Today’s Topics

11. Texture mapping
12. Introduction to ray tracing



Topic 11:

Texture Mapping

e Motivation
e Sources of texture
e Texture coordinates

e {Bump, MIP, displacement, environmental}
mapping



Motivation

* Addinglots of detail to our models to realistically depict skin,
grass, bark, stone, etc., would increase rendering times

dramatically, even for hardware-supported projective
methods.
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Motivation

* Addinglots of detail to our models to realistically depict skin,
grass, bark, stone, etc., would increase rendering times

dramatically, even for hardware-supported projective
methods.




Motivation

Basic idea of texture mapping:

Instead of calculating color,
shade, light, etc. for each pixel
we just paste images to our
objects in order to create the
illusion of realism

Different approaches exist
(e.g. tiling; cf. previous slide)




Motivation

In general, we distinguish between
2D and 3D texture mapping:

2D mapping (aka image textures):

paste an image onto the object

3D mapping (aka solid or volume
textures): create a 3D texture
and "carve’ the object

3D Object

2D
mapping mapping

2D texture «+—— 3D texture






Topic 11:

Texture Mapping

e Sources of texture
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Proced \;Lro&&j 5 d&g:w\ od  textures

It is called
procedural because
we compute the
colorvalues for a
point p&R3 with a .
procedure. | uK
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Topic 11:

Texture Mapping

e Texture coordinates



Texture coordinates

How do we map a rectangular image onto a sphere?




Texture coordinates

Example: use world map and sphere to create a globe

Per conventions we usually assume u,v € [0, 1].



Texture coordinates

We have seen the parametric equation of a sphere
with radius r and center c:

r = Z.+rcos¢sinb
Yy = Y+ rsingsinfd
zZ = Z.+rcosl

Given a point (z,y, z) on the surface of the sphere,
we can find 6 and ¢ by

6 = arccos**  (cf. longitude)
— Y—Yc -
¢ = arctan ;=2 (cf. latitude)

(Note: arccos is the inverse of cos, arctan is the inverse of tan = %)



Texture coordinates

For a point (z,y, 2) we have

§ = arccos %ﬁ
¢ = arctan =%

IE—IEC

(0,9¢) € [0,7] X [-m, x|, and
u, v must range from [0, 1].

Hence, we get:

¢ mod 27
v = 27
-0 §) <>
vo= T
(Note that this is a simple scaling ¢

transformation in 2D)




Texture coordinates

Example: “Tiling” of 2D textures into a UV -object space

V
A 2D object space (pixels)

2~

2D texture array (texels)

n, coIorM) 1- ____,/'

€«

We'll call the two dimensions to be mapped = and v,
and assume an 7, X n, image as texture.

Then every (u,v) needs to be mapped to a color in the image,
I.e. we need a mapping from pixels to texels.



Texture coordinates

V
A 2D object space (pixels
2D texture array (texels) o Ject space (pixels)
2
’\
W>
0.25 ..................... ./)E
n, color(m 1 —— et <
0.2 0.2 02 0.2
0 H
Ny 0 1 2 3

A standard way is to first
remove the integer portion of u and v,

so that (u,v) lies in the unit square.




Texture coordinates

Vv
A 2D object space (pixels
2D texture array (texels) . ) pace (pixels)
2
\
\
................................. Juv >
n, color(“] L 4___)7/) p
0.2 0.2 0-22 0.2 §]
0 : >
n, 0 : 2 3

This results in a simple mapping from 0 < u,v <1 to the size of
the texture array, i.e. ng X ny.

i = ung and J = vny

Yet, for the array lookup, we need integer values.



Texture coordinates

Vv
A 2D object space (pixels
2D texture array (texels) . ject space (pixels)
2
\
'\
(u,v) >
Ny 1 s 4_______.;7/)//
color(. )"O( /
: U
0 0.2 0.2 02 0.2 )
n, 0 . 5 :

The texel (¢, 7) in the ng; X n, image for (u,v) can be determined
using the floor function |x| which returns the highest integer value
< z.

i = |ung]| and j = [vny|



Texture coordinates

c(u,v) = c;; with i = |ung| and j = |vny|

This is a version of nearest-neighbor interpolation, where we take
the color of the nearest neighbor.

