
2/20/16

1

Topic	8
Visibility

• Intro	visibility
• Object	vs	Image	space	algorithms
• Bounding	volumes
• Culling
• Clipping
• Z-buffering
• Scan	conversion

Visibility

What	is	not	visible?



2/20/16

2

Visibility

What	is	not	visible?
• Primitives	outside	 of	the	field	of	view
• Back-facing	primitives
• Primitives	occluded	by	other	objects	 closer	to	the	camera	

Why	compute	visibility?

• General	principle:	don’t	 spend	cycles	drawing	what	you	don’t	have	to!
• Some	things	are	not	visible.	 Can	we	get	rid	of	these?
• Efficiency:	If	it	won’t	contribute	to	the	final	image,	avoid	unnecessary	
computations.
• Realism:	Objects	occlusions	 naturally	happen	 in	scenes



2/20/16

3

Why	compute	visibility

• Example	cube	in	perspective:
• At	most	three	faces	will	be	visible
• Three	sides	 don’t	even	need	to	be	drawn

(Google	images)

Why	compute	visibility

Image	source:	http://www.cs.sfu.ca/~torsten/



2/20/16

4

Why	compute	visibility

Image	source:	http://www.cs.sfu.ca/~torsten/

Types	of	algorithms

• Object	space
• Occurs	at	the	polygon	 level	in	object	space
• Do	the	work	on	 the	objects	themselves	before	they	are	converted	 to	pixels
• Done	at	the	mathematical/analytical	level	independent	of	resolution

• Images	space
• Occurs	at	the	pixel	level	in	image	space
• Work	done	when	objects	are	being	converted	 to	pixels
• Resolution	of	the	display	matters	here
• Determine	the	colour of	pixel	based	on	what	is	visible



2/20/16

5

Object	Space

for each object in scene {

determine which parts of objects are 
visible (parts unobstructed by itself or 
other objects)

rasterize only those parts

}

Image	Space

for each pixel in image {

determine polygon closest to the viewer at 
that pixel location

colour the pixel with the appropriate colour

}



2/20/16

6

Efficiency

• Bounding	volumes	 (boxes,	 spheres)
• Back-face	culling
• Coherence	(exploit	local	similarity)

Bounding	Volumes

Source:	Google	 images



2/20/16

7

Culling

• Frustum	culling
• Culling	of	triangles	outside	of	the	view	frustum

• Occlusion	 culling
• Culling	of	triangles	within	the	frustum	that	are	occluded	by	others

• Backface culling
• Culling	of	triangles	facing	away	from	the	camera

Backface Culling

• Goal:	Remove	surfaces	that	point	away from	the	camera	(i.e.	the	
“backfacing”	polygons).	Don’t	draw	these!
• For	(most)	solid	 objects,	 back	faces	should	 not	be	visible	à hidden
• Can	be	done	in	window	 coordinates	(winding	order)	or	in	world	
coordinates	using	face	normals.



2/20/16

8

Back-face	Culling

Backfacing faces	on	the	wireframe	model:
ADHE,	EHGF,	AEFB	will	not	be	drawn.

Back-face	Culling



2/20/16

9

Back-face	Culling
• Some	 limitations:

Visibility	Algorithms

• Object-space	algorithms:
• Painter’s	Algorithm
• Binary	Space	Partitioning	algorithm	(BSP)	(next	week)

• Image-space	algorithms:
• Z-buffer
• Scanline



2/20/16

10

Painter’s	algorithm

Painter’s	algorithm

• Limitations:	Cycles
• There	is	no sort	order	here	to	allow	correct	visibility	 handling
• Workaround:	 break	polygons	 into	smaller	parts



2/20/16

11

Clipping

Clipping



2/20/16

12

Clipping

Clipping



2/20/16

13

Clipping

Clipping



2/20/16

14

Clipping

Clipping



2/20/16

15

Clipping

When	to	do	Clipping



2/20/16

16

When	to	do	Clipping

• Easiest	to	clip	before the	
homogenization	step	and	clip	in	
homogeneous	 coordinates
• This	means	we	actually	clip	in	four	
dimensions	 against	three	
dimensional	 clipping	hyperplanes.
• After	homogenization,	the	result	
gives	us	the	coordinates	in	3D	
space.

Z-buffering



2/20/16

17

Z-buffering

• An	image-space	algorithm.
• Maintains	depth	for	each	pixel	(really	the	pseudo-depth)
• Initially	set	to	“very	far	away”
• Checks	 the	depth	of	a	colour before	colouring the	pixel.
• If	colour is	“closer”	then,	colour pixel	with	it	and	update	the	z-buffer.
• Else,	keep	everything	as	is.

Z-buffering

for each polygon
for each pixel p in the polygon's projection
{
pz = pseudo-depth at (x, y);
if (pz > zBuffer[x, y]) // closer to the camera

{
zBuffer[x, y] = pz;
framebuffer[x, y] = colour of pixel p
}

}



2/20/16

18

Z-buffering

Z-buffering



2/20/16

19

Z-buffering

Z-buffering

Q:	What	would	the	result	be	if	we	drew	the	closest	
triangle	 first?



2/20/16

20

Z-buffering

Q:	What	would	the	result	be	if	we	drew	the	closest	
triangle	 first?

A:	The	result	would	be	the	same

Z-buffering

Advantages:
• Simple	 and	accurate
• Independent	of	the	order	polygons	 are	drawn
Disadvantages:
• Biggest	issue	with	z-buffering	is	finite	precision	(z-fighting)
• Wasted	computation	when	overwriting	distant	points



2/20/16

21

Rasterization	or	scan	conversion

Filling	polygons



2/20/16

22

Filling	polygons

Coherence



2/20/16

23

Polygon	scan	conversion

Polygon	scan	conversion

Process	each	scan	line	
1. Find	the	intersections	 of	the	scan	line	with	 all	polygon	edges.	
2. Sort	the	intersections	 by	x	coordinate.	
3. Fill	 in	pixels	between	pairs	of	intersections	 using	an	odd-

parity	rule.
- Set	parity	even	initially.
- Each	intersection	flips	the	
parity.
- Draw	when	parity	is	odd.	



2/20/16

24

Special	cases:	vertices

• Q:	How	do	we	count	the	intersecting	vertex	in	the	parity	
computation?

Special	cases:	vertices

• Q:	How	do	we	count	the	intersecting	vertex	in	the	parity	
computation?	

A:	Count	it	zero	or	two	times.	



2/20/16

25

Computing	 intersections

• For	each	scan	line,	we	need	to	know	if	it	intersects	the	polygon	 edges.	
• It	is	expensive	 to	compute	a	complete	line-line	 intersection	
computation	for	each	scan	line.	
• After	computing	the	intersection	between	a	scan	line	and	an	edge,	we	
can	use	that	information	in	the	next	scan	line.	
• We	can	exploit	scanline	coherence.

Rasterizing	general	polygons

• Let’s	look	 at	a	more	general	method	for	polygons.
• For	triangles,	it	becomes	 even	more	efficient	(only	 one	span	per	
scanline	since	it	is	always	convex)



2/20/16

26

Rasterizing	general	polygons

Rasterizing	general	polygons



2/20/16

27

Rasterizing	general	polygons

Rasterizing	general	polygons



2/20/16

28

Rasterizing	general	polygons

Rasterizing	general	polygons


