Topic 12: Interpolating Curves

- Intro to curve interpolation \& approximation
- Polynomial interpolation
- Bézier curves
- Cardinal splines

What are Splines?

- Numeric function that is piecewise-defined by polynomial functions
- Possesses a high degree of smoothness where pieces connect
- These are intuitively called "knots"

History

- Used by engineers in ship building and airplane design before computers were around
- Used to create smoothly varying curves
- Variations in curve achieved by the use of weights (like control points)

Applications

- Specify smooth camera path in scene along spline curve
- Rollercoaster tracks
- Curved smooth bodies and shells (planes, boats, etc)

Motivation and Goal

- Expand the capabilities of shapes beyond lines and conics, simple analytic functions and to allow design constraints.

Design issues

- Create curves that can have constraints specified
- Have natural and intuitive interaction
- Controllable smoothness
- Control (local vs global)
- Analytic derivatives that are easy to compute
- Compactly represented
- Other geometric properties (planarity, tangent/curvature control)

Interpolation

- Interpolating splines: pass through all the data points (control points). Example: Hermite splines

Approximation

- Curve approximates but does not go through all of the control points.
- Comes close to them.

Extrapolation

- Extend the curve beyond the domain of the control points

Local properties

- Continuity
- Position at a specific place on the curve
- Direction at a specific place on the curve
- Curvature

Global properties

- Closed or open curve
- Self intersection
- Length

Local vs Global Control

- Local control changes curve only locally while maintaining some constraints
- Modifying point on curve affects local part of curve or entire curve

Parametric and Geometric Continuity

- When piecing together smooth curves, consider the degrees of smoothness at the joints.
- Parametric Continuity: differentiability of the parametric representation (C^{0}, $\mathrm{C}^{1}, \mathrm{C}^{2}, \ldots$)
- Geometric Continuity: smoothness of the resulting displayed shape ($\mathrm{G}^{0}=\mathrm{C}^{0}, \mathrm{G}^{1}=$ tangent-cont., $\mathrm{G}^{2}=$ curvature-cont.)

2D Curve Design: General Problem Statement

- Given N control points, $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=0 \ldots \mathrm{n}-1, \mathrm{t} \in[0,1]$ (by convention)
- Define a curve c(t) that interpolates / approximates them
- Compute its derivatives (and tangents, normals etc)

Linear Interpolation

- The simplest possible interpolation technique
- Create a piecewise linear curve that connects the control points

- Q: What is the disadvantage of such a technique?

Linear Interpolation

- The simplest possible interpolation technique
- Create a piecewise linear curve that connects the control points

- Q: What is the disadvantage of such a technique?
- A: The curves may be continuous but its derivatives are not...

Linear Interpolation

- The simplest possible interpolation technique
- Create a piecewise linear curve that connects the control points

- Q: What is the disadvantage of such a technique?
- A: The curves may be continuous but its derivatives are not...
C^{n} continuity
- Definition: a function is called C^{n} if $\mathrm{it}^{\text {'s }} \mathrm{n}^{\text {th }}$ order derivative is continuous everywhere
Curve is NOT Curve is C^{0}
$\bar{C}(t)$
$\frac{d x}{d t}$ AOT DEFINED Curve is C^{1}
$\frac{d^{2} x}{d t^{2}}$ NOT DEFINED BREAKPOINT

Linear Interpolation

- The simplest possible interpolation technique
- Create a piecewise linear curve that connects the control points

- Q: What is the disadvantage of such a technique?
- Curve has only C^{0} continuity

2D Curve Design: General Problem Statement

- Given N control points, $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=0 \ldots \mathrm{n}-1, \mathrm{t} \in[0,1]$ (by convention)
- Define a curve $\mathrm{c}(\mathrm{t})$ that interpolates / approximates them
- Compute its derivatives (and tangents, normals etc)
- We will seek functions that are at least C^{1}

Polynomial Interpolation

- Given N control points, $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=0 \ldots \mathrm{n}-1, \mathrm{t} \in[0,1]$ (by convention)
- Define $(N-1)$-order polynomial $x(t), y(t)$ such that $x\left(i /(N-1)=x_{i}, y\left(i /(N-1)=y_{i}\right.\right.$ for $\mathrm{i}=0, \ldots, \mathrm{~N}-1$
- Compute its derivatives (and tangents, normals etc)

