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Abstract. Many existing localization systems generate location predic-
tions, but fail to report how accurate the predictions are. This paper
explores the effect of revealing the error of location predictions to the end-
user in a location finding field study. We report findings obtained under
four different error visualization conditions and show significant benefit
in revealing the error of location predictions to the user in location finding
tasks. We report the observed influences of error on participants’ strategies
for location finding. Additionally, given the observed benefit of a dynamic
estimate of error, we design practical algorithms for estimating the error
of a location prediction. Analysis of the algorithms shows a median esti-
mation inaccuracy of up to 50m from the predicted location’s true error.

1 Introduction

Developers of location-aware applications have a variety of localization systems
123 4I5I6l7I8] available to them. However, the accuracy and infrastructure re-
quirements of each localization system constrains its applicability and the way
in which application designers and end-users use them. For example, Wi-Fi [6]
and GSM [7] localization are applicable for wide spectrum of applications, but
their accuracy has shown to be highly variable. That is, the distance between
the actual location and the predicted location fluctuates. We define this distance
as the true error (see Figure[I]) of the localization system. Unfortunately, many
localization systems provide no information about the accuracy of their location
predictions. As a result, the end-user of a location-aware application is entrusted
to make sense of the location prediction presented to them without an awareness
of the possible positioning error.

In this paper, we argue that presenting the error for a location prediction
improves the usability of a location-aware application from the end-user’s per-
spective. We present our examination of how users cope with an existing local-
ization system and how they benefit from the presentation of the positioning
error. We study user navigation strategies toward four predicted locations under
four different error visualization conditions, where the user is presented with:

— only the predicted location and no additional information
— a region defined by a ring of fixed size, inside which the localization system
is 95% confident that the actual location is contained
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Fig. 1. Explanation of the positioning terminology used in this paper

— aregion defined by a ring of variable size, inside which the localization system
is N% confident that the actual location is contained; where N is defined by
the user

— aregion defined by a ring of variable size, inside which the localization system
is optimally confident that the actual location is contained

In addition to understanding how users perform given the various error visu-
alization conditions, we identify the effect of revealing the positioning error on
users’ navigation strategies for location finding. The results show that while a
fixed estimate of positioning error provides little advantage to the user, a dy-
namic estimate of positioning error provides a significant benefit. A dynamic
error estimate provides users with a better understanding of the true error at
the time of prediction, whereas with a fixed error estimate, users are unable
to differentiate between a high or low error location prediction until the actual
location is found.

Finally, we describe two practical algorithms for dynamically estimating the
error of a localization system and evaluate their performance. We show that our
algorithms perform well, reaching a median difference of up to 50m between a
location prediction’s true error and the error as estimated by our algorithms.

2 Related Work

In this section, we introduce the most prevalent technologies used for location
sensing. We discuss the importance of presenting their error for the usability of
location-aware applications.

2.1 Location Sensing Technologies and Error

Many localization systems are available: Ultra-wideband[9], ultrasonic [1I2], in-
frared [3] , GSM [7], Wi-Fi [5l6], power lines [§] and GPS. The application
of each system typically depends on its accuracy [I0], infrastructure require-
ments and operating environment. Each of these systems has been experimen-
tally tested [BJ4JTIGI2] such that their error can be quantified for a particular
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environment. This measure is appropriate for validating the error of the local-
ization system, but for end-users, it does not help them understand the true error
of their current location’s prediction. This issue is the focus of our research.

2.2 Expressing Uncertainty

Rather than refining the localization systems, our approach improves the usabil-
ity of location-aware application from the end-user perspective. A location-aware
application typically presents predicted locations to a user in such a way that
it may require her to rationalize with the information [I1]. Uncertainty in a
context-aware application is inevitable [12], but the onus of identifying the true
error of a predicted location should not be placed solely on the user. Rather,
as Greenberg suggests, the context-aware application should not hide ambiguity
and uncertainty from its users [13], but present the information truthfully in
such a way that users can trust the information and react appropriately [T4JT5].
Chalmers and Galani advocate “seamful design”, in which systems designers re-
veal the finite nature or “seams” of their technology [16]. In doing so users and
designers can leverage the system’s finite nature (in our case positioning error)
to provide a benefit. Antifaskos et al. [I7] have shown in their memory aid study
that user performance can be improved by expressing the system’s uncertainty.
Uncertainty is not always something that should be avoided. Depending on the
context of use, uncertainty can be beneficial and used as a strategic element as
seen in the mobile game ‘Can You See Me Now’ [I5]. Participants were able to
identify situations where GPS performed poorly and leverage the situations as
part of their game play strategy. We believe that location-aware applications
should truthfully present their location predictions as a measure of their esti-
mated error, not simply the predicted location (see Figure [I]).

