2/20/16

Topic 8
Visibility

* Intro visibility

* Object vs Image space algorithms
* Bounding volumes

* Culling

* Clipping

» Z-buffering

e Scan conversion

Visibility

What is not visible?

2/20/16

Visibility

What is not visible?

* Primitives outside of the field of view

* Back-facing primitives

* Primitives occluded by other objects closer to the camera

Why compute visibility?

* General principle: don’t spend cycles drawing what you don’t have to!
* Some things are not visible. Can we getrid of these?

* Efficiency: If it won’t contribute to the final image, avoid unnecessary
computations.

* Realism: Objects occlusions naturally happen in scenes

2/20/16

Why compute visibility
* Example cube in perspective:

* At most three faces will be visible
* Three sides don’t even need to be drawn

iR

il

(Google images)

Why compute visibility

2/20/16

Why compute visibility

Types of algorithms

* Object space
* Occurs at the polygon level in object space

* Do the work on the objects themselves before they are converted to pixels
* Done atthe mathematical/analytical level independent of resolution

* Imagesspace
* Occurs at the pixel level in image space

* Work done when objects are being converted to pixels
* Resolution of the display matters here

* Determine the colour of pixel based on what is visible

2/20/16

Object Space

for each object in scene {

determine which parts of objects are

visible (parts unobstructed by itself or
other objects)

rasterize only those parts

Image Space

for each pixel in image {

determine polygon closest to the viewer at
that pixel location

colour the pixel with the appropriate colour

2/20/16

Efficiency

* Bounding volumes (boxes, spheres)

* Back-face culling
* Coherence (exploit local similarity)

Bounding Volumes

2/20/16

Culling

* Frustum culling
* Culling of triangles outside of the view frustum

* Occlusion culling
* Culling of triangles within the frustum that are occluded by others

* Backface culling
* Culling of triangles facing awayfrom the camera

Backface Culling

* Goal: Remove surfaces that point away from the camera (i.e. the
“backfacing” polygons). Don’t draw these!

* For (most) solid objects, back faces should not be visible = hidden

* Can be done in window coordinates (winding order) or in world
coordinates using face normals.

2/20/16

Back-face Culling

w)Ngramg solid
H G

C

(>4

Backfacing faces on the wireframe model:
ADHE, EHGF, AEFB will not be drawn.

Back-face Culling

So\\d
i? c(m‘IOoe \oaok\: cirg_
patcha ?o.ces Quoay pa

Qrom coamerd = {Z’LL
cotLL D e V4
—'e ——— P

C\AH\“\ Cn Jre,rion:

(1—3—5).3 >0 = oLl

(ﬁ*é)y\éo DO NOT CULL

> Cmaﬂ]QQUISWBLC)

2/20/16

Back-face Culling

* Some limitations:

Visibility Algorithms

* Object-space algorithms:
* Painter’s Algorithm
* Binary Space Partitioning algorithm (BSP) (next week)

* Image-space algorithms:
* Z-buffer
* Scanline

2/20/16

Painter’s algorithm

2 JER

TN
Ei o

Painter’s algorithm

* Limitations: Cycles
* There is no sort order here to allow correct visibility handling
* Workaround: break polygons into smaller parts

10

2/20/16

Clipping

In general, we cannot expect
all triangles to lie within the
view frustum. Triangles that
lie partly outside the view
frustum must be clipped.

We must ...

O verify if a triangle
intersects with a
hyperplane

@ create new triangle(s)

Clipping

Remember the implicit equation of a plane:

f(P)=n(E-po) =0 or

f@) =7-p+d=0

f(p)

1]
S

11

2/20/16

Clipping

Clipping

Hence, if the normals of the clipping

planes point outward: \
@ pis "inside the plane” ' Kl
if f(7) <0 - 2
e p'is "outside the plane” :
if f(p) >0 /

I(E)<0 and l(5§<0
f(¢3}<0 and f(g)>0

12

2/20/16

Clipping

If two points @ and b are on
different sides of a hyperplane,
we first determine the
parametric equation of the line
through the points:

pt) =ad+t(b—a)
Substituting this into the
hyperplane equation yields

+d

y_f-d
ii-(@—b)

p(t)

Clipping

Given the intersection points,
we can clip the triangle against
the hyperplane as follows:

o If two vertices are on the
positive side, we get one
new triangle.

o If one vertex is on the
positive side of the
hyperplane, we get two
new triangles.

13

2/20/16

Clipping

But what do we do if a
triangle is intersected by two
clipping planes?

Clipping

We have to deal with such
situations one clipping plane at
a time.

We first clip the initial triangle
against one of the clipping
planes. ..

14

2/20/16

Clipping

...and clip the remaining
triangle(s) against the other
clipping plane.

When to do Clipping

' _Jn
z=n+f .

Because of the discontinuity,
objects behind the eye can
move in front of it.

Because of the change of signs
at f(z) = 0, objects in front of
the eye can move behind it.

15

2/20/16

When to do Clipping

* Easiest to clip before the J y
homogenization step and clip in —
homogeneous coordinates /

* This means we actually clip in four 71— ’
dimensions against three
dimensional clipping hyperplanes. < |
 After homogenization, the result *J
gives us the coordinates in 3D b
|

space. \

/-buffering

Apart from the frame buffer, which contains the pixels of the image,
also maintain a Z-buffer of the same width and height, to store depth
information for the projected triangles.

SCREEN FRAME BUFFER Z-BUFFER

color depth
information

16

2/20/16

/-buffering

* An image-space algorithm.

* Maintains depth for each pixel (really the pseudo-depth)

* |nitially set to “very far away”

* Checks the depth of a colour before colouring the pixel.

* If colour is “closer” then, colour pixel with it and update the z-buffer.

* Else, keep everything as is.

