983

Gottlieb, A., B.D. Lubachevsky, and L. Rudolph, "Basic
techniques for the efficient coordination of very
large numbers of cooperating sequential proces-
sors”, Transactions on Programming Languages
and Systems (ACHM) 5, 2 (Apr. 1983), 164-188.

Guptae, S., R.F. Sproull, and LE. Sutherland, "A VSLI
architecture for updating raster scan displays”,
Computer Graphics (ACH) 15, 3 (Aug. 1981), 71-78.

Lawrie, D.H., "Access and alignment of data in an
array processor”, [EEE Transactions on Computers,
C-24, 12 (Dec. 1975), 1145-1155.

Lee, D.T., "Shading of regions on vector display dev-
ices”, Computer Graphics (ACM) 15, 3 (Aug. 1981),
37-44.

Newman, W.M.,, and R.F. Sproul],
Interactive Computer Graphics,
McGraw-Hill, New York, 1979.

Principles of
Second Edition,

Parke, F.I, "Simulation and expected performance of
multiple processor z-buffer systems", Computer
Graphics (ACH) 14, 3 (July 1980}, 48-56.

Schwartz, J.T., "Ultracomputers”, Transactions on
Programming Languages and Systems (ACHM) 2, 4
(Oct. 1980), 484-522.

Sutherland, LE., R.F. Sproull, and R.A. Schumacker,
"A characterization of ten hidden-surface algo-
rithms", Computing Surveys (ACM) 6, 1 (March 1974),
1-58.

Weinberg, R., "Parallel processing image synthesis
and anti-aliasing”, Computer Graphics (ACM) 15, 3
(Aug. 1981), 53-62.

Whitted, T., and D.M. Weimer, "A software test-bed for
the development of 3-D raster graphics systems”,
Computer Graphics (ACM) 15, 3 (Aug. 1981), 271-277.

Whelan, D.S., "A rectangular area filling display sys-
tem architecture”, Computer Graphics (ACM) 16, 3
(July 1982), 147-153.

Whitted, T., "An improved illumination model for
shaded display”, Comm. ACM 23, 6 (June 1880), 343-
349.

Whitted, T., "Hardware enhanced 3-D raster display
systems", CMCCS Conference Proceedings, (June
1981), 349-356.

Computer Graphics Volume 17, Number 3 July 1983

Figure 5. Aliased cube. Fnlarged view al 256x256

Figure 6. Anti-alicsed cube.
resolution.

Figure 7. Aliased Italian tablecloth.

_‘_l‘."!‘r‘l’",,lI““‘-_‘\-‘_n Y
R il o b B E AR S N R R N

o aEEE R EE B R R RN

e g g N N E R R R A e

FAF IS EE TR BRRERRW P N EE R TSN SN

r7 722 F N1 RNNNNN LR RAVNVNNNN
e EE RSN\ &SI EERRNWN\N

Il mAmAm

Figure 9. Close-up of some coverage masks. Each
yellow area indicates the subpixel coverage of an
oriented line.

150

