Supplemental Material:
Exploratory Font Selection Using Crowdsourced Attributes

1 Attribute Estimation

Number of Pairwise Comparisons. Selecting the number of pairwise comparisons n is an important
choice when estimating font attributes. If n is too low, the estimated attributes are inaccurate. Exhaustive
testing of all pairs (i.e., n = 200) is cost-prohibitive and unnecessary since the attribute values will con-
verge to accurate values after far fewer comparisons. To determine a reasonable n, we ran a smaller study
on 5 attributes varying n from 2 to 15. For each n, we evaluated the mean log-likelihood of a testing set of
5 additional comparisons per font. In Figure 1, we show a figure plotting the log-likelihood for n for each
attribute. We found the log-likelihood plateaued after n = 8, so we used this value in our final study for
the remaining attributes.

Modelling Error. In Table 1 we list the error in modelling the pairwise comparisons for each attribute.
These results show which attributes are easiest to model (“thin”, and “strong” for example), as well as
the most difficult (“sharp” and “boring”). In Fig. 2 we show histograms of 4 different attributes. These
histograms show that the attributes being learned have different distributions.

User Weights. In Fig. 3 we show a histogram of different user weights. Most users had positive weights,
though a few users had negative weights, indicating they generally provided answers opposite to the ma-
jority opinion. We also plot the user reliability weights against the number of HITs completed by the user.
This figure shows that the number of HITs completed is not correlated with the user’s reliability.

2 Attribute Prediction Model Comparison

In Sections 4 and 5 of the main paper, we describe our approach for predicting attributes. In Section
4, we describe our approach from estimating attribute values from pairwise comparisons; in Section 5
we describe how we predict these attributes using geometric features with Gradient Boosted Regression
(GBR) Trees [1] with a maximum depth of 2. We also experimented with a linear LASSO model [6]. On
leave-one-out cross-validation tests, the GBR had better performance with a mean average error of 8.51
compared to LASSO’s 10.76; we therefore use this model for all further tests.

An alternative approach is to use the pairwise comparison data to directly train the mapping from
geometric features to attributes. The method of Parikh and Grauman [3] takes this approach by using
a ranking SVM (SVMrank). We also modify our method in Section 4 of the main paper to take this
approach by learning weights for a distance of geometric features rather than attributes. This model is a
simple extension of the method we describe in Sec. 4.3 to estimate attributes. In that section, we model

1

2 ATTRIBUTE PREDICTION MODEL COMPARISON

Attribute Mean Log-Likelihood | Classification Rate
thin 0.181 93.16%
strong 0.352 84.80%
wide 0.422 81.11%
soft 0.501 75.86%
disorderly 0.507 73.88%
artistic 0.509 73.80%
complex 0.520 73.09%
playful 0.537 71.75%
calm 0.548 70.80%
dramatic 0.549 71.08%
sloppy 0.559 70.20%
clumsy 0.563 70.14%
bad 0.570 68.53%
attention-grabbing 0.573 69.23%
formal 0.576 69.44%
attractive 0.579 68.08%
legible 0.580 68.28%
charming 0.586 67.67%
gentle 0.601 66.19%
modern 0.601 65.86%
pretentious 0.611 66.02%
happy 0.611 65.63%
graceful 0.619 65.05%
fresh 0.619 64.16%
friendly 0.622 64.39%
delicate 0.623 63.83%
warm 0.630 64.53%
technical 0.634 62.94%
angular 0.635 62.80%
boring 0.636 63.05%
sharp 0.649 62.02%
average 0.558 69.52%

Table 1: Estimation of relative attributes. We report the negative log-likelihood(lower is better), as well as
the classification rate, the fraction of pairwise comparisons correctly predicted (higher is better)

2 ATTRIBUTE PREDICTION MODEL COMPARISON

Mean log likelihood w.r.t. number of pairings

11
— wide
pobo i bad |
: : : : © | — angular
: : : : i | — calm
OORN ot fresh
‘é average
h! : : : : :
T 0B AN]
X
[=2]
ke
= 0.7|
©
[}
s

0.6\ e ——

0.5F N S S

0.4 L L L L L L
2 4 6 8 10 12 14 16
Pairings

Figure 1: Mean log-likelihood values of the objective function with varying numbers of pairings per font.
For the final study on all 31 attributes, we used 8 pairings per font.

the probability ¢, that a rater judges font f; to have more of the attribute a than font f;. We represent this
probability using a sigmoid:

1
14 exp(ry(vja — Via))

p(q:1|fi7fj7a7u): (1)
Where v; , and v; , be the unknown values of attribute a for the fonts 7 and j, and r,, is a per-user reliability
values. These values are then estimated using gradient descent.

