
Topic 12: Interpolating Curves
• Intro to curve interpolation & approximation  
• Polynomial interpolation 
• Bézier curves 
• Cardinal splines

Some slides and figures courtesy of Kyros Kutulakos 
Some figures from Peter Shirley, “Fundamentals of Computer Graphics”, 3rd Ed.



What are Splines?
• Numeric function that is piecewise-defined by polynomial functions 
• Possesses a high degree of smoothness where pieces connect  
• These are intuitively called “knots”



History
• Used by engineers in ship building and airplane design before computers were around
• Used to create smoothly varying 

curves 
• Variations in curve achieved by the 

use of weights (like control points)



Applications

• Specify smooth camera path in scene along spline curve 
• Rollercoaster tracks 
• Curved smooth bodies and shells (planes, boats, etc)



Motivation and Goal

• Expand the capabilities of shapes beyond lines and conics, simple 
analytic functions and to allow design constraints.



Design issues
• Create curves that can have constraints specified 
• Have natural and intuitive interaction 
• Controllable smoothness 
• Control (local vs global) 
• Analytic derivatives that are easy to compute 
• Compactly represented 
• Other geometric properties (planarity, tangent/curvature control)



Interpolation

• Interpolating splines: pass through all the data points (control points). 
Example: Hermite splines



Approximation

• Curve approximates but does not go through all of the control points. 
• Comes close to them.



Extrapolation

• Extend the curve beyond the domain of the control points



Local properties

• Continuity 
• Position at a specific place on the curve 
• Direction at a specific place on the curve 
• Curvature



Global properties

• Closed or open curve 
• Self intersection 
• Length



Local vs Global Control

• Local control changes curve only locally while maintaining some 
constraints 

• Modifying point on curve affects local part of curve or entire curve



Parametric and Geometric Continuity

• When piecing together smooth curves, consider the degrees of 
smoothness at the joints. 

• Parametric Continuity: differentiability of the parametric representation (C0, 
C1, C2, ...)  

• Geometric Continuity: smoothness of the resulting displayed shape 
(G0=C0, G1=tangent-cont., G2=curvature-cont. )



2D Curve Design: General Problem Statement

• Given N control points, Pi, i = 0…n - 1, t ∈ [0, 1] (by convention) 
• Define a curve c(t) that interpolates / approximates them 
• Compute its derivatives (and tangents, normals etc)



Linear Interpolation

• The simplest possible interpolation technique 
• Create a piecewise linear curve that connects the control points

• Q: What is the disadvantage of such a technique? 
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Cn continuity

• Definition: a function is called Cn if it’s nth order derivative is continuous 
everywhere



Linear Interpolation

• The simplest possible interpolation technique 
• Create a piecewise linear curve that connects the control points

• Q: What is the disadvantage of such a technique? 
• Curve has only C0 continuity



2D Curve Design: General Problem Statement

• Given N control points, Pi, i = 0…n-1, t ∈ [0, 1] (by convention) 
• Define a curve c(t) that interpolates / approximates them 
• Compute its derivatives (and tangents, normals etc) 
• We will seek functions that are at least C1



Polynomial Interpolation

• Given N control points, Pi, i = 0…n-1, t ∈ [0, 1] (by convention) 
• Define (N-1)-order polynomial x(t), y(t) such that x(i/(N-1) = xi, y(i/(N-1) = yi 

for i = 0, …, N-1 
• Compute its derivatives (and tangents, normals etc)



Cubic Interpolation

• Given 4 control points, Pi, i = (xi, yi), for i = 0, …, 3 
• Define 3rd-order polynomial x(t), y(t) such that x(i/3) = xi, y(i/3) = yi 
• Compute its derivatives (and tangents, normals etc)



Cubic Interpolation: Basic Equations

Equations for one control point: Equations in matrix form:



Cubic Interpolation: Computing Coeffs

Equations in matrix form:



Cubic Interpolation: Computing Coeffs

Equations in matrix form:



Cubic Interpolation: Computing Coeffs

Equations in matrix form:

Coefficients of interpolating polynomial computed by:



Cubic Interpolation: Evaluating the Polynomial

Equations in matrix form:



Cubic Interpolation: What if < 4 Control Points?

Equations in matrix form:



Cubic Interpolation: What if > 4 Control Points?

Equations in matrix form:



Exact Interpolation of N points
To interpolate N points perfectly with a single polynomial, we need a 
polynomial of degree N-1



Cubic Interpolation: Evaluating Derivatives



Specifying the Poly via Tangent Constraints

• Instead of specifying 4 control points, we could specify 2 points and 2 
derivatives.