Floor function Nearest neighbor mapping

Cijer

i Cit1j



Texture coordinates

For smoother effects we may use bilinear interpolation:

c(u,v) =
(I—u")(1=v")eij+u' (1-0") e 1)+ (1—u")v ¢ 40) Hu' vV e i1y (1)

with

Bilinear interpolation
* v = ung — |ung| and

Cij | € et 41

v =wvny, — [vny]

Notice that all weights are between 0
and 1 and add up to 1:

' (1—-u)1—=2")+4(1-2")+

u’ 1w 1 (1-— u,)’v, +u'v' =1




Topic 11:

Texture Mapping

e {Bump, MIP, displacement, environmental}
mapping



Mipmapping

e If viewer is close:
texture object Object gets larger
(texels in bitmap) (pixels on screen) .
— Magnify texture

@ “Perfect” distance:
Not always “perfect” match
(misalignment, etc.)

R
magnification

o |f viewer is further away:
Object gets smaller
— Minify texture

Problem with minification:
efficiency (esp. when whole

—_ texture is mapped onto one pixel!)
minification




Mipmapping

aliasing




Mipmapping

Solutions: MIP maps

@ Pre-calculated, optimized
collections of images based
on the original texture

@ Dynamically chosen based on
depth of object (relative to
viewer)

@ Supported by todays
hardware and APls




Mipmapping

(00—
900"
5007 — B

6007 — i

¢00 ——

64 x 64

128 x 128



Environment mapping

. why not use this to make objects
appear to reflect their surroundings
specularly?

Idea: place a cube around the object,
and project the environment of the
object onto the planes of the cube in
a preprocessing stage; this is our
texture map.

During rendering, we compute a
reflection vector, and use that to
look-up texture values from the cubic
texture map.



Environment mapping




Environment mapping

Skybox

groeen by
Reflected @ROEINEIENEW

Ray L T ——

Normal

Remember Phong shading: “perfect” reflection if

angle between eye vector € and 77 = angle between 7i and reflection vector 7



Environment mapping

Image from slides by



Bump mapping

One of the reasons why we apply

. Real Bump Fake Bump
texture mapping:

Real surfaces are hardly flat but

often rough and bumpy. These
bumps cause (slightly) different

REREREEARE n

ALty

1L LN



Bump mapping

Instead of mapping an image or noise
onto an object, we can also apply a
bump map, which is a 2D or 3D
array of vectors. These vectors are
added to the normals at the points
for which we do shading calculations.

VI TS

The effect of bump mapping is an
apparent change of the geometry of
the object.



Bump mapping

Major problems with bump mapping: silhouettes and shadows




\)\)Q can use *Qx\'uws ‘\-\/\odr P@‘{‘W‘b Normols hstead

of colors ov reQleckonces

2D Image Bump Mapping Using a 24-bit Bitmap



Displacement mapping

To overcome this shortcoming, we
can use a displacement map. This is
also a 2D or 3D array of vectors, but
here the points to be shaded are
actually displaced.

Normally, the objects are refined
using the displacement map, giving
an increase in storage requirements.




Displacement mapping




Topic 12:

Basic Ray Tracing

e Introductionto ray tracing e Computing normals
e Computing rays e Evaluating shading model
e Computingintersections e Spawning rays
e ray-triangle e [ncorporating transmission
e ray-polygon e refraction
e ray-quadric e ray-spawning & refraction

e the scene signature
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Projective methods

A popular method for
generating images from a
3D-model is projection, e.g.:

@ 3D triangles project
to 2D triangles

@ Project vertices
e Fill/shade 2D triangle
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Notice:
Ray tracing = pixel-based,
proj. methods = object-based



Ray tracing / ray casting

For photo-realistic rendering,
usually ray tracing algorithms
are used: for every pixel

@ Compute ray from
viewpoint through pixel
center

@ Determine intersection

point with first object hit /
by ray

e Calculate shading for the
pixel (possibly with
recursion)

\J
SNEENEEEENEN
NNEENENNENAS,
SNENNENEENED
SNNSNENNENEN
NNNNNENNENAN




Ray tracing / ray casting

@ Global lllumination

slow

e Traditionally (very)

@ Recent developments:

real-time ray tracing



Ray tracing / ray casting

Why ray tracing is important
(even if you are just interested
in real-time rendering):

@ Recent developments:
real-time ray tracing, path
tracing, etc.

@ Important in games for
interaction

@ Important computer
graphics technique (also:
shares many techniques
with other approaches)

[ IS L]
HNANNENENNEN




Ray tracing




Ray tracing




Ray tracing




Ray tracing




Ray tracing




Projective methods vs. ray tracing

Projective methods & Ray tracing

.. share lots of techniques,
e.g., shading models,
calculation of intersections, etc.

.. but also have major differences,
e.g., projection and hidden
surface removal come “for free"
in ray tracing

I INNEEEEN
SERNENEEEE|
TTTINT ]

And most importantly ...