Cubic Interpolation

- Given 4 control points, $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$, for $\mathrm{i}=0, \ldots, 3$
- Define 3rd-order polynomial $x(t), y(t)$ such that $x(i / 3)=x_{i}, y(i / 3)=y_{i}$
- Compute its derivatives (and tangents, normals etc)

Cubic Interpolation: Basic Equations

$$
\left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\}
$$

-given $\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \bar{p}_{4}$
compute $a_{i,} b_{i}$

Equations for one control point:

$$
\begin{aligned}
& x_{1}=a_{0}+a_{1} \cdot \frac{1}{3}+a_{2}\left(\frac{1}{3}\right)^{2}+a_{3}\left(\frac{1}{3}\right)^{3} \\
& y_{1}=b_{0}+b_{1} \cdot \frac{1}{3}+b_{2}\left(\frac{1}{3}\right)^{2}+b_{3}\left(\frac{1}{3}\right)^{3}
\end{aligned}
$$

Equations in matrix form:

$$
\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2}
\end{array}\left(\frac{1}{3}\right)^{3}\right]\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Cubic Interpolation: Computing Coeffs

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \\
& \text { given } \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \bar{p}_{4} \\
& \text { compute } a_{i}, b_{i} \\
& {\left[\begin{array}{ll}
x_{i} & y_{i}
\end{array}\right]=[\underbrace{\begin{array}{llll}
\left.\begin{array}{lll}
t_{i} & \left(t_{i}\right)^{2} & \left(t_{1}\right)^{3}
\end{array}\right]
\end{array}\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right] \rightsquigarrow \text { unknown }\left(t_{i=1 / N-1}\right)}_{\text {known }}}
\end{aligned}
$$

Equations in matrix form:

Cubic Interpolation: Computing Coeffs

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \\
& \text {-given } \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \overline{p_{4}} \\
& \text { compute } a_{i,} b_{i} \\
& {[\begin{array}{cc}
c \\
{\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]}
\end{array} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 / 3 & (1 / 3)^{2} & (1 / 3)^{3} \\
1 & 2 / 3 & (2 / 3)^{2} & (2 / 3)^{3} \\
1 & 1 & 1 & 1
\end{array}\right]}_{\text {known }} \underbrace{\left[\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3} \\
a_{4} & b_{4}
\end{array}\right]}_{\text {known }} \underbrace{\left[\begin{array}{l}
\text { solve system } \\
\text { in terms of } \\
\text { unknown } \\
\text { matrix } \\
x=A^{-1} c
\end{array}\right.}_{\text {unknown }}}
\end{aligned}
$$

Equations in matrix form:

Cubic Interpolation: Computing Coeffs

$$
\left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \begin{aligned}
& \text { given } \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \bar{p}_{4} \\
& \text { compute } a_{i}, b_{i}
\end{aligned}
$$

Coefficients of interpolating polynomial computed by:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3} \\
a_{4} & b_{4}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 / 3 & (1 / 3)^{2} & (1 / 3)^{3} \\
1 & 2 / 3 & (1 / 3)^{2} & (2 / 3)^{3} \\
1 & 1 & 1 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]
$$

Equations in matrix form:

$$
\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2} \\
\left(\frac{1}{3}\right)^{3}
\end{array}\right]\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Cubic Interpolation: Evaluating the Polynomial

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \\
& \text {-given } \overline{P_{1}}, \overline{P_{2}}, \overline{P_{3}}, \bar{P}_{4} \\
& \text { compute } a_{i}, b_{i} \\
& {\left[\begin{array}{ll}
x(t) & y(t)
\end{array}\right]=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]}
\end{aligned}
$$

Equations in matrix form:

$$
\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2}
\end{array}\left(\frac{1}{3}\right)^{3}\right)^{3}\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Cubic Interpolation: What if < 4 Control Points?