In the Feature Weight model, the values are computed by taking the product of fixed font features x
with a learned per-attribute weight vector w,:

1

1 4 exp(ry(x;Wo — X;Wg))

p(q:1|fl7f]7a7u): (2)

To evaluate the methods, we repeatedly train a model on the comparisons for 199 fonts and test on
the hold-out font comparisons. We report the negative log-likelihood(NLL) of the test data and the clas-
sification rate (the fraction of comparisons correctly predicted). We also report an upper-bound “oracle”
classifier which chooses the majority opinion. Table 2 shows that all methods perform similarly and do
quite well, considering the high level of user disagreement. User modelling does improve results, as
evidenced by a lower NLL, but only slightly.

When comparing the models, the likelihood is a more accurate continuous measure of performance as
it uses the attribute distances. For example, the classification rate for two attribute values would be the
same if the two attributes are very close or far apart, as long as the relative ranking is correct. Intuitively,
such a discontinuous measure is not ideal since we expect that when the attribute distances are very small,
users will have a harder time ranking them correctly.

3 METRIC LEARNING

20 80 20 80

40 60
Attribute Value

Artistic Strong

40 60
Attribute Value

% 20

80 20 80

40 60 40 60
Attribute Value Attribute Value

Legible Thin

Figure 2: Histograms of selected attribute values estimated from crowdsourced data, demonstrating that
attributes have different distributions.

20 User Reliability Histogram User Reliability Plot
T T T T T T

User reliability weight
N

i i
10° 10* 10? 10°
Number of completed HITs by user (log scale)

User weight

(@ (b)

Figure 3: A histogram of user reliability weights assigned by fitting the objective function (a), and a plot
of user reliability weights with respect to the number of responses (log scale) with the median weight
indicated by a green horizontal line (b). Note that some user weights are negative, implying that the user is
judged to have chosen the opposite answer of what attribute values would predict. There is no correlation
between the number of HITs completed and the user reliability.

3 Metric Learning

Learning distance metrics is a well-studied problem in the machine learning community [2]. Distance
metric learning aims to create distance function between objects; we refer to the distance between object ¢

4

3 METRIC LEARNING

Model NLL Classification
Feature Weights (w/o user) 0.6124 65.73%
Feature Weights 0.6087 65.69%
Direct Attributes + GBR (w/o user) 0.6128 65.63%
Direct Attributes + GBR 0.6086 65.62%
SVMRank 65.62%
Oracle (upper bound) 72.51%

Table 2: Comparison of attribute prediction models. Our Feature Weight method learns a set of linear
weights on font features to match the pairwise comparisons. Our Direct Attribute method estimates the
attributes values independently of features, and then trains a GBR using features for generalization. We
show results without user reliability modelling, denoted as “w/o user”. To evaluate the algorithms we
report the negative log-likelihood(NLL) for testing data (lower is better) and the classification rate of the
pairwise comparisons. NLL data is unavailable for the Oracle classification algorithm, which classifies a
comparison as correct if it matches the majority opinion, as well as the SVMRank algorithm [3], which
uses a non-probabilistic objective function.

and j as d; ;. Typically, objects are embedded in some feature space x;; metric learning attempts to create
a new embedding whose distances better matches a set of input distance constraints. For example, we
might specify relative distances in the new embedding space using triplets (i.e, d; ; > d;).

Linear metric learning methods learn a matrix W such that d;; = ||[Wx; — Wx;||. Schultz and
Joachims [4] use a non-linear approach based on SVM learning to model distances. Learning these trans-
formations can be posed as a constrained optimization problem which leads to efficient convex solutions.
Unfortunately, most of this prior work is not probabilistic and therefore not designed to handle noisy
crowdsourced data.

