
CSC418 / CSCD18 / CSC2504 Introduction to C++ and OpenGL

14 Introduction to C++ and OpenGL

14.1 Some C++ Basics

Here are a few tips for programming in C++, assuming you’re already familiar with Java. C++ and
Java have similar syntax, but there are several significant differences in how they work.

14.1.1 Types of variables

Unlike languages such as Java, C++ gives the programmer direct access to memory used by vari-
ables. Not only are thecontentsof a variable important, butwherethat variable is stored. As a
result, there are a number of ways variables can be treated.

Value variables store their data directly in their memory location.

int a;
a = 1; // Now a is set to 1

Pointer variables (declared by prepending a variable name with an asterisk) store the address of
another memory location. A variable name is prepended with an ampersand to get its address,
and a pointer is dereferenced to the memory location it points to by prepending it with an asterisk.
Unlike a reference variable, a pointer variable can be null, which means it does not point to a valid
memory location.

int *c = &a;
*c = 3; // Now a == 3 is true

Reference variables (declared by prepending a variable name with an ampersand) store their data
in the memory location used by another variable. These must be initialized during declaration to
an existing variable and cannot be changed to refer to a different variable later. Once declared, a
reference variable can be used like a regular value variable, only changing it also changes the value
variable it references.

int &b = a;
b = 2; // Now a == 2 is true

Copyright c© 2005 David Fleet and Aaron Hertzmann 99

CSC418 / CSCD18 / CSC2504 Introduction to C++ and OpenGL

Reference variables are not used very often in C++ programming. However, reference is very
common in C++, where you define an argument to a function as a reference variable. The following
function changes the value of its argument, whereas it would not if there:

void function(int & b)
{
b = 2;
}

For local or member variables, there are a few things to keep in mind when choosing the type of the
variable. Value variables are most often used for small objects, since the entire object will be stored
on the stack, which has a limited capacity. For example, initializing a huge array as a value variable
should be avoided. However, since no new memory needs to be allocated for a value variable, they
are very quick to initialize. Pointers are typically used for larger objects and allocated in memory
using thenew operator. Since C++ performs no automatic memory management, objects allocated
with new must be freed withdelete when they are no longer needed. Furthermore, a pointer must
be used if an object is going to be treated polymorphically. Reference variables are rarely used as
locals or members for a class.

For function parameters, value variables are used for smaller objects whose value should not
change, since a copy of the object is made. When you want to avoid the overhead of copying
an object or allow the contents of a variable to be changed from within a function, a reference
variable should be used as a parameter. Pointer variables also allow a variable outside a function’s
scope to be modified, but the programmer must be careful with the dereferencing semantics when
using pointers. In particular, a pointer could be null, so the program must check for this case and
treat it appropriately before attempting to dereference the pointer.

14.1.2 Object-oriented programming

Objects (classes) in C++ have some important differences from Java classes.

Inheritance in Java only allows each class to have a single parent class (or super class), such as

class ChildClass extends ParentClass

C++ supports multiple inheritance, using the following syntax:

class ChildClass : public ParentClass1, public ParentClass2, ...

Copyright c© 2005 David Fleet and Aaron Hertzmann 100

CSC418 / CSCD18 / CSC2504 Introduction to C++ and OpenGL

To avoid multiple instances of a single base class, the common base class must be declared as
virtual.

Object members are accessed in Java using the dot operator. In C++, the dot operator only works
for value and reference variables. For pointers, the arrow operator is used, as follows:

SomeClass *someObject = new SomeClass();
someObject->someMember(); // Dereference and access a member
(*someObject).someMember(); // An equivalent statement

Abstract methods are created in Java by using theabstract keyword. Abstract base classes in
C++ are created by declaring at least one member function aspure virtual, achieved by using the
virtual keyword and ending the function definition with= 0.

Interfaces are implemented in Java by using theinterface keyword when defining a class. C++
does not directly support interfaces, but abstract base classes can be created with all pure virtual
functions.

Parent class constructors are automatically called in Java ifsuper() is not the first line of a
constructor body. In C++, if no call is made to a parent class constructor, an implicit call is made
to the default constructor. To explicitly call a parent’s constructor, use

this->ParentClass::ParentClass().

Polymorphism in Java is accomplished with inheritance and overriding of non-final methods.
C++ requires that a function specifically be declaredvirtual to override.

Libraries can be used in Java by using theimport keyword. C++ relies on the#include prepro-
cessor directive, which treats all of the text in the included header file as though it were part of the
including source file. Headers usually contain class and function declarations without definitions
of their bodies. When compiling, a linking step is used to include the appropriate machine code
for the library implementations in the final program.

The program entry point in Java is theMain method, which can be located in any class. C++
expects this function to exist outside any classes, with the following signature:

int main(int argc, char** argv)

Copyright c© 2005 David Fleet and Aaron Hertzmann 101

CSC418 / CSCD18 / CSC2504 Introduction to C++ and OpenGL

Other constructors within a class are called in Java withthis(...). C++ does not have a
mechanism for such a shortcut. Instead, the constructor logic can be placed in a private function
called by all of the constructors.

