Topic 11: More ray tracing

|deal specular or mirror reflection

Key characteristic of a mirror:

If looking from direction d to a
spot on the reflecting surface, the
viewer sees the same image as if
looking from the surface point in
direction 7.

Hence, we need to calculate the
reflection vector:

.

#=d—2(d- i)

Then we shoot a ray in that
direction.

|deal specular or mirror reflection

We know this from Phong
reflection with light vector [:

7= —1+2(- i)

But be careful with the direction
of d when calculating the
reflection vector for mirroring:

.

7=d—2(d-)i

Also: we need to include a max.
recursion depth to avoid “infinite
bouncing” of rays.

A = cos 07| ||d]| = —d -

.

n

Refraction

Light traveling from one
transparent medium into
another one is refracted.

To consider this in ray
tracing, we need to know
the refraction angles.

No reflection

Single reflection

Double reflection

Components

local illumination reflection refraction

=
PN

PN

A _
- Y

Snell’s law

According to Snell’'s law, the
angles before and after
refraction are related as
follows:

nsinf = ngsin ¢

where n and n; are the
refractive indices of the source
and target media, respectively,
and @ and ¢ the angles
indicated in the image.

Ql

S A

..................

Getting rid of sines

An equation that relates sines

of the angles € and ¢ is not as
convenient as an equation that
relates the cosines of the
angles.

Ql

< .
i ,

Fortunately, we can eliminate
the sines using the
trigonometric identity:

..................

2 2

sin“a +cos“a =1

Getting rid of sines

Trigonometric identity: sin?a + cos?a =1

~ sina =1-cos?a (i)

Snell's law: nsinf = ng sin ¢
~ sin¢g = ;> sinf

~ sin? ¢ = 2?%sin?6 (i)

(i) with a = ¢ in (ii) gives us:
cos’p =1— 22sin*0 (i)

(i) with a = @ in (iii) gives us:

cos’p=1— o 2(1 — cos? 0)

Getting rid of sines

Hence, we can rewrite Snell's
law

Q.l

nsinf = ng sin ¢

S A
=

with cosines instead of sines

..................

n?(1 — cos? 0)

2
U

cos’p=1—

Constructing an orthonormal basis

How do we find the refracted vector
£?

First, notice that ¢ lies in the plane
spanned by d and 7.

If the incoming vector d and the

normal 7 are normalized,

we can express £ in an orthonormal
basis in this plane using an
appropriate vector b.

Finding the refraction vector

The refraction vector £ is a linear
combination of b and —n:

t = a:t5+ yi(—n)

| d
From the image we see that ‘
xy = sin ¢ and y; = cos ¢ (Oy N ,
N t i P
Hence, we have R
t =bsin¢g — ncos ¢ b

Likewise, we get

g

d = bsin 0 — 7i cos 0

Finding the refraction vector

The refraction vector £ is a linear
combination of b and —n:

= xt5+ ye(—n)

From the image we see that o
ry = sin ¢ and y; = cos ¢ :

Hence, we have

t = gsincb—ﬁcosqﬁ b
Likewise, we get

—o

d = bsin 0 — 7 cos 0

Finding the refraction vector

We have

t =

—

d =

5sin¢— 1 COS @

bsin @ — nicos @

So we can solve for b:

l_; _ d+7i cos 6

sin 6
and for ¢:
- sm:f)(gi-zr;cosO) - ’ﬁCOS¢
. n(dtiicosf) i cos ¢

Tt

ur nt

n(d—ii(d-ii)) ﬁ’\/l _ n2(1—(éf-ii)2)

-

..................

Copying and transforming objects

Instancing is an elegant
technique to place various O <@ —

transformed copies of an
object in a scene.

| . > /0
Expl.: circle — elipse

yA A /Mgo
M0

2. rotate 3. move

Copying and transforming objects

Instancing is an elegant

. . & circle
technique to place various C‘%

: ellipse

transformed copies of an o Um,o,,'f,,y
. - translating, led le)
object in a scene. scaling scaled circle)

* All 0 scaling, rotating,

translating

Expl.: circle — elipse

yA A /Mgo
GG
X
&

1. scale

g

2. rotate 3. move

Copying and transforming objects

Instead of making actual 0

copies, we simply store a
reference to a base object,

together with a transformation i /0

matrix.

That can save us lots of) M,0
Ms0

storage.

Hmm, but how do we compute

the intersection of a ray with a \
randomly rotated elipse? M,0

Ray-instance intersection

Assume an object O that is used
to create an object MO via
Instancing.

Ray-instance intersection

Now, we want to create the <.,
intersection of MO with the ray

7(t), which in turn is defined by

the line

—

[(t) = &+td. ;i

Ray-instance intersection

Fortunately, such

complicated intersection tests
(e.g. ray/ellipsoid) can often be
replaced by much simpler tests

(e.g. ray/sphere).

Ray-instance intersection

To determine the intersections p;
of a ray 7 with the instance MO,
we first compute the intersections
Z;é of the inverse transformed ray
M ~17 and the original object O.

Ray-instance intersection

The points p; are then simply
Mp) or I(t;)

because the linear transformation

preserves relative distances along
the line.

Ray-instance intersection

Two pitfalls:

@ The direction vector of the
ray should not be normalized

@ Surface normals transform

differently!

— use (M 1) instead of M

for normals
‘e

Transforming normal vectors

Unfortunately, normal vectors are not
always transformed properly.