Recently, Tamuz et al. [5] defined a probabilistic sigmoid model for crowdsourced triplet comparisons:
pijk = S(di; — d; ;). Given the triplets, an embedding for each object is learned in a Euclidean space that
requires no knowledge of object features. Our probabilistic model is very similar, but we learn a linear
embedding matrix for features, thus allowing our approach to extend to unseen objects. We also model
the reliability of individual users.

The data we use to train our models is a set of font triplets, expressed in the form D = {(f;, f;, f, ¢, u)},
where f; and fj, are the two fonts being compared to font f;, ¢ is the user’s choice (¢ = 1 if the user judges
font f; is closer to font f; than font f;, ¢ = 0 otherwise), and u is the user ID. To model the probability of
¢, we use a logistic function similar to the one in Section 4:

1
=1 i J 7 y Uy W) = 3
where d; ; is the Euclidean distance between fonts ¢ and j in some embedding space, parameterized by W,
and r, is a per-user reliability weight.
The key question is how to model these distances d; ; and d; ;. We first consider the simple unweighted
Euclidean distance of a font feature vector:

df; = [|x; — x| 4)

where x; is a feature vector for font f; with size n. In this model, we use either the geometric features of
Sec 4.4 of the main paper (n = 80), or the predicted attribute vector (n = 37). We evaluate both feature
sets in the next subsection.

3.1 MTurk Similarity Study 3 METRIC LEARNING

Reference Font

The quick brown
fox jumps over
the lazy dog.

The quick brown The quick brown
Jox jumpa over fox jumps over
the lazy dog. the lazy dog.

Figure 4: Example task for font distance study. The user is asked to decide which bottom font is closer to
the reference font above.

The second model is a weighted Euclidean distance:
4, = [[w" (x; — x;)] ®)

Where w is a learned vector of weights.
The third subspace model computes the Euclidean distance after embedding the fonts in a lower n-
dimensional subspace:
Ay = [[W(xi —)| (6)

Where W is a learned embedding matrix of dimensionality m x n where n >> m, where n = 37 or
n = 80, depending on the feature set used, and m = 7, as selected by cross-validation.
Given the pairwise comparisons D, the negative log-likelihood objective function is therefore:

=Y (1 —g")log (1 —plg = 1f], f}, [t u", W)
We jointly solve for the embedding parameters W and rater reliabilities r using gradient descent.

3.1 MTurk Similarity Study

To obtain data to train the model, we conduct a crowdsourced study focused on font similarity. Workers
are presented with a reference font A and two fonts (B and C) and are asked to decide whether B or C is
more similar to A than the other. See an example of one such task in Figure 4. Triplets were randomly
sampled from the previously described 200 font training set.

Each Mechanical Turk HIT contains 16 such tasks, as well as 4 control questions. For consistency, we
repeat two tasks by swapping the fonts B and C. For correctness, we include tasks where one of B and C
is the same font as A; the user is expected to recognize that a font is more similar to itself than any other
font. We reject HITs that fail at least two of the four control questions. We also ignore users if 20% or
more of their HITs were rejected, leading to a final rejection rate of 9.11%. Workers are paid $0.07 per
HIT. To obtain multiple opinions per triplet we created 130 HITs with at most 15 workers per HIT. After
rejection, the average number of users per triplet was 13.6. The total dataset has 2340 triplets and 35,387
individual comparisons. Every font in the training set was in at least 21, and at most 57, triplets.

4 EVALUATION STUDY DETAILS

Geometric Features Attributes
Model NLL Classification NLL Classification
Unweighted 0.5777 69.61 0.5441 71.11
Weighted 0.5092 74.66 0.4876 76.04
Subspace 0.4954 75.12 0.4833 75.83
Oracle 80.79 80.79

Table 3: Results of font distance metric learning using different distance models and features. We evalu-
ate using geometric features extracted from the fonts directly (Sec. 4.4) as well as our predicted attribute
values. We report the negative log-likelihood (NLL) of test font comparisons. We also report the classifi-
cation rate: the fraction of test responses that are correctly predicted. The oracle is the upper-bound on the
classification rate, given user disagreement. The improved performance of the attributes over geometric
features demonstrate that attributes are a useful mid-level representation for describing fonts.

