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Abstract 

Principal curves are smooth curves that minimize the average 
squared orthogonal distance to each point in a data set. Fitting a 
principal curve is a maximum-likelihood technique for nonlinear 
regression in the presence of Gaussian noise on both x and y. We 
choose two definitions of principal curves in the literature and then 
present experimental results to discuss over them. 

1  Introduction 

  A principal curves is a smooth curve passing through the ‘middle’ of a distribution 
or data cloud, and is a generalization of linear principal components. In other words, 
a principal curves is a set of points which represent well the mean of data densities.  

  Several definitions of principal curves have been proposed in the literature. Hastie 
and Stuetzle [1] (hereafter HS) proposed the earliest definitions which is based on 
‘self-consistency’, i.e. the curve should coincide at each position with the expected 
value of the data projecting to that position. Tibshirani [2] (hereafter EM-based) 
presented a more probabilistic approach, of which the principal curve is defined as 
curves minimizing a penalized log-likelihood measure with Gaussian mixtures and 
generalized EM algorithms.  Kegl et al.[3] and Verbeek et al.[4] proposed another 
approaches to define principal curves as continuous curves of a given length which 
minimize the expected squared distance between the curve and points of the space 
randomly chosen according to given distribution. They introduced incremental 
method by fitting local models without any topological constraints and then 
increasing complexity.  

  We choose two earliest definitions of principal curves mentioned above; one is for 
HS [1] and the other one for EM-based [2]. In the next sections, we present each of 
definitions and algorithms in detail. Then we give experimental results so that we 
compare and discuss over them. 

2  Principal  Curves 

We first give a brief introduction to one-dimensional curves, and then present each 
of principal curves definitions in probability distributions, algorithms for finding 
curves. In the last section, we briefly mention the regularization method, ’cubic 
smooth splines’ we implement in our project. 



 

2 .1  One-Dimens iona l  Curves  

A one-dimensional curve in p-dimensional space is a vector )(λf of p functions of 
a single variableλ . These functions are the coordinate functions, andλ provides an 
ordering along the curve. If the coordinate functions are smooth, then f is to be 
definition a smooth curve. There is a natural parameterization for curves in terms of 

the arc length. The arc length of a curve f from 0λ to 1λ  is given by ∫ ′=
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the curve is unit parameterized, i.e. 1)( ≡′ zf , 01 λλ −=l .  

2 .2  HS Pr inc ipa l  Curves  

2.2.1 Definition 

  Consider −p dimensional random vector X ),,( 1 pXX K=  with finite second 
moments. Let f denote a smooth ( ∞C ) unit-speed curve in Rp  parameterized over a 
closed interval, that dose not intersect itself( )()( 2121 λλλλ ff ≠⇒≠ ) and has finite 
length inside any finite ball in Rp. The principal curve f has the property that the 
expected value of the squared Euclidean distance from X to the curve f . We define 
the projection index :fλ  Rp →R1 as 

      })(inf)(:{sup)( µλλλ
µλ
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The projection index )(xfλ of x  is the value of λ  for which )(xfλ is closest to x . If 
there are several values, we pick the largest one.  

The curve f is self-consistent if every single point )(λf  along the curve f coincides 
the conditional expectation value of randomly distributed points projected to )(λf .  

     ))(|()( λλλ == XXEf f
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2.2.2 Algorithm 

  By analogy to linear principal component analysis, we are finding smooth curves 
corresponding to local minima of the distance function. We start with principal 
component line, which is also self-consistent. Our estimation procedure consists of 
two steps; projection step and expectation step. Every sample points are projected 
on the curve (projection step) and then conditional expected values are computed 
with those projected points set(expectation step). By enforcing self-consistency 
property, those expected values should be equal to projected points. If they do not 
coincide expected values, the resulting curve should be changed according to new 
set of expected points. As both of projection and expectation step iteratively reduce 
expected squared distance, our procedure get converged to the principal curve.  

Initialization : λλ aXEf += )()()0(  , where a  is the first linear principal component 
of distributed density h . Set ).()( )0(
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Repeat until the change in ),( )()0( jfhD  below some threshold, 
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2.2.3 Principal Curves for Dataset 

A curve )(λf is represented by at most n tuples ))(,( iii f λλ , which can be regarded 
as knots of interpolated cubic curve, and join up curve segments in increasing order 
of 

iλ . We compute iλ by using arc-length parameterization, and always sort up and 
normalize them in [0,1]. Arc-length is computed by measuring polygonal line length 
along the curve, which is discrete version of the unit-speed parameterization. 

 At projection step, we define ikd as the distance between 
ix and its closest point on 

the line segment joining ( )(),( 1
)()(

+i
j

i
j ff λλ ). After every ikd and corresponding iλ are 

computed, we replace iλ by arc-length of )(
1

jf to )( j
if .  