E.g. look at shearing, where tangent
vectors are correctly transformed but
normal vectors not.

To transform a normal vector 12
correctly under a given linear
transformation A, we have to apply

the matrix (A~1)1. Why?

normal vector n

tangent vector 7

A

Transforming normal vectors

We know that tangent vectors are tranformed correctly: At = t 4.

But this is not necessarily true for normal vectors: An # n4.

Goal: find matrix N4 that transforms 7 correctly, i.e. Nan = nn
where ny is the correct normal vector of the transformed surface.

Because our original normal vector 7! is perpendicular to the

original tangent vector £, we know that:
il't = 0.

This is the same as
alIt =0

which is i1s the same as
al A=1At =0

Transforming normal vectors

Because At = t 4 is our correctly transformed tangent vector,
we have

Al A= 4 =0

Because their scaler product is 0, 77 A~! must be orthogonal to it.

So, the vector we are looking for must be
ﬁﬁ =nl AL

Because of how matrix multiplication is defined,
this is a transposed vector. But we can rewrite this to

nN = (’ﬁTA—l)T.
And if you remember that (AB)? = BT AT, we get
nN = (A_I)Tﬁ

Constructive solid geometry

)
To model our scenes in ray

tracung., we can basically use union CUS
any object that allows us to

calculate its intersection with a

3D line. é S —-C
difference

Using Constructive Solid or exclusion

Geometry (CSG), we can build O O3S

complex objects from simple
ones with set operations.

intersection D NS

Intersection and CSG

Instead of actually g
constructing the objects, we 7/
can calculate ray-object C
intersections with the original

objects and perform set C

operations on the resulting

Intervals. S
C-S

Intersection and CSG

For every base object, we g
maintain an interval (or set of [/
intervals) representing the part C
of the ray inside the object.

The intervals for combined
objects are computed with the S

same set operations that are

applied to the base objects.

The borders of the resulting
Intervals are our intersection

points.

The bottleneck In ray tracing

As said before: ray tracing is
generally SLOW.

It is estimated that 75% to
95% of the time in ray/tracing
is spent on ray/object
intersections [Chang, 2001].

Hence, there are many
approaches to increase
calculation speed by reducing
the number of necessary
intersection tests.

Spatial data structures

Applied for
@ ray tracing
e culling

@ collision detection

Spatial data structures

We distinguish between

@ object partitioning
schemes

@ space partitioning
schemes

Ray Tracing Improvements:
Bounding boxes

A common technique to
improve ray/object intersection

query times is the use of

bounding boxes. %

Bounding boxes

A common technique to
improve ray/object intersection
query times is the use of
bounding boxes.

Bounding boxes

A common technique to
improve ray/object intersection
query times is the use of
bounding boxes.

° I:):o = (min{z;}, min{y; })
® by = (max{z;}, max{y;})

Bounding boxes

Note: We don’'t need the
actual intersection point but
just a yes or no answer to the
Intersection test.

How can we compute this
easily?

Bounding boxes

First, we calculate the intersection of the
ray 7~ with the lines defined by the
borders of the bounding box.

For example for the left border, we have
r(t) = (%) + (xd) and = Tnin
Ye Yd

which gives us

Te + t:z:mmxd = Tmin

txmin = (xmin _ xe)/xd

Bounding boxes

Likewise, we get the following values for
the other borders of the bounding box:

max

b min = (xmin - we)/md
temee = (Tmaz — Te)/Td
tymin = (Ymin — Ye)/Yd
bymaz = (Ymaz — Ye)/Yd

yH)(lI

Notice that for simplicity we are
assuming positive values for x4 and yq4
here. The other cases are symmetrical
(exercise!).

Bounding boxes

How does this help us in answering the
question?

Hint: look at the intervals

[txmin’ tmmam] and [tymin) tymaa:]

Notice that for simplicity we are
assuming positive values for xq and yq
here. The other cases are symmetrical
(exercise!).

Bounding boxes

By looking at the intervals

[txmin ’ txma.:z:] and
[tymin) tyma:x:]

we see that the ray misses
the box if and only if they
don't overlap, i.e. if

tmmin > t
or

yma:z:

tymin > txma:r

Shadow feelers

Shadows can be implemented
fairly easy by so called shadow
feelers / rays.

@ Shoot a shadow ray p + tl
from a point p
towards a light source .

e If ray hits an object,
p is in the shadow.
Otherwise it's not.

Because of potential precision
issues, we often look at point

o

D el instead of P.

Antialiasing - Supersampling

jaggies w/ antialiasing

point light

area light

Antialiasing - Supersampling

Antialiasing - Supersampling

Antialiasing - Supersampling

Antialiasing - Supersampling

How many rays do you need?

1 ray/light 10 ray/light 20 ray/light 50 ray/light

Images taken from http://web.cs.wpi.edu/~matt/courses/cs563/talks/dist_ray/dist.html

Ray Tracing Improvements:
Image Quality

Backwards ray tracing

e Trace from the light to the surfaces and then from
the eye to the surfaces

e “shower” scene with light and then collect it

* “Where does light go?” vs “Where does light come
from?”

e Good for caustics
e Transport E-S—-S—-S-D-S-S-S-L

Ray tracing improvements: caustics

Ray Tracing Improvements:
Image Quality

Cone tracing

e Models some dispersion effects
Distributed Ray Tracing

e Super sample each ray

e Blurred reflections, refractions
e Soft shadows

e Depth of field

e Motion blur
Stochastic Ray Tracing