To evaluate the methods, we repeatedly train a model on the triplets for 199 fonts and test on the
hold-out font triplets. Along with the negative log-likelihood of the test data, we report the classification
rate. Given a triplet and user responses labelling one font as nearer than the other, the classification
rate is the number of user responses which match our prediction. It is also worth noting that the data
contains considerable noise. We therefore report the classification rate of an oracle algorithm which always
correctly chooses the majority opinion for each triplet; this rate is an upper-bound.

We find that embedding fonts in a subspace model gives the best results (see Table 3), though the
weighted model also performs quite well. Given the disagreement between users, the subspace model
achieves a classification rate of 75.83% on testing data, out of a possible 80.79%. We also report results of
the same learning procedure using the geometric features described in Section 4.4 rather than attributes;
the performance of the different models is similar, though slightly better, with attributes. This result
demonstrates that learning a mid-level representation of attributes for fonts is useful for tasks such as
modeling similarity.

4 Evaluation Study Details

4.1 Font Matching Study

Each HIT contained 5 fonts to match, with 10 HITs total. The same sequence of target fonts was also used
for each interface. Each interface is used by 15 workers, giving 750 font selections for each interface.
Workers were paid $0.50 per HIT. Bonuses were also promised to users for the nearest font selections,
with the top 25% of users receiving a bonus ranging from $0.10 to $0.50.

4.2 Design Task Study

We first conducted a study using Mechanical Turk. For each interface, we asked 30 workers to choose
fonts for 15 designs, giving 1350 designs total. Each HIT contained 5 designs and used a single interface.
Workers were paid $0.50, and bonuses were also promised to users for the best designs, as evaluated by
other users. The top 25% of users received a bonus ranging from $0.10 to $0.50. 200 workers completed
the HITs.

6 IN-PERSON TESTING.

We next evaluated the designs created using the new interfaces against the designs created by the
baseline interface. 2AFC testing was performed with designs selected from the baseline interface and
either the attribute or group interface; each selected design was compared to 10 other designs. Each HIT
contained 18 comparisons, with 2 duplicates added for consistency. 8 users performed each HIT and were
paid $0.07. 455 HITs were created, producing 62,766 individual comparisons.

S Designer vs. MTurk Font Evaluation

The high level of disagreement when evaluating fonts makes it unclear whether using novices is appro-
priate. We therefore conducted a study comparing font evaluation between MTurk users and three profes-
sional designers, recruited online.

In the main paper, we use pairwise AB comparisons between fonts to evaluate, and estimate rankings
from multiple MTurk workers. However, this approach is not appropriate for directly comparing novices
and designers. To allow a simpler comparison, we created ranking HITs where users were shown 9 font
selections and ranked them from best to worst. The professional designers were paid $20 an hour, and
completed 104 ranking tasks. MTurk users were paid $0.07 per HIT, which included a single ranking task.
MTurk workers could complete as many ranking tasks are they desired.

Due to the subjective nature of font evaluation, there is no correct ranking. However, given the expe-
rience and training of professional designers, it is expected that their responses are more trustworthy than
novices. To compare these two groups, we use Kendall tau rank correlation coefficient. A score of O in-
dicates no correlation between rankings, and a score of 1 indicates an exact agreement between rankings.
The final Kendall tau score is found by averaging over all comparisons over all ranking questions. To
control for the higher number of MTurk workers, for each ranking task, we selected the response of three
workers at random.

We first compute the intra-group Kendall tau scores to measure how consistent the group members
are. We found the consistency of users within both groups were similarly low, with mean of the absolute
values of the Kendall tau coefficients of 0.369 and 0.365 for MTurk and designers respectively. The
Kendall tau coefficient between the two groups was 0.322. These results suggest that font evaluation is
highly subjective, for both novices and professionals. Furthermore, the agreement between novices and
professionals is only slightly lower than between professionals themselves, suggesting MTurk evaluations
are reasonable.