Projective methods vs. ray tracing

Projective methods:

Object-order rendering, i.e.
@ For each object ...

@ ...find and update all pixels that it
influences and draw them accordingly

Ray tracing:
Image-order rendering, i.e.

@ For each pixel ...

@ ...find all objects that influence it
and update it accordingly




A basic ray tracing algorithm

FOR each pixel DO

@ compute viewing ray

@ find the 1st object hit
by the ray
and its surface normal 7

@ set pixel color to value ‘////

computed from hit point,
light, and 7

SANUNNNNNEEEN




Lines and rays

We need to “shoot” a ray
@ from the view point €

@ through a pixel §
on the screen

@ towards the scene/objects

Hmm, that should be easy with ...

T



Lines and rays

...a parametric line equation:
ZOREENICE
where

@ ¢ is a point on the line
(aka its support vector)

@ §— €'is a vector on the line
(aka its direction vector)

IaEEND



Lines and rays

With this, our ray ...
@ starts at € (¢t = 0),

@ goes throught s (¢t = 1),

@ and “shoots” towards the
scene/objects (t > 1)

Hmm, calculation would become much
easier if we would have . ..



Coordinate system

...a camera coordinate system:
That's easy! Using

@ our camera position €

@ our viewing direction —w

@ and a view up vector ¢

we get
@ U= —wWXt
@ U=—wWX1u

1T



Coordinate system

...a camera coordinate system:
That's easy! Using

@ our camera position €

@ our viewing direction —w

@ and a view up vector t

we get
@ u=—wxt
@ U=—-wWX1U

T



Coordinate system

...a camera coordinate system:
That's easy! Using

@ our camera position €

@ our viewing direction —w

@ and a view up vector ¢

we get
@ U=—wXxt
@ i=—wX1u

T



Coordinate system

Notice that we chose —w as viewing
direction and not w, in order to get a
right handed coordinate system.

TATT1d



Coordinate system

Normalizing, i.e.

@ 1w/
o uf|

o v/

ol

-

d

—

vl

gives us our coordinate system.
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Viewing window

With this new coordinate system we can
easily define our viewing window:

@ left side: u =1
@ right side: u=r
@ top: v=t

@ bottom: v=0>

Plus the viewing plane at a distance d
from the eye/camera:

@ distance: —w =d




Viewing window

Assuming our window has n, x n,
pixels, expressing a pixel position (%, 7)
on the viewing window in our new
coordinate system (u,v) can be done
with a simple window transformation
from ngy x ny, to (r—1) x (t — b):

u=1+(r—10)(0+0.5)/n,
v=>b+(t—b)(j+0.5)/n,



Viewing window

Example for u: Transformation from

[ = —500, r = 500 to n, = 100

o o r-1=1000 .
/=1 “u=-250 g ==00
-500 '
(r-1) (i+0.5)
u=|
nX
iz S
o .
n =100
Note: we add +0.5 to i because ®
we are dealing with pixel centers.




Viewing rays

For perspective views, viewing rays
@ have the same origin €
@ but different direction
If d denotes the origin’s distance to the

plane, and u, v are calculated as before,
we can write the direction as

@ uu + vv — dw.

Our viewing ray becomes

@ pla) = e+ a(utd + vv — dw)



Viewing rays

For orthographic views, viewing rays
@ have the same direction —uj
@ but different origin

We get the origin with the previously
introduced mapping from (4, 5) to (u,v):

u=1+(r—10)(0+0.5)/n,
v=>b+(t—0b)(j+0.5)/n,

and can write it as € + wi + vv.
Our viewing ray becomes

@ p(a) =€+ uu + vi — aw



Viewing rays compared

Viewing rays for perspective views
@ p(a) = €+ a(ut + vi — dw)
with
@ support vector €

@ direction vector ui + vv — dw

Viewing rays for orthographic views
@ pla) =€+ ud+ vi— aw
with
@ support vector € + ui + v

@ direction vector —w




A basic ray tracing algorithm

FOR each pixel DO

@ compute viewing ray

@ find the 1st object hit
by the ray
and its surface normal 7

@ set pixel color to value ‘////

computed from hit point,
light, and 7




Ray-object intersection (implicit surface)

In general, the intersection points of
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Spheres

The implicit equation for a sphere
with center ¢ = (z, y., 2c) and
radius R is

(Z—z)® + (Y —ye)? +(2—2:)° —R* =0

or in vector form

F-9)- (F-8~F =0




Intersections between rays and spheres

Intersection points have to fullfil

@ the ray equation
plt) =+ td
@ the sphere equation

(2 —zc)? + (¥ — ye)?
+(z—2)*—R?*=0

Hence, we get
E+td—@)-(€+td—&) — R2=0

which is the same as
(d-d)t*+2d-(€—&)t+(e—&)-(€—&)—R* = 0




Intersections between rays and spheres

(d-d)t*+2d-(€—&)t+(é—2)-(E—8)—R* =0

Is a quadratic equation in , i.e.

