Topic 12: Interpolating Curves

Intro to curve interpolation & approximation
Polynomial interpolation

Bézier curves

Cardinal splines



What are Splines”

Numeric function that is piecewise-defined by polynomial functions
Possesses a high degree of smoothness where pieces connect
These are intuitively called “knots”

O control point

® knot
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History

 Used by engineers in ship building and airplane design before computers were around

 Used to create smoothly varying r
curves

 Variations in curve achieved by the
use of weights (like control points)




Applications

e Specity smooth camera path in scene along spline curve
* Rollercoaster tracks
* Curved smooth bodies and shells (planes, boats, etc)



Motivation and Goal

 Expand the capabilities of shapes beyond lines and conics, simple
analytic functions and to allow design constraints.



Design issues

* C(Create curves that can have constraints specified

 Have natural and intuitive interaction

* Controllable smoothness

e (Control (local vs global)

* Analytic derivatives that are easy to compute

 Compactly represented

 QOther geometric properties (planarity, tangent/curvature control)



Interpolation

* Interpolating splines: pass through all the data points (control points).
Example: Hermite splines
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Approximation

 (Curve approximates but does not go through all of the control points.
« (Comes close to them.

il

—



Extrapolation

 Extend the curve beyond the domain of the control points



Local properties

e Continuity

 Position at a specitic place on the curve
* Direction at a specitic place on the curve
e Curvature



Global properties

 (Closed or open curve
e Self intersection
* Length



Local vs Global Control

* Local control changes curve only locally while maintaining some
constraints
 Moditying point on curve aftects local part of curve or entire curve



Parametric and Geometric Continuity

* When piecing together smooth curves, consider the degrees of
smoothness at the joints.

 Parametric Continuity: differentiability of the parametric representation (CO,
C1, C2 ..)

 Geometric Continuity: smoothness of the resulting displayed shape
(GO=CO, Gl=tangent-cont., G2=curvature-cont. )



2D Curve Design: General Problem Statement

 Given N control points, Pi, i =0...n-1,te [0, 1] (by convention)
* Define a curve c(t) that interpolates / approximates them
 (Compute its derivatives (and tangents, normals etc)
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Linear Interpolation

* The simplest possible interpolation technique
 Create a piecewise linear curve that connects the control points

./

 Q: What is the disadvantage of such a technique?



Linear Interpolation

* The simplest possible interpolation technique
 Create a piecewise linear curve that connects the control points
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 Q: What is the disadvantage of such a technique?

 A: The curves may be continuous but its derivatives are not...




Linear Interpolation

* The simplest possible interpolation technique
 C(reate a piecewise linear curve that connects the control points
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 Q: What is the disadvantage of such a technique?

 A: The curves may be continuous but its derivatives are not...




Cnh continuity

Definition: a function is called Cn if it’'s nth order derivative is continuous
everywhere
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Linear Interpolation

* The simplest possible interpolation technique

 C(reate a piecewise linear curve that connects the control points

dy
dt

[

/o\lgcow\'i»\mlrj_

b

Q: What is the disadvantage of such a technique?
Curve has only CO continuity
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2D Curve Design: General Problem Statement

 @Given N control points, P;, i = 0...n-1,t € [0, 1] (by convention)
 Define a curve c(t) that interpolates / approximates them
 Compute its derivatives (and tangents, normals etc)

 We will seek functions that are at least C’




Polynomial Interpolation

 @Given N control points, P;, i = 0...n-1,t € [0, 1] (by convention)
e Define (N-1)-order polynomial x(t), y(t) such that x(i/(N-1) = x; y(i/(N-1) = y;
fori=0, ..., N-1
 Compute its derivatives (and tangents, normals etc)
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Cubic Interpolation

* Given 4 control points, Pi, i = (x;, yi), fori=0, ..., 3
* Define 3rd-order polynomial x(t), y(t) such that x(i/3) = xi, y(i/3) =i
 Compute its derivatives (and tangents, normals etc)
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Cubic Interpolation: Basic Equations

X(®) = Qo + At 4 Oat® +out’ } Yuew P75, P 7
Y = oo + bt + bot® + bat”

cowpute A, b

Equations for one control point: Fquations in matrix form:
3
X, = Qo+ O3+ oz (§)" + az(3)
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Cubic Interpolation: Computing Coeffs

X(4) = Qo+ At 4 Oat® +oat’ } e Py, B R

Y = oo + bt + ot + b3t
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Cubic Interpolation: Computing Coeffs

XC'E) = Qo + QL % Qz'tz.‘f‘a'z,":g } —6“’&“’ EIFZ)P:,E
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Cubic Interpolation: Computing Coeffs

(%) = Qo+ Ak ¢ O2t” +oiat’ } Yuew Pi,B,, P 7
Y = oo + bt + ot + b3t

cowpute A, b

Coefficients of interpolating polynomial computed by:
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Cubic Interpolation: Evaluating the Polynomial

XC{') = Qo + Ot # QZ{:L'{"Q%"ZQ } —6“&’\' EIFZ)P:,E
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Cubic Interpolation: What if < 4 Control Points”?

P"IFZ)P:,E!
Y = oo + bt + ot + b3t

X(®) = Qo+ auk 4 Ot +0ts IGven Py
Cowpute Qg
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Cubic Interpolation: What if > 4 Control Points”?