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \quad \begin{array}{l}
\text { given } \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \overline{p_{4}} \\
\text { compute } a_{i}, b_{i}
\end{array} \\
& \underset{\substack{\text { degree } \\
+1}}{\downarrow}\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3} \\
a_{4} & b_{4}
\end{array}\right] \stackrel{\left(\begin{array}{l}
\text { more unknowns } \\
\text { than Es } \Rightarrow \\
\text { cannot compute } \\
\text { inverse } \\
\leftarrow \begin{array}{c}
\text { \#control } \\
\text { points. }
\end{array}
\end{array}\right]_{\rightarrow}^{-1}}{\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]}
\end{aligned}
$$

Equations in matrix form:

$$
\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2} \\
\left(\frac{1}{3}\right)^{3}
\end{array}\right]\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Cubic Interpolation: What if > 4 Control Points?

$$
\begin{aligned}
& \left.\begin{array}{l}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
y(t)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{2}
\end{array}\right\} \quad \begin{array}{l}
\text {-given } \\
\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \bar{p}_{4} \\
\text { compute } a_{i}, b_{i}
\end{array}
\end{aligned}
$$

Equations in matrix form:

$$
\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2} \\
\left(\frac{1}{3}\right)^{3}
\end{array}\right]\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Exact Interpolation of N points

To interpolate N points perfectly with a single polynomial, we need a polynomial of degree N -1

Cubic Interpolation: Evaluating Derivatives

$$
\begin{aligned}
& x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& \frac{d x}{d t}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2} \\
& {\left[\begin{array}{ll}
\frac{d x}{d t}(t) & \frac{d y}{d t}(t)
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 t & 3 t^{2}
\end{array}\right]\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right] }
\end{aligned}
$$

Specifying the Poly via Tangent Constraints

- Instead of specifying 4 control points, we could specify 2 points and 2 derivatives.

Specifying the Poly via Tangent Constraints

- Instead of specifying 4 control points, we could specify 3 points and a derivative.
- Replace the $4^{\text {th }}$ pair of equations with

$$
\begin{aligned}
& {\left[\begin{array}{ll}
u & v
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 3\left(\frac{1}{2}\right)^{2}
\end{array}\right]\left[\begin{array}{lll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]} \\
& {\left[\frac{d x}{d t}(t) \quad \frac{d y}{d t}(t)\right]=\left[\begin{array}{lll}
1 & 2 t & 3 t^{2}
\end{array}\right]\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]}
\end{aligned}
$$

Degree-N Poly Interpolation: Major Drawback

To interpolate N points perfectly with a single polynomial, we need a polynomial of degree N -1

Major drawback: it is a global interpolation scheme
i.e. moving one control point changes the interpolation of all points, often in unexpected, unintuitive and undesirable ways

Degree-N Poly Interpolation: Major Drawback

To interpolate N points perfectly with a single polynomial, we need a polynomial of degree N -1

Major drawback: it is a global interpolation scheme
i.e. moving one control point changes the interpolation of all points, often in unexpected, unintuitive and undesirable ways

Topic 12: Interpolating Curves

- Intro to curve interpolation \& approximation
- Polynomial interpolation
- Bézier curves
- Cardinal splines

Bézier Curves

Properties:

- Polynomial curves defined via endpoints and derivative constraints
- Derivative constraints defined implicitly through extra control points (that are not interpolated)
- They are approximating curves, not interpolating curves

Bézier Curves: Main Idea

Polynomial and its derivatives expressed as a cascade of linear interpolations

Example: a double cascade

Q: Where have we seen such a cascade before?
algorithm:
given $\bar{P}_{0}, \bar{P}_{1}, \bar{P}_{2}$ and t

1. linearly interpolate $\overline{P_{0},} \overline{p_{1}}$ to get $\overline{\bar{\alpha}_{0}}(t)$
2. Iineary interpolate \bar{p}_{1}, \bar{p}_{2} to get $\bar{\alpha}_{1}(f)$
3. linearly interpolate $\bar{\alpha}_{0}(t), \bar{\alpha}_{1}(t)$ to get $\bar{c}(t)$

Bézier Curves: Control Polygon

A Bézier curve is completely determined by its control polygon
We manipulate the curve by manipulating its polygon

Example: a double cascade

algorithm:
given $\bar{P}_{0}, \bar{P}_{1}, \bar{P}_{2}$ and t

1. linearly interpolate \bar{p}_{0}, \bar{p}_{1} to get $\overline{\bar{q}_{0}}(t)$
2. lineary interpolate \bar{p}_{1}, \bar{p}_{2} to get $\bar{\alpha}_{1}(f)$
3. linearly interpolate $\bar{\alpha}_{0}(t), \bar{\alpha}_{1}(t)$ to get $\bar{c}(t)$