Probabilistic localization systems that incorporate Kalman filtering or particle
filters, typically have an internal representation of a confidence value in their
location estimates that should be accessible by a system designed. GPS provides
an easily accessible estimate of its uncertainty that is derived from the geometric
dilution of precision (DOP). Of particular importance is the horizontal dilution
of precision (HDOP). The HDOP does not provide a measure of error (i.e.,
meters), but provides a scaling factor for the GPS receiver’s accuracy based on
the geometry of the visible satellites. A HDOP value of three or less indicates
good satellite geometry and an accurate location estimate. Given the DOP, some
GPS providers have implemented additional feedback that equates the DOP to
an actual error measure.

3 Field Study Examining the Effects of Revealing Error
of a Localization System

We conducted a between subjects field study that explores the effects of providing
an estimate of the true error for a predicted location to users within the context
of a location-aware map application. Specifically, we were interested in gauging
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the impact error has on users navigation strategies. To accomplish this issue,
we conducted a location finding field study. Participants, aided by a location-
aware mobile device, were required to find four posters positioned around the
University of Toronto campus, while spending no more than 15 minutes to find
each poster. We limited the time to find each poster to 15 minutes because
it provided sufficient time to travel between poster locations (approximately
three to five minutes) and search for the poster. Additionally, it limited the
participant’s exposure to the cold. We conducted the study during January and
February of 2007 when the temperature around campus varied between -21°C
and 1°C, while the weather varied from sunny to light snow.

3.1 Experimental Setup and Hardware

For the field study, we used Intel’s POLS [4] GSM-based centroid algorithm as
the underlying localization system for our location-aware map application. Our
application and POLS were both installed on a Pocket PC T-Mobile MDA de-
vice. Prior to the study, we war-walked every street of the University of Toronto
campus, carrying the T-Mobile MDA to train the centroid algorithm.

With the trained POLS system, we were able to analyze the true error of the
centroid algorithm for our environment by identifying its cumulative distribution
function. At the 95" percentile, we determined the estimated error to be 467m.
Knowing the error levels associated with the positioning associated with our
campus, we then chose four easily accessible locations that people frequently
travel on campus such that the system would predict locations 1 and 3 with low
error, and locations 2 and 4 with high error (see Table [).

We physically marked the four locations with a unique poster (see Figure.
The posters came in two different dimensions: 61em(w) x 46¢m(h) and 40em(w)
x 60cm(h). Each poster was pressed against an equally sized piece of plywood and
posted into the ground (see Figure. None of the posters were placed inside a
building, nor in an area that participants would have to walk through a building to
find. The intent was to make each poster easily visible if the participants navigated
within the poster’s proximity. To motivate the participants to find each poster as
fast as possible regardless of their previous failures or successes, for each poster,
$25 was promised to the participant who found that location the fastest.

After installing a poster at each of the four locations, we used a T-Mobile
MDA to collect 15 minutes of GSM measurements for each location and used
the trained centroid algorithm to generate location predictions for each measure-
ment. The location predictions for each poster were recorded in separate log files.
The purpose of the logs was to ensure the consistency of the location predictions
for all the posters across participants during the study. We then installed our
map application on the same T-Mobile MDA. The application displayed a map of
campus, annotated with the centroid algorithm’s (live) prediction of the partici-
pants location and the predicted location of the poster (as read from the poster
log file). Both locations were updated every two seconds. The map application
provided three different zoom levels, where zooming in and out is achieved by
pressing the respective up and down direction on the hardware directional pad.
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Table 1. For each poster, the median, min, max and standard deviation of the centroid
algorithms true error

|Median|Minimum Maximum|St.DeV|

Poster 1| 111m 13m 161m 40m
Poster 2| 228m 211m 237Tm 50m
Poster 3| 43m 19m 63m 11m
Poster 4| 248m 212 451m 39m

v S #67854 T
(a) Poster (b) Poster in context (poster circled)

-

Fig. 2. One of the four posters (a) placed around campus (b). Each poster displays a
different image. The five digit code in the bottom right of the poster (a) is used by the
application to validate the correct poster was found.