Specifying the Poly via Tangent Constraints

• Instead of specifying 4 control points, we could specify 3 points and a 
derivative. 

• Replace the 4th pair of equations with



Degree-N Poly Interpolation: Major Drawback
To interpolate N points perfectly with a single polynomial, we need a 
polynomial of degree N-1

Major drawback: it is a global interpolation scheme

i.e. moving one control point changes the interpolation of all points, 
often in unexpected, unintuitive and undesirable ways
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Bézier Curves

Properties: 
• Polynomial curves defined via endpoints and derivative constraints 
• Derivative constraints defined implicitly through extra control points 

(that are not interpolated) 
• They are approximating curves, not interpolating curves 



Bézier Curves: Main Idea

Polynomial and its derivatives expressed as a cascade of linear 
interpolations 

Example: a double cascade 

Q: Where have we seen such a cascade before?



Bézier Curves: Control Polygon

A Bézier curve is completely determined by its control polygon 

We manipulate the curve by manipulating its polygon 

Example: a double cascade 



Expressing the Bézier Curve as a Polynomial



Derivatives of the Bézier Curve



Bézier Curves: Endpoints and Tangent Constraints

General Behaviour 
• 1st and 3rd control points 

define the endpoints. 
• 2nd control point defines 

the tangent vector at 
the endpoints.



Bézier Curves: Generalization to N+1 points

Example for 4 
control points and 3 
cascades

Expression in compact form:

Where:

Curve defined by N linear interpolation 
cascades (De Casteljau's algorithm):



Bézier Curves: A Different Perspective

• Each curve point c(t) is 
a “blend” of the 4 
control points. 

• The blend coefficients 
depend on t 

• They are Bernstein 
polynomials

Expression in compact form:

Where:



Bézier Curves as “blends” of the Control Points

• Each curve point c(t) is a “blend” of the 4 control points. 
• The blend coefficients depend on t 
• They are Bernstein polynomials

Expression in compact form:



Bézier Curves: Useful Properties
Expression in compact form:

Where:

1. Affine Invariance 
• Transforming a Bézier curve by an affine 

transform T is equivalent to transforming its 
control points by T 

2. Diminishing Variation 
• No line will intersect the curve at more points 

than the control polygon 
• curve cannot exhibit “excessive fluctuations” 

3. Linear Precision 
• If control poly approximates a line, so will the 

curve



Bézier Curves: Useful Properties
Expression in compact form:

Where:

4. Tangents at endpoints are along the 
1st and last edges of control polygon:



Bézier Curves: Pros and Cons
Expression in compact form:

Where:

Advantages: 
• Intuitive control for N ≤ 3 
• Derivatives easy to compute 
• Nice properties (affine invariance, 

diminishing variation) 

Disadvantages: 
• Scheme is still global (curve is 

function of all control points)
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Cubic Cardinal Splines: Defining 1st Segment
• Approach:  

1. A user only specifies points p0, p1, … 
2. Tangent at pi set to be parallel to vector connecting pi-1 and pi+1 



Cubic Cardinal Splines: Defining 2nd Segment
• Approach:  

1. A user only specifies points p0, p1, … 
2. Tangent at pi set to be parallel to vector connecting pi-1 and pi+1 

Example: Adding a fifth point adds a new segment



Cubic Cardinal Splines: General Case
• Approach:  

1. A user only specifies points p0, p1, … 
2. Tangent at pi set to be parallel to vector connecting pi-1 and pi+1 



Cubic Cardinal Splines: The Strain Parameter
• Approach:  

1. A user only specifies points p0, p1, … 
2. Tangent at pi set to be parallel to vector connecting pi-1 and pi+1 

Tangent at



Catmull-Rom Splines
• Approach:  

1. A user only specifies points p0, p1, … 
2. Tangent at pi set to be parallel to vector connecting pi-1 and pi+1 

Tangent at

Note: If k = 0.5, 
the spline is 
called a 
Catmull-Rom 
Spline

length of tangent = 1/2 distance 
between p0 and p2



Specifying the Poly via Tangent Constraints

• Instead of specifying 4 control points, we could specify 2 points and 2 
derivatives



Cardinal Splines: Solving for the Segment Coeffs

for t = 0

+ 2 more equations for other endpoint (t = 1)



Cubic Cardinal Spline Segment vs Bézier Curve

The two curves are actually equivalent: 
 given a cardinal spline, we can compute the control polygon of the 

equivalent Bézier curve



Cubic Cardinal Spline Segment vs Bézier Curve

In order to have c(t) = r(t) for all t, it must be: 
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