/-buffering

for each polygon

for each pixel p in the polygon's projection

{

pz = pseudo-depth at (x, vy);

if (pz > zBuffer[x, vy]) // closer to the camera
{
zBuffer(x, y] = pz;
framebuffer([x, y] = colour of pixel p

}

17

2/20/16

/-buffering

fackver \\

Yoravgle
v
24208

(\ar«a,e) i \ (small)

=

2 buprer(xvw)

lell|ﬁ|

/ ClOSLr

Pl

§/+‘M omj\g_

2v=0.

v\

:_) L {- |
Psmdode/(ajrk
/-buffering
2 lOuPR’,r(J(,w)

‘-[J\OS“II \\‘l (B
Em\\ur\’\ |08 OC(' V!
Toiovgle | I oS o§ L |
2,208 \ 0s
(\ar‘}e)

'\

——

\

—N A

|

|

[
0.8

FSWAOo\e_P‘H«

(2v) o —Lm‘avg{(

at thie Piael

18

2/20/16

/-buffering

2 bupre~(x V)

" ‘D,S'(\ ‘ jo,;
~ ' |05 0.l 0.1
facker \//closu 19519

‘\'P\O.vg\e ‘ ’ ‘f/*‘i‘iomj\e‘ TJD.I O,/lo,] o./

2\/:0‘1 [/
o1 (0 o.l|o.

|05 05 0S5 0%

| ||
YI[o5 os o5 os os|

s
2,08

(mn}a,) ;,‘ ———— \ (,Sma\l)
\\ o — X

—_
x

/-buffering

Q: What would the result be if we drew the closest
triangle first?

2 bufrer(xu)
g
0s OJ\
~ ' 05|05 o.l|o.
%“’“‘f \\///dosar]
Jrr\uvg\g \ // “/+rwanj\e_ LJ:” J o./ lO,I j o./ J J
~ 2v=0.1 [7

1,08

(\uNy;‘) ': i \ (sma)
‘\ —

05 o5 oS 0§
o Y1 o5 os os os os

19

2/20/16

/-buffering

A: Theresult would be the same

Q: What would the result be if we drew the closest
triangle first?

I\

\
| y
r\;‘ \, e

2 buprer(x, V)

fackver closes
Yorogle | triangle
2 e L 2u-00 |
(rargsy C Gsmal) ? il el
= \ 05 05 oS 0¢
. VY 05 0S 05 05 OS
—_—
x

/-buffering

Advantages:

Simple and accurate

Independent of the order polygons are drawn
Disadvantages:

 Biggestissue with z-buffering is finite precision (z-fighting)
* Wasted computation when overwriting distant points

N

AN

2 bufrer(x, v)

0s \
} |

05|05 | o] |0.1

~ y

;m%‘vu </ close ? —

*r\uvﬂ\g ke “}‘]\f el ol ‘QJ O
1£< 2y=0.

2,208 . v ol|o.l|0O.(]0,

(lacge) | (swall) e

0S5 o5 05 0§
yT los 05 05 0S5 OS

—
x

20

2/20/16

Rasterization or scan conversion

Rasterization takes shapes like triangles and determines which
pixels to fill.

Filling polygons

First approach:
1. Polygon Scan-Conversion

* Rasterize a polygon scan line by scan line, determining
which pixels to fill on each line.

21

2/20/16

Filling polygons

Second Approach:
2. Polygon Fill

e Select a pixel inside the polygon. Grow outward until the
whole polygon is filled.

Coherence

22

2/20/16

Polygon scan conversion

Intersection Points

Other points in the span

Polygon scan conversion

Process each scan line

1. Find the intersections of the scan line with all polygon edges.

2. Sort the intersections by x coordinate.

3. Fill in pixels between pairs of intersections using an odd-
parity rule.
- Set parity even initially.
- Each intersection flips the

parity.
- Draw when parity is odd.

23

2/20/16

Special cases: vertices

* Q: How do we count the intersecting vertex in the parity
computation?

Special cases: vertices

* Q: How do we count the intersecting vertex in the parity
computation?

A: Count it zero or two times.

24

2/20/16

Computing intersections

* For each scan line, we need to know if it intersects the polygon edges.

* |tis expensive to compute a complete line-line intersection
computation for each scan line.

» After computing the intersection between a scan line and an edge, we
can use that information in the next scan line.

* We can exploit scanline coherence.

Rasterizing general polygons

* Let’s look ata more general method for polygons.

* For triangles, it becomes even more efficient (only one span per
scanline since it is always convex)

A Dbwd b b /
s~y V¥V =

25

2/20/16

Rasterizing general polygons

Rasterizing general polygons

26

2/20/16

Rasterizing general polygons

O = NW Ut OO~ 00 ©

Rasterizing general polygons

The left active edge runs from (1,1) to

(3,8).
The slope intercept equation, i.e. 9
8

— Yi—Yi H - .

y—;;_—xiz+dw1th_7>z g
for the line through these points is i
y =35z —25 'y
1
0

The z-coordinate of the intersection of
this edge with scanline 3 is 12, so we

know that we have to set pixels starting /

from z = 2.

27

2/20/16

Rasterizing general polygons

Computing intersections of scanlines
and edges requires a division. These
are expensive, and we'd like to avoid
them.

We use the fact that the intersection
of an edge with scanline i is related
to the intersection with scanline
7—1.

O NW WUt OO 0 ©

This is called vertical coherence.

Rasterizing general polygons

The slope of our left active edge is

Yi—Yi __ él _ 7 . . .
r—o = AL =3 (with j < 1) 9 J//
. - - 8
Hence, the increase in z-coordinate 7
from one scanline to the next is 2 n
_ 2 =17
A:z: -7 A,_1 . _— -
2 -_
1
0

28