It is also possible to pan the map in any direction by applying pressure to the
screen and dragging the map in the desired direction.

3.2 Participants

Thirty-two paid volunteers (27 male, 5 female) were recruited through the Uni-
versity of Toronto. Participants included both students and staff members from
a variety of faculties. The age of participants was between 18 and 45, with most
(27) between 20 and 35 years old. All participants are frequent computer users,
interacting with a desktop and/or laptop computer on a daily basis. Most are
mobile phone owners, but have varying experience with mobile computing be-
yond telecommunication (i.e., text messaging or mobile WWW browsing): 14
are frequent (weekly) users, four are infrequent (monthly) users and 19 have
no or little experience. Only three participants indicated previous experience
with location-aware a technology (e.g., GPS). Participants were drawn from the
active university community to ensure they would be familiar with campus.

3.3 Experimental Conditions: Visualizing Error

We explored four technique of visualizing the error of the predicted locations:
predicted location, 95% confidence, customizable confidence and optimal error.
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Table 2. The mapping between the confidence level and the prediction error

Confidence (%) |5(10[ 1520|2530 |35]..] 65|70 | 75|80 |85 |90 |95
Positioning error (m)|57(82[103]123|139]153[164|...]262|281|307]343|378[413|467

Unl_\'.larslly Fa “é\
| \gn =ofToronto) Q —

f Princess
Margaret

Fig. 3. The experimental four conditions: predicted location (a); 95% confidence (b);
customizable confidence by default (¢) and after the confidence value has been manip-
ulated (d); and optimal error (e)

Given our between subjects study design, each participant was exposed to only
one visualization, not multiple.

Predicted Location. In the predicted location condition, we provided partic-
ipant with the predicted location of herself and the poster (see Figure as
generated by POLS. This condition served as our base case to compare the other
conditions against. The map is annotated with two dots representing the pre-
dicted locations of the participant and the poster. Participants were instructed
that the error for the predicted locations could vary within the range of 467m.

95% Confidence. In the 95% confidence condition, we provided participants
with a region defined by a confidence ring (see Figure [3(b))), in which the ap-
plication is 95% confident that the actual location is contained within the ring.
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The ring was drawn using our localization systems prediction of each location as
the origin. The radius of the confidence ring was set to 467m; the 95" percentile
training error determined for our environment. The size of the confidence ring
remained constant (in meters) throughout the experiment, but scaled (in pixels)
to match the map’s zoom level. The participants were not instructed that the
confidence ring was drawn around an origin defined by the location prediction,
but simply what the visualization represented.

Customizable Confidence. In the customizable confidence condition, we pro-
vided participants (by default) with the same visualization as the 95% confidence
condition (see F igure; however, they could manipulate the confidence level
of the ring. By default the confidence is set to 95%, but by using the directional
pad they could increase or decrease the confidence value respectively; the confi-
dence is customizable in increments of five percent, from 5% to 95%. In changing
the confidence value, the radius of the confidence ring would similarly change. A
smaller confidence value would provide an smaller confidence ring; for example,
Figure shows the confidence ring set to 70%. If participants want a smaller
area to search, they can decrease the confidence value, but in doing so they are
decreasing the confidence the location is contained within the new confidence
ring. Table [2] shows the relationship between the confidence levels and the ring
size. Again, participants were not instructed that the confidence ring was drawn
around an origin defined by the location prediction.

Optimal Error. In the optimal error condition, we provided participants with
a ring for each location (see Figure where the ring’s radius is defined
by the true error of the location prediction. We could calculate the true error
for each prediction because our software knew the actual location of both the
participant (via GPS) and the posters. This means that the size of each ring is
variable, but it provides optimal confidence because the rings always contain the
actual location they represent. Again, participants were not instructed that the
confidence ring was drawn around an origin defined by the location prediction.
In actual practice, obtaining the true error of a location prediction given current
technology is difficult at best. We attempt to address this issue in Section 4.