Expressing the Bézier Curve as a Polynomial
Computing the polynomial

$$
\begin{aligned}
& c(t)=\left[P_{0}+t\left(\bar{P}_{1}-\bar{P}_{0}\right)\right]+t\left[\bar{P}_{1}+t\left(\bar{P}_{2}-\bar{P}_{1}\right)-\bar{P}_{0}-t\left(\bar{P}_{1}-\bar{P}_{0}\right)\right] \\
&=\bar{P}_{0}\left(1-t-t+t^{2}\right)+\bar{P}_{1}\left(t+t-t^{2}-t^{2}\right)+\bar{P}_{2} t^{2} \\
&=\bar{P}_{0}(1-t)^{2}+2 \bar{P}_{1} t(1-t)+\bar{P}_{2} t^{2} \\
& \bar{\alpha}_{0}(t)=\bar{P}_{0}+b\left(\bar{P}_{1}-\bar{P}_{0}\right)
\end{aligned}
$$

algorithm:
given $\bar{P}_{0}, \bar{P}_{1}, \bar{P}_{2}$ and t

1. linearly interpolate $\overline{P_{0}}, \bar{p}_{1}$ to get $\overline{\alpha_{0}}(t)$
2. Iineary interpolate \bar{P}_{1}, \bar{P}_{2} to get $\bar{\alpha}_{1}(f)$
3. linearly interpolate $\bar{\alpha}_{0}(t), \bar{\alpha}_{1}(t)$ to get $\bar{c}(t)$

Derivatives of the Bézier Curve
Computing the polynomial's derivatives:

$$
\begin{aligned}
\frac{d}{d t} c(t)=-2(1-t) P_{0}+2 P_{1}(1-2 t)+p_{2} 2 t & =2\left(p_{1}-p_{0}\right) \text { at } t=0 \\
& \approx 2\left(p_{2}-p_{1}\right) \text { at } t=1
\end{aligned}
$$

$$
c(t)=\bar{P}_{0}(1-t)^{2}+2 \bar{P}_{1} t(1-t)+\bar{P}_{2} t^{2}
$$

algorithm:

given $\bar{P}_{0}, \bar{P}_{1}, \bar{P}_{2}$ and t

1. linearly interpolate $\overline{p_{0},} \overline{p_{1}}$ to get $\overline{\bar{\alpha}_{0}}(t)$
2. Iineary interpolate \bar{P}_{1}, \bar{P}_{2} to get $\bar{\alpha}_{1}(f)$
3. linearly interpolate $\bar{\alpha}_{0}(t), \bar{\alpha}_{1}(+)$ to get $\bar{c}(t)$

Bézier Curves: Endpoints and Tangent Constraints
Computing the polynomial's derivatives:

$$
\begin{aligned}
\frac{d}{d t} c(t)=-2(1-t) P_{0}+2 P_{1}(1-2 t)+P_{2} 2 t & \approx 2\left(p_{1}-p_{0}\right) \text { at } t=0 \\
& \approx 2\left(p_{2}-p_{1}\right) \text { at } t=1
\end{aligned}
$$

General Behaviour

- $1^{\text {st }}$ and $3^{\text {rd }}$ control points define the endpoints.
- $2^{\text {nd }}$ control point defines the tangent vector at the endpoints.

Bézier Curves: Generalization to N+1 points

Expression in compact form:

$$
\underset{\mathcal{T}}{C_{\mathcal{N}}(t)=\sum_{\substack{i=0 \\ \text { cotrot pt pt }}}^{N} \bar{p}_{i} B_{i}^{N}(t) \text { Where: }}
$$

Curve defined by N linear interpolation

$B_{i}^{N}(t)$	$=\binom{N}{i}(1-t)^{N-i} t^{i}$
Pollynomial	
	$=\frac{N!}{(N-1)!(1)}(1-t)^{N-i} t^{!}$