A2+ Bt+C =0

that can be solved by

b0 — —B * /B2—4AC
1,2 — 2A

and can have 0, 1, or 2 solutions.



Intersections between rays and planes

Given a ray in parametric form, i.e.
plt) =€+ td

and a plane in its implicit form, i.e.
(P—p1) =0

we can calculate the intersection
point by putting the ray equation
into the plane equation and solving
for t, i.e.




Ray-object intersection (parametric surface)

Given a ray in parametric form, i.e.
plt) =+ td

and a surface in its parametric form,
l.e.

f(u,v)

we can calculate the intersection
point(s) by

€+td = f(u,v)



Ray-object intersection (parametric surface)

Notice that
e+ td = f(u,v)
or

Te + txg = f(u,v)
Ye + tyq = f(u,v)
Ze + tzg = f(u,v)

represents 3 equations
with 3 unknowns (¢, u, v),
l.e. a linear equation system.



Ray-triangle intersection

This comes in very handy for
ray-triangle intersections:

@ We first calculate the
intersection point of the ray
with the plane defined by the

triangle.

@ Then we check if this point is
within the triangle or not.

™}




Plane specification

Recall that the plane V' through the
points @, b, and ¢ can be written as

p(B,7) =@+ B(b— @) + (¢ - a)




Plane specification

Recall that the plane V' through the
points @, b, and ¢ can be written as




Plane specification

Recall that the plane V' through the
points @, b, and ¢ can be written as

p(B,7) = @+ B(b — @) +~(¢—a)

Notice that these are barycentric
coordinates (if the direction vectors
are chosen appropriately)




Ray-plane specification

Again, intersection points must fullfil
the plane and the ray equation.

Hence, we get

E+td=a+ B(b—a)+~(C—a)

That give us ...




Ray-plane specification

... the following three equations

Te+txg = Zo+ B(Tp— Ta) +Y(Tc— Ta)

Ye +1Ya = Ya+BWs—Ya) +7Y¥Ye — Ya)
Ze ttzg = 2o+ ﬁ(zb - za) + ’Y(ZC — Za)

which can be rewritten as

(g — xp) B+ (g — x)y + x4t
(Ya —U)B+ (Yo — Yc)¥ + Yat = Yo — Ye

|
3
Q
3
®

(za — 2b) B+ (2a — 2e)Y + 2dt = 2a— 2e

or as i L i i
To —Tp Ta—Te Tq| [P Lq — Te
Ya —UYb Ya —Yec Yd Y| = | Ya — Ye

(2 — 2b Z2a— 2 Zd| |t | Zq — Ze |




Ray-plane specification

If we write
(L, —Tph Tgq— Te Tq.
Ya —UYb Ya — Yec Yd
| %a — Ab  Ra — Rc Ad_
as

then we see that

+ 2

B

Lqg — Te

Ya — Ye
4P Te
Ya — Ye

| Za — Re

Lqg — Te
Ya — Ye
Za — %e




Rays: parametric representation

We can use t to calculate the
intersection point p(t)

(or B, to calculate p(3,7)).

But first, we can use 3 and 7 to
verify if it is inside of the triangle
or not:

e >0
o v>0
e f+v<1

because we can interpret these as
barycentric coordinates.



A basic ray tracing algorithm

FOR each pixel DO
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ldeal specular or mirror reflection

We know this from Phong
reflection with light vector [:

7= —l+2(" )i

But be careful with the direction
of d when calculating the
reflection vector for mirroring:

—

F=d—2(d-7)

S

Also: we need to include a max. \ = cos 0||ﬁ||||d']| — —d-7
recursion depth to avoid “infinite
bouncing” of rays.



A basic ray tracing algorithm

FOR each pixel DO

@ compute viewing ray
o IF (ray hits an object with t € [0,00)) THEN
e Compute 7
@ Evaluate shading model and set pixel to that color

e ELSE

@ set pixel color to background color




Shading model

Remember our shading model:

¢ = cr(cqg + qgmax(0,n - 1))

o

+cy(h - m)P

with
@ Ambient shading
@ Lambertian shading
@ Phong shading

and Gouraud interpolation.