3.4 Procedure

The study began with participants filling out a background questionnaire to pro-
vide us with demographics information. Next, we introduced the participants to
the experimental condition they would be using, explained the software and al-
lowed them explore the interface. The explanation of the condition was repeated
until the participants expressed an understanding of the condition. This ensured
that the participants understood what the application was showing them. Each
participant took part in only one experimental condition.

After the participants had sufficient time to explore the interface and were
familiar with their condition, they began the actual experiment. We outfitted
each participant with a voice recorder to record verbal comments made during
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the experiment and a Bluetooth GPS synchronized with the Pocket PC to record
where participants walked. We escorted participants outside to the same initial
location and instructed them to press the start button displayed on the handheld
to begin. All participants were required to find the same posters, in the same
order. No attempt was made to counter balance the poster ordering. Participants
were instructed regarding a 15 minute time limit to find each poster. If after 15
minutes they were unsuccessful in finding the poster, the application indicated
15 minute time limit had elapsed and annotated the map the poster’s actual
location, to which the participant still must proceed. Once a participant had
found a poster they entered the five digit code in the bottom right corner of
the poster (see Figure to validate that they had indeed found the correct
poster. If the poster code was valid, the application presented the participant
with a Likert Scale questionnaire on the handheld inquiring about their perceived
difficulty of the scenario. After completing the questionnaire, the application
presented the participant with the map and the location for the next scenario.
This process repeated for all four posters.

After finding the final poster and completing the questionnaire, the partici-
pants completed a semi-structured interview concerning their experience. Addi-
tionally, we asked them to rank the four posters according to difficulty.

4 Results of Field Study

In this section, we present the findings of our study. In particular, we focus
on the participants’ completion times and perceived difficulty for each poster.
We highlight participants’ navigation strategies and discuss the influence of the
experimental conditions on their location finding strategies.

4.1 Time to Find a Poster

In Figure @l we observe a significant dichotomy in the time to find a poster
because of the magnitude of the estimated error; only 6 of 32 participants found
poster 2 and only 10 found poster 4. Prior to our analysis, we applied the Rankif
procedure to normalize the timing data to make it more appropriate for variance
analysis. The estimated error for a poster’s location prediction and the condition
had a significant affect on the time it took a participant to find a poster. A four
(Condition) by four (Poster) analysis of variance (ANOVA) with the time to
find a poster as the dependent variable, yielded a significant main effect for
condition [F(3,112) = 1.27, p<0.05] and poster [F(3,112) = 33.52, p<0.005], but
no significant interaction [F(9,112) = 1.51, p>0.10].

Post hoc comparisons were made using Tukeys HSD test. Results revealed that
participants in the optimal error condition performed their poster finding task
significantly faster (p<0.05) than those in the customizable condition. Addition-
ally, those in the optimal error condition showed a trend towards performing the

! Timing data was normalized using the Rankit procedure as defined in SPSS v14.0.
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Fig. 4. Box plot of the time to find each poster for each condition. The box of the plot
displays the median value and the interquartile range. The whiskers display the mini-
mum and maximum time. All participants in the predicted and customizable confidence
conditions could not find poster 2 in the 15 minute (900s) time limit.

poster finding tasks faster (p=0.06) than those in the 95% confidence condition.
As expected, participants were able to find posters 1 and 3 significantly faster
(p<0.001) than posters 2 and 4.

4.2 Perceived Difficulty of the Poster

The difficulty of each poster was assessed by two techniques. Upon finding a
poster, participants rated the posters difficulty on a 5-point Likert scale (1-
Very Easy, 2-Easy, 3-Neutral, 4-Difficult, 5-Very Difficult). After completing all
posters, participants ranked the four posters in order according to their diffi-
culty; 1 being the easiest and 4 the most difficult. The rank and Likert data is
analyzed using Friedmans Two-Way Analysis of Variance. Post hoc analysis of
the Likert and rank data is conducted using the Wilcoxon Signed-Ranks Test
with a Bonferroni adjustment of @ = 0.008.