Generics in Java simplify development by compiling undetermined types to beObjects and per-
forming casting automatically at runtime when user code gives the specific types of a generic class.
C++ uses templates, which are resolved at compile time instead. Templates can be used on classes
with this syntax:

template <class T> class ClassName

Similarly, templates can be used for functions with this syntax:

template <class T> ReturnType FunctionName(T argName, ...)

14.2 Getting Started with OpenGL

Three libraries are used for the programming assignments throughout this course: OpenGL, GLU,
and GLUT. All three of these are portable to many platforms, including Linux and Windows.

The OpenGL Programmer’s Guideand theOpenGL Reference Manualare absolutely essential
books for OpenGL programming. If you have questions about individual functions or how to use
them, look in these books. They are available online or to purchase.

OpenGL provides a consistent interface to the underlying graphics hardware. This abstraction
allows a single program to run a different graphics hardware easily. A program written with
OpenGL can even be run in software (slowly) on machines with no graphics acceleration. OpenGL
function names always begin withgl, such asglClear(), and they may end with characters
that indicate the types of the parameters, for exampleglColor3f(GLfloat red, GLfloat

green, GLfloat blue) takes three floating-point color parameters andglColor4dv(const

GLdouble *v) takes a pointer to an array that contains 4 double-precision floating-point val-
ues. OpenGL constants begin withGL, such asGL DEPTH. OpenGL also uses special names for
types that are passed to its functions, such asGLfloat or GLint, the corresponding C types are
compatible, that isfloat andint respectively.

GLU is the OpenGL utility library. It contains useful functions at a higher level than those provided
by OpenGL, for example, to draw complex shapes or set up cameras. All GLU functions are written

Copyright c© 2005 David Fleet and Aaron Hertzmann 102

CSC418 / CSCD18 / CSC2504 Introduction to C++ and OpenGL

on top of OpenGL. Like OpenGL, GLU function names begin withglu, and constants begin with
GLU.

GLUT, the OpenGL Utility Toolkit, provides a system for setting up callbacks for interacting
with the user and functions for dealing with the windowing system. This abstraction allows a
program to run on different operating systems with only a recompile. Glut follows the convention
of prepending function names withglut and constants withGLUT.

14.2.1 Writing an OpenGL Program with GLUT

An OpenGL program using the three libraries listed above must include the appropriate headers.
This requires the following three lines:

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

Before OpenGL rendering calls can be made, some initialization has to be done. With GLUT, this
consists of initializing the GLUT library, intializing the display mode, creating the window, and
setting up callback functions. The following lines initialize a full color, double buffered display:

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

Double buffering means that there are two buffers, a front buffer and a back buffer. The front
buffer is displayed to the user, while the back buffer is used for rendering operations. This prevents
flickering that would occur if we rendered directly to the front buffer.

Next, a window is created with GLUT that will contain the viewport which displays the OpenGL
front buffer with the following three lines:

glutInitWindowPosition(px, py);
glutInitWindowSize(sx, sy);
glutCreateWindow(name);

To register callback functions, we simply pass the name of the function that handles the event to
the appropriate GLUT function.

glutReshapeFunc(reshape);
glutDisplayFunc(display);

Copyright c© 2005 David Fleet and Aaron Hertzmann 103

CSC418 / CSCD18 / CSC2504 Introduction to C++ and OpenGL

Here, the functions should have the following prototypes:

void reshape(int width, int height);
void display();

In this example, when the user resizes the window,reshape is called by GLUT, and when the
display needs to be refreshed, thedisplay function is called. For animation, an idle event handler
that takes no arguments can be created to call the display function to constantly redraw the scene
with glutIdleFunc. Once all the callbacks have been set up, a call toglutMainLoop allows
the program to run.

In the display function, typically the image buffer is cleared, primitives are rendered to it, and the
results are presented to the user. The following line clears the image buffer, setting each pixel color
to the clear color, which can be configured to be any color:

glClear(GL_COLOR_BUFFER_BIT);

The next line sets the current rendering color to blue. OpenGL behaves like a state machine, so
certain state such as the rendering color is saved by OpenGL and used automatically later as it is
needed.

glColor3f(0.0f, 0.0f, 1.0f);

To render a primitive, such as a point, line, or polygon, OpenGL requires that a call toglBegin is
made to specify the type of primitive being rendered.

glBegin(GL_LINES);

Only a subset of OpenGL commands are avaiable after a call toglBegin. The main command that
is used isglVertex, which specifies a vertex position. InGL LINES mode, each pair of vertices
define endpoints of a line segment. In this case, a line would be drawn from the point at (x0, y0)
to (x1, y1).

glVertex2f(x0, y0);
glVertex2f(x1, y1);

A call to glEnd completes rendering of the current primitive.

glEnd();

Finally, the back buffer needs to be swapped to the front buffer that the user will see, which GLUT
can handle for us:

glutSwapBuffers();

Copyright c© 2005 David Fleet and Aaron Hertzmann 104