6 In-Person Testing.

To further evaluate our interfaces, we also conducted an in-person study with 31 participants; 17 were
second-year design students and the rest were recruited from a study participant mailing list. Each par-
ticipant used all three interfaces in shuffled order, creating 5 designs with each interface, with a time
constraint of 2 minutes per design. After the font selection, each participant rated each interface based on
various factor (overall preference, ease-of-use, ease-of-learning), and commented on each interface. We
also showed participants all 15 designs in random order and asked them to rate their satisfaction with the
font selection.

Table 4 shows the mean ratings for each interface. Participants generally preferred the new interfaces to
the baseline interface, though the difference between the group and baseline interface was not statistically
significant (using the Mann-Whitney U Test). As expected, participants found the list interface easiest to

REFERENCES REFERENCES

Design

Interface])
Satisfaction

Ease of Learning Ease of Use Overall Preference

List m:4,4:379+015 m:4,4:387+£040 | m:3, 4 :3.35£041 | m:3,u:2.81+£0.33

Group m:4,p0:370£0.16 | m:3,pu:342£031 | m:4, 4 :3.58+£038 | m:3,u:3.07+£0.33

Attribute || m: 4, p:3.76+0.18 | m:4,4:3.60£034 | m:4,4:403+032 | m:4,,:3.814+0.36

Table 4: Interface Ratings, median (1) and mean (1) with 95% confidence intervals. After using all three
interfaces, users were asked to rate the ease of learning, use, and overall preference for each interface.
Users were shown their design choices from all three interfaces, in random order, and asked to rate their
satisfaction with the font selection. The was no significant difference in final design satisfaction between
the interfaces, though users preferred the attribute interface and found it easier to ease than other interfaces.

learn, given it’s similarity to existing font selection interfaces.

Comments on the attribute interface were mostly positive, with 23 participants enjoying the interface,
including: “This was a great interface. I like that I had the option to select or not select attributes based on
how I was feeling about the design.”, “I liked this interface the best. When choosing a font, I thought of a
few words that would describe my objective for the poster. After selecting my attributes, the ‘similar fonts’
button allowed me to find a few more fonts that suited my needs.” However, the interface took longer to
learn: “This is tricky without knowing what the attributes are initially, but quite handy after multiple uses”
and “was a little overwhelming at first.” One participant felt the attributes “were foo broad. ‘Artistic’ can
capture a number of ideas.”

Comments on the cluster interface were more mixed, with 15 participants enjoying the interface: “This
was the easiest to use, as it knew exactly which one I am going for.” However, other participants found the
interface complex: “If I chose one font, there were a lot of other fonts to choose from so it was confusing,”
and found the groups hard to interpret. This interface does present the steepest learning curve of the three;
it is possible that once users were familiar with the menu selection, these issues would be diminished. The
font grouping could also be refined to remove redundant groups, or further organized by an expert.

Comments on the baseline interface were mostly negative, with 20 of the participants mentioning the
difficulty of dealing with a large number of fonts: “Definitely the most time consuming and irritating of the
bunch since I had to scroll through a lengthy list just to find a specific font.” However, some participants did
prefer the simplicity: “This interface is okay if the list of possible fonts were not too large....the interface
was very simple to learn.” It is worth noting that if the design task is an extremely simple one, such as
choosing a font for an essay, then an exploratory interface is not appropriate. Users would be better served
by a small list of high-quality fonts.

References

[1] Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. Annals of
Statistics, 29, 2000.

[2] Brian Kulis. Metric Learning: A Survey. In Foundations and Trends in Machine Learning, 2011.
[3] Devi Parikh and Kristen Grauman. Relative Attributes. In Proc. ICCV, 2011.

[4] Matthew Schultz and Thorsten Joachims. Learning a Distance Metric from Relative Comparisons. In
Proc. NIPS, 2004.

REFERENCES REFERENCES

[5S] Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Kalai. Adaptively Learning the Crowd
Kernel. In Proc. ICML, 2011.

[6] R. Tibshirani. Regression Shrinkage and Selection Via the Lasso. Royal. Statist. Soc B, 58, 1996.

10