Example for 4 control points and 3 cascades

Bézier Curves: A Different Perspective

Expression in compact form:

$$
\underset{\mathcal{c}}{\bar{c}(t)}=\sum_{\substack{i=0 \\ \text { control pt }}}^{N} \bar{P}_{i} B_{i}^{N}(t) \text { Where: }
$$

called the Bernstein Polynomials of degree N

$$
\begin{aligned}
B_{i}^{N}(t) & =\binom{N}{i}(1-t)^{N-i} t^{i}! \\
& =\frac{N!}{(N-i)!1!}(1-t)^{N-i} t^{i}!
\end{aligned}
$$

- Each curve point ct) is a "blend" of the 4 control points.
- The blend coefficients depend on t
- They are Bernstein polynomials

Bézier Curves as "blends" of the Control Points
Expression in compact form:

$$
\underset{J}{\bar{c}(t)}=\sum_{i=0}^{N} \bar{p}_{i} B_{i}^{N}(t)
$$

with $\sum_{i=0}^{N} B_{i}^{N}(t)=1$ for all t

- Each curve point $c(t)$ is a "blend" of the 4 control points.
- The blend coefficients depend on t
- They are Bernstein polynomials

Bézier Curves: Useful Properties

Expression in compact form:

$$
\bar{c}(t)=\sum_{i=0}^{N} \bar{P}_{i} B_{i}^{N}(t)
$$

Where:

1. Affine Invariance

- Transforming a Bézier curve by an affine transform T is equivalent to transforming its control points by T

2. Diminishing Variation

- No line will intersect the curve at more points than the control polygon
- curve cannot exhibit "excessive fluctuations"

3. Linear Precision

- If control poly approximates a line, so will the curve

Bézier Curves: Useful Properties

Expression in compact form:

$$
\bar{c}(t)=\sum_{i=0}^{N} \bar{P}_{i} B_{i}^{N}(t)
$$

Where:
called the Bernstein polynomials of degree N :

$$
\begin{aligned}
B_{i}^{N}(t) & =\binom{N}{i}(1-t)^{N-i} t^{i} \\
& =\frac{N!}{(N-i)!!!}(1-t)^{N-i} t^{\vdots}
\end{aligned}
$$

4. Tangents at endpoints are along the 1st and last edges of control polygon:

$$
\begin{aligned}
& \frac{d}{d t} \bar{c}(t)=\sum_{\substack{i=1}}^{N} \bar{P}_{i} \frac{d}{d t} B_{i}^{N}(t) \\
& \begin{array}{c}
\text { N/ some } \\
\text { work } \\
=
\end{array} \\
& N \sum_{i=0}^{N-1}\left(\bar{P}_{i+1}-\bar{P}_{i}\right) B_{i}^{N-1}(t) \\
& \\
& \left.\quad \text { for } t=0 \quad \bar{p}_{1}-\bar{p}_{0}\right) \quad N\left(\bar{P}_{N}-\bar{P}_{N-1}\right)
\end{aligned}
$$

Bézier Curves: Pros and Cons

Expression in compact form:

$$
\bar{c}(t)=\sum_{i=0}^{N} \bar{P}_{i} B_{i}^{N}(t)
$$

Advantages:

- Intuitive control for $\mathrm{N} \leq 3$
- Derivatives easy to compute
- Nice properties (affine invariance, diminishing variation)

Disadvantages:

- Scheme is still global (curve is function of all control points)

Topic 12: Interpolating Curves

- Intro to curve interpolation \& approximation
- Polynomial interpolation
- Bézier curves
- Cardinal splines

Cubic Cardinal Splines: Defining $1^{\text {st }}$ Segment

- Approach:

1. A user only specifies points p_{0}, p_{1}, \ldots
2. Tangent at p_{i} set to be parallel to vector connecting p_{i-1} and p_{i+1}
spline segment

Cubic Cardinal Splines: Defining $2^{\text {nd }}$ Segment

- Approach:

1. A user only specifies points p_{0}, p_{1}, \ldots
2. Tangent at p_{i} set to be parallel to vector connecting p_{i-1} and p_{i+1}

Example: Adding a fifth point adds a new segment
spline segment \#1 direction of tangent at $\overline{P_{3}}$

Cubic Cardinal Splines: General Case

- Approach:

1. A user only specifies points p_{0}, p_{1}, \ldots
2. Tangent at p_{i} set to be parallel to vector connecting p_{i-1} and p_{i+1}

Cubic Cardinal Splines: The Strain Parameter

- Approach:

1. A user only specifies points p_{0}, p_{1}, \ldots
2. Tangent at p_{i} set to be parallel to vector connecting p_{i-1} and p_{i+1}

Tangent at $\bar{P}_{i}=k\left(\bar{p}_{i+1}-\bar{P}_{i-1}\right)$
spline segment

called a strain parameter

Catmull-Rom Splines

- Approach:

1. A user only specifies points p_{0}, p_{1}, \ldots
2. Tangent at p_{i} set to be parallel to vector connecting p_{i-1} and p_{i+1}

$\begin{aligned} & \text { Tangent at } \bar{P}_{i}=k\left(\bar{P}_{i+1}-\bar{P}_{i-1}\right) \\ & \text { called a strain parameter. }\end{aligned}$

Note: If $\mathrm{k}=0.5$, the spline is called a
Catmull-Rom Spline

Specifying the Poly via Tangent Constraints

- Instead of specifying 4 control points, we could specify 2 points and 2 derivatives

$$
\left[\frac{d x}{d t}(t) \frac{d y}{d t}(t)\right]=\left[\begin{array}{lll}
1 & 2 t & 3 t^{2}
\end{array}\right]\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
$$

Cardinal Splines: Solving for the Segment Coeffs

$$
\begin{aligned}
& \begin{aligned}
\text { for } t=0 & {\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & t_{0} & t_{0}^{2} \\
t_{0}^{3}
\end{array}\right]\left[\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right] }
\end{aligned} \\
& \begin{array}{l}
{\left[k\left(x_{2}-x_{0}\right) k\left(y_{2}-y_{0}\right)\right]=\left[\begin{array}{lll}
1 & 2 \neq & 3 k^{2}
\end{array}\right]\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]} \\
\\
\text { derivative constraint }
\end{array}
\end{aligned}
$$

+2 more equations for other endpoint $(t=1)$

Cubic Cardinal Spline Segment vs Bézier Curve

The two curves are actually equivalent:
given a cardinal spline, we can compute the control polygon of the equivalent Bézier curve

Cardinal Spline Segment

passes through $\bar{P}_{i}, \bar{P}_{i+1}$ tangents are $k\left(\bar{p}_{i+1}-\bar{p}_{i-1}\right)$
$K\left(\bar{p}_{i+2}-\bar{p}_{i}\right)$

Cubic Cardinal Spline Segment vs Bézier Curve
In order to have $c(t)=r(t)$ for all t, it must be:

$$
\begin{aligned}
& \bar{q}_{0}=\bar{p}_{i}, \bar{q}_{4}=\bar{p}_{i+1} \\
& \begin{array}{l}
\bar{q}_{0}=\bar{P}_{i}, \bar{q}^{2} \bar{P}_{i+1} \\
k\left(\bar{p}_{i+1}-\bar{p}_{i-1}\right)=3\left(\bar{q}_{1}-\bar{q}_{0}\right) \Rightarrow k\left(\bar{P}_{i+1}-\bar{P}_{i-1}\right)=3 \bar{q}_{1}-3 \frac{\bar{p}_{i}}{q_{0}}
\end{array} \\
& \Rightarrow \bar{q}_{1}=\frac{k}{3}\left(\bar{p}_{i+1}-\bar{p}_{i-1}\right)+\bar{p}_{i}
\end{aligned}
$$

Cardinal Spline Segment

passes through $\bar{P}_{i}, \bar{P}_{i+1}$ tangents are $K\left(\bar{p}_{i+1}, \bar{p}_{i-1}\right)$ $k\left(\bar{P}_{i+2}-\bar{P}_{i}\right)$

Beezer Curve

Cubic Cardinal Spline Segment vs Bézier Curve

In order to have $c(t)=r(t)$ for all t, it must be:

$$
\begin{aligned}
& \bar{q}_{0}=\bar{p}_{i}, \bar{q}_{4}=\bar{p}_{i+1} \\
& \bar{q}_{1}=\frac{k}{3}\left(\bar{p}_{i+1}-\bar{p}_{i-1}\right)+\bar{p}_{i}, \bar{q}_{2}=\bar{p}_{i+1}-\frac{k}{3}\left(\bar{p}_{i+2}-\bar{p}_{i}\right)
\end{aligned}
$$

Cardinal Spline Segment

