Advanced ray tracing

- Glossy reflections
- Motion blur
- Texturing
- Triangle Meshes
- Depth of field

Glossy reflection (Ch 13.4.4)

Motion Blur (Ch 13.4.5)

Texturing

- Map 2D images on 3D surfaces
- Mapping process is different for each surface and involves mapping the ray-object hit point to a pixel in the 2D image.

Texturing Planes

Texturing Cylinder

cylinder $(r, a, t)=(x, y, z)=\left(r^{*} \sin (a), t, r^{*} \cos (a)\right)$

Texturing Sphere

sphere $(r, a, b)=(x, y, z)=$ $\left(r^{*} \cos (a)^{*} \cos (b), r^{*} \cos (b), r^{*} \sin (a)^{\star} \sin (b)\right)$

Raytracing Triangle Meshes

- Ray trace each triangle individually.
- Store per vertex normals for each triangle.
- Interpolate normals to get a normal at intersection.
- Will need to implement loading of OBJ or PLY files

Pin hole camera

Thin lens camera

Thin lens camera

Thin lens camera

Thin lens camera

image plane
focal plane

Simulate Depth of Field

Simulate Depth of Field

Simulate Depth of Field

- Compute the point \mathbf{P} where centre ray hits the focal plane
- Use \mathbf{P} and the sample point on the lens to compute the direction of the primary ray so that this ray also goes through \mathbf{P}
- Ray trace the primary ray into the scene

Figure 10.6. Four center rays go through different sample points on a pixel.