 Expectation step is to estimate ))(|()( )(
)1( λλλ ==+ XXEf jf

j . Unfortunately, since our 

data density is finite and restricted in discrete space, there is generally only one 
such observation for this step. Thus, as the resulting curve is supposed to visit every 
sample point, our estimation procedure reaches global minima too fast, 0→ikd and 
gets uninteresting results. In order to avoid this problem, we estimate conditional 
expectation at 

iλ by averaging all of the observations kx in the sample for which kλ is 
close enough to

iλ .As long as we include more observations into same 
neighborhood, the underlying conditional expectation is smoother and variance 
decreases. There are many local smoothing methods to help avoid global minimum 
problem.  

 We rely on ‘Locally Weighted Running-Line Smoother’, which is one of locally 
averaging methods [6]. We first specify spherical span to each

iλ , where 
any

jλ should be considered as its neighbor if they fall in. They get weighted 
according to the distance between 

iλ and jλ , 33)|/)(|1( iijij hw λλ −−= . Derived weights 
smoothly die to 0 within the neighborhood. 

2 .3  EM-based  Pr inc ipa l  Curves  

2.3.1 Definition 

  Let X ),,( 1 pXX K= be a random vector with density )(xg X . In order to define 
principal curves, we assume that there is a latent variable S generated according to 

)(sgS , and sample X is generated from a conditional distribution 
sXg |
with mean 

)(Sf , a point on a curve in Rp, with 
pXX ,,1 K  conditionally independent given s. 

Hence, we define a principal curve of Xg  to be a triplet { Sg ,
sXg |
, f } satisfying the 

following conditions: 

  a. )(sgS and )|(| sxg SX
are consistent with )(xg X , that is, ∫= dssgsxgxg SsXX )()|()( |

 

  b.
pXX ,,1 K are conditionally independent given s. 



 

  c. )(Sf is a curve in Rp  parameterized over a closed interval in R1, satisfying 
)|()( sSXESf ==  

 This new definition does not agree with HS property, which is that the X values 
generated from S are exactly the X values on the projection line orthogonal 
to )(Sf at s. Instead, it helps principal curves overcome model bias problem HS 
suffered [1]. Except cases involving this problem, it goes well with HS definition. 

2 .3 .2  Algor i thm 

  Estimation procedure follows generalized EM algorithm[5]. Here, since principal 
curve knots roles latent variables S, curve can be updated according to EM 
iterations. Instead of least square error functions given by HS, maximum log-
likelihood function is considered to EM step, which works well with EM based 
curve model given by previous section. Initial S positions are specified by HS 
algorithm’s first step and then iteratively updated by alternating expectation and 
maximization step for this likelihood function. In the subsequent section, more 
details are presented for log-likelihood function. 

 Initialization : dsXEsf += )()()0(  , where d  is the first linear principal component 
of distributed density h . Set nvk /1)0( = , and S = )0()0(
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 Repeat until the change in log-likelihood below some threshold, 
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Update curve according to new set of parameters. 

2.3.3 Principal curves for Dataset 

Suppose we have observations X and hidden variables S, the principal curve is 
formed via the following model: )(~ sgs Si ; 

isXi gX |~ ; )|()( sXEsf =  (with ix is 

conditionally independent to given is ). Hence, instead of least square error function 
used by HS, the maximum likelihood estimation of θ  = ( )),( ∑ ssf  is considered for 
EM algorithm. This maximum likelihood estimation has the form of a mixture:      
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“E-step” start with },|)({)|( 0
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0 θθθθ xlEQ = and then “M-step” maximizes 
)|( 0θθQ over θ to give 1θ and the process is iterated until convergence. 
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     )(/),|(~ | iXkkiSYik xgvaxgw θ  (by Bayestheorem)                                                (4) 

Those quantities are computed from the Gaussian form and related operations: 
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Then, M-step gives  
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  The weights are the relative probability under the current model that kas = gave 

rise to ijx . If 
jσ s are equal, the weight is a function of the Euclidean distance from 

x to )( kaf .This log-likelihood function can get to a global maximum of ∞+ , when 

nkxaf kk ,2,1,)(ˆ K== . 0)(ˆ 2 →kaσ . This problem is exactly same to what HS 
suffered from. Thus, in order to make EM converge to local maximum, a 
regularization component is added to the log-likelihood. We seek to maximize the 
penalized log-likelihood  
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12 ,cc are the endpoints of the smallest interval containing the support of )(sgS . 
Thus corresponding Q function for EM is  
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Then, the solutions are }{))((ˆ 11
12 jjjj xDDKccDf −−−+= λ (where matrix 

jK is the 
usual quadratic penalty matrix associated with a cubic smoothing spline[6]. 