XC{') = Qo + Qt'\i £ Qz'tl'f‘ag'l:g } —6“&’" E:Fz)ﬂ,za
Y = oo + bt + bot® + bat”

cowpute A, b
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Exact Interpolation of N points

To interpolate N points perfectly with a single polynomial, we need a
polynomial of degree N-1

—_— —

1\ [ b NxN) Wmakrix [ xv yy ]
c‘«‘i% e | Qo b2 _ # Covatvounts = X1 Y1
M oz ba | Z Unknovon X3 ‘j'z
l b= Y
Qq IO‘\ A ol A Yy -
- # CowTro
—E(O> = CC’)
N B T
|’>o ECx(i-),j(x)) 721

v



Cubic Interpolation: Evaluating Derivatives

XC&) = Qo+ it 4 Qz‘tl"‘agfg
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Specitying the Poly via Tangent Constraints

* Instead of specifying 4 control points, we could specity 2 points and 2
derivatives.
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Specitying the Poly via Tangent Constraints

* Instead of specifying 4 control points, we could specity 3 points and a
derivative.
* Replace the 4™ pair of equations with
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Degree-N Poly Interpolation: Major Drawback

To interpolate N points perfectly with a single polynomial, we need a
polynomial of degree N-1

Major drawback: it is a global interpolation scheme

l.e. moving one control point changes the interpolation of all points,
often in unexpected, unintuitive and undesirable ways
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Degree-N

Poly Interpolation: Major

Drawback

To interpolate N points perfectly with a single polynomial, we need a
polynomial of degree N-1

Major drawback: it is a global interpolation scheme

l.e. moving one control point changes the interpolation of all points,

often in unexpected, unintuitive and undesirable ways




Topic 12: Interpolating Curves

* |ntro to curve interpolation & approximation
* Polynomial interpolation

Bézier curves
e Cardinal splines



Bézier Curves

Properties:

* Polynomial curves defined via endpoints and derivative constraints

e Derivative constraints defined implicitly through extra control points
(that are not interpolated)

* They are approximating curves, not interpolating curves
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Bézier Curves: Main ldea

Polynomial and its derivatives expressed as a cascade of linear
interpolations

Example: a double cascade
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Q: Where have we seen such a cascade before?



Bézier Curves: Control Polygon

A Bézier curve is completely determined by its control polygon

We manipulate the curve by manipulating its polygon

Example: a double cascade
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—xpressing the Bézier Curve as a Polynomial
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Derivatives of the Bézier Curve
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Bézier Curves: Endpoints and Tangent Constraints
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Bézier Curves: Generalization to N+1 points
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Bézier Curves: A Different Perspective

Expression in compact form:
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* Each curve point c(t) is
a “blend” of the 4
control points.

* The blend coefficients
depend on t

* They are Bernstein
polynomials



Bézier Curves as “blends” of the Control Points

Expression in compact form:
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Bézier Curves: Useful Properties

Expression in compact form: : Cf,";k;‘if‘:\ S%’jg“;:;"l N
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Bézier Curves: Useful Properties

Expression in compact form:

() = ZP @ )

b:.o

Where:

4. Tangents at endpoints are along the
1st and last edges of control polygon:
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Bézier Curves: Pros and Cons

Expression in compact form:

) = 2 PRI

Lz o

Advantages:
* Intuitive control for N < 3
* Derivatives easy to compute

* Nice properties (affine invariance,
diminishing variation)

Disadvantages:

 Scheme is still global (curve is
function of all control points)
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Topic 12: Interpolating Curves

* |ntro to curve interpolation & approximation
* Polynomial interpolation
 Beézier curves

Cardinal splines



Cubic Cardinal Splines: Detining 1st Segment

* Approach:
1. A user only specifies points po, p1, ...
2. Tangent at pi set to be parallel to vector connecting pi-1 and Pi+1
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Cubic Cardinal Splines: Defining 2nd Segment

* Approach:
1. A user only specifies points po, p1, ...
2. Tangent at pi set to be parallel to vector connecting pi-1 and Pi+1

Example: Adding a fifth point adds a new segment
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Cubic Cardinal Splines: General Case

* Approach:
1. A user only specifies points po, p1, ...
2. Tangent at pi set to be parallel to vector connecting pi-1 and Pi+1
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Cubic Cardinal Splines: The Strain Parameter

* Approach:
1. A user only specifies points po, p1, ...
2. Tangent at pi set to be parallel to vector connecting pi-1 and Pi+1
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Catmull-Rom Splines

* Approach:
1. A user only specifies points po, p1, ...
2. Tangent at pi set to be parallel to vector connecting pi-1 and Pi+1
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Specitying the Poly via Tangent Constraints

* Instead of specifying 4 control points, we could specity 2 points and 2

derivatives
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Cardinal Splines: Solving for the Segment Coeffs
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Cubic Cardinal Spline Segment vs Bezier Curve

The two curves are actually equivalent:

given a cardinal spline, we can compute the control polygon of the
equivalent Bézier curve
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Cubic Cardinal Spline Segment vs Bezier Curve

In order to have c(t) = r(t) for all t, it must be:
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Cubic Cardinal Spline Segment vs Bézier Curve

In order to have c(t) = r(t) for all t, it must be:

— —

q° :—ﬁi d Q”\z'ﬂ'ﬂ

— k= . . —
c‘1 3(P{1|“Pc_13+ Pc / C12_:' P = ﬁ(ﬁ*l— F\‘>

L+ K3
G)\rc:\\va\ g?\\\'\e Sejm%+ %—U‘ QA(\I\Q
Control \wl' ?OSx\(‘\QV‘g '—" a
O R et ! J
Q ?\ Rézier cunve ~Ct)
?"AE:
Fe .: Py : ’CTg
— 7 T 51-:, passes througe g7 \%
17::—1 Pf.,z ""0\'\3(#\*5 Qe 3@!"“—0)

'3@-3 ﬁ,,)