2 .4  Princ ipa l  Curves  and Smooth  Spl ines  

  In the previous sections, there two definitions of principal curves are presented. 
Since both of their properties have the same problems that object functions get 
global maximum or minimum, they need some way to regularize them. We choose 
kernel based smoother for HS algorithm and cubic spline smoother for EM based 
one. Since both are local based smoothers, we can switch kernel based with cubic 
spline smoother and vice versa. In this section, we give more details on cubic spline 
smoother. We find )(sf and ]1,0[∈is so that  
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is minimized over all f . Large values of λ produce smoother curves while smaller 
values produce more wiggly curves. The penalized least square terms shows that if 
the minimum exists, it should be cubic spline in each coordinate. Since cubic spline 
smoother can be computed in )(nO , it has an advantage over locally weighted 



 

running line smoother we choose in HS, which requires )( 2nO . However, 
performance looks quite similar. Since the solution to (9) is natural cubic spline 
with n-2 knots, it can be represented in terms of the unconstrained B-spline 
basis,∑ +2

1
)(n

jj sBγ , where 
jγ are coefficients and the

jB are the cubic B-spline basis 

functions. With )( ijij xBB = and dttBtB jiij )()( ′′′′=Ω ∫ , (9) can be rewritten as  

     γλγγγ Ω+−− TT BxBx )()(                                                                                (10) 

Setting the derivative with respect to γ equal to zero gives 

     xBBB TT =Ω+ γλ ˆ)( , xBBB TT 1)(ˆ −Ω+= λγ                                                           (11) 

More computational and practical approach for this formula is presented by De Boor 
[7], and our cubic spline smoother is based on this.  

3  Experimental  Results  and Discussion 

We implemented those two algorithms with C++ and OpenGL graphics library on 
PC. Although computational time depends on the model complexity, it is not so 
important factor for completing whole estimating procedures in practice. We 
randomly distribute samples according to different kinds of generating functions and 
on purpose make them corrupted by noises under Gaussian model.   

 

    

    
Figure 1: Selected intermediates and final curve of HS Principal Curve Procedures 

From left to right, top to bottom, n=1,3,4 and 6 iterates. 

 

 

 

 



 

 

    

    
Figure 2: Selected intermediates and final curve of EM based Principal Curve 
Procedures, From left to right, top to bottom, n=2,5,8 and 12 iterates.   

 

 We generate 110 sample points from opened circle in two dimensions:  

),())sin(5),cos(5(),( 2121 eettxx += , where t  is uniformly distributed on ]
4

7,
4

[ ππ  and 

21,ee  are independent under )1,0(N . Since those two algorithms have different 
convergence criterions, it is difficult to specify same stopping conditions to them 
and compare with their convergences in numerical aspect. Instead, we can conclude 
that both of their resulting curves converge to similar shape. However, when using 
EM-based algorithm, most cases require more iterative steps to finish procedures.  

 In practice, most cases work well under h=0.2~0.3(kernel span) and λ =0.5~0.6 
(cubic smoothing parameters (out of 1)). While wider spans make curves short to 
converge to average value of all data observations, bigger cubic smoothing 
parameters give curves more stiffness and inflexibility. However, it is difficult to 
guess those parameters mechanically without user intervention.  

     

Figure 3: Different results of smoothing parameters (HS algorithm): leftmost curves 
with h=0.01,λ =0.1, middle one with h=0.25, rightmost with h=0.55 and λ =0.9.  



 

 

  Since those principal curves imply locally topological constraints, they can give 
out poor performance according to the model complexity. During whole estimation 
procedures, curves should be connected and knots orders should be an important 
factor on curve shapes. 

           

     
Figure 4: Estimation for spiral distributions: on the left, HS principal curve and on 
the right, EM based principal curve. 

 

  Those challenging problems have already mentioned by many literatures so that 
many of novel definitions proposed to remedy them [3][4].  

3 References 

[1] Hastie,T. and Stuetzle, W. Principal curves. Journal of the American Statistical 
Association, 84(406):502-516, 1989. 

[2] Tibishirani, R. Principal curves revisted. Statistics and Computing, 2:183-190, 1992. 

[3] Krzyzak, Linder, T and Zeger, K. Learning and design of principal curves. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 22(3):281-297, 2000. 

[4] Verbeek, J.J., Vlassis, N. and Krose, B. A k-segments algorithm for finding principal 
curves, Pattern Recognition Letters, 23(8), 2002. 

[5] Dempster,A.P., Laird, N.M., and Rubin, D.B. Maximum likelihood from incomplete data 
via the EM algorithm. J.R. Statist. Soc. B, 39:1-38, 1997. 

[6] Hastie, T. and Tibshirani, R. Generalized Additive Models. Chapman and Hall, 1990. 

[7] Boor, C. A Practical Guide to Splines, 1978. 

 