The Friedman analysis demonstrated a significant difference for the perceived
difficulty between posters [x? (3, N = 32) = 35.58, p<0.001], a significant dif-
ference for the perceived difficulty between conditions [x? (3, N = 32) = 13.45,
p<0.005] and a significant ordering of the posters perceived difficulty rankings
[x? (3, N = 32) = 36.34, p<0.001].

Post hoc analysis of the conditions revealed participants perceived the optimal
error condition to be significantly less difficult that the customizable confidence
(Likert: z=-2.93, p<0.005) condition. Additionally, as expected given the esti-
mated error, participants perceived poster 1 to be significantly less difficult than
poster 2 (Likert: z=-411, p<0.001; rank: z=-4.72, p<0.001) and poster 4 (Lik-
ert: z=-3.40, p<0.005; rank: z=-3.72, p<0.001) and poster 3 significantly less



190 D. Dearman et al.

difficult than poster 2 (Likert: z=-3.74, p<0.001; rank: z=-3.55, p<0.001) and
poster 4 (Likert: z=-3.37, p<0.005).

4.3 Navigation Strategies

Each participant, upon finding all four posters created a retrospective route
map by tracing their route from memory onto a paper map of campus. Using
the map, participants could highlight unique occurrences during the experiment
and easily convey locations alluded to during discussion with the interviewer.
Using the retrospective map, a plot of each participants recorded position via
GPS and their interview transcript, it was possible to identify typical and unique
navigation strategies and the influence of each condition on these strategies.
These strategies include:

— Navigate to the middle. In 99 of the 128 completed scenarios, participants
either navigate to the predicted location and search the vicinity, or in the
case of a ring, they navigate and search the region alluded to by the ring’s
centre. In the case of location predictions with low true error, this strategy
was advantageous because it brought participants close to the posters; as
such the majority of participants successfully find posters 1 (28/32) and 3
(24/32). However, for location predictions with high true error, navigating
to the ring’s centre region was detrimental in that it focused the participants
search on an incorrect region; as such we observed only a small number of
participants finding posters 2 (6/32) and 4 (10/32).

— Confine the area to search. In the predicted location condition, the ap-
plication presented each poster as a single dot. Despite participants’ under-
standing that error existed in the localization system (as described by the
experimenter), participants’ comments suggest that they struggled to trans-
late the range of potential error into a meaningful search area. For location
predictions with high true error, without an awareness of the error mag-
nitude, participants typically searched one street (poster 4) or intersection
(poster 2) exhaustively, without success (see Figure H). For the most part,
participants confined their search to too small an area and as such were
unsuccessful in finding posters 2 and 4. In the three conditions in which par-
ticipants were presented a region defined by the estimated error, the region
helped to confine the participant’s search. As mentioned, participants would
typically start by searching the rings center region, but then expand their
search to additional regions bounded by the estimated error ring.

— Identify a path that provides the largest coverage of the surround-
ing area. Rather than initially heading toward the error ring’s centre region,
some participants leveraged their understanding of the ring and their famil-
iarity with campus to identify a path that would allow for maximum coverage
of the suggested search area. This strategy included finding a sequence of
streets and paths that would allow them to navigate the ring, encompassing
as much area as possible, without backtracking.
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— Associate the target with a landmark. Rather than initially going to
the error ring’s centre region, some participants relied on their knowledge
of campus within the ring to specifically identify a unique location, or loca-
tions to search. They often associated a specific landmark or a well known
location on campus as a probable location to find a poster. The justification
for choosing the location(s) was based more on prior knowledge of the en-
vironment rather than the map. They made educated decisions as to where
the poster could be based on their knowledge of the area within the ring.

— Ignore the ‘Me’ location. The majority of participants (27/32) explicitly
expressed in their interviews that they ignored the application’s prediction
of their location for the majority of the study; they commented that their
location prediction was not very accurate. However, 17 of the 32 participants
indicated in their interviews that they did attempt to use their location’s pre-
diction on one or more occasions to help guide them. They tried to: 1) apply
the error observed in the prediction of their location (given they knew where
they were) to the predicted location of the poster, 2) align the ‘Me’ location
with the poster location, and 3) infer greater accuracy when their predicted
location and poster location overlapped. It was typical to see participants
use these techniques with the first poster as their initial strategy (while they
were inexperienced) or for the remaining three posters when they were un-
successful in locating the poster where they expected. Most participants who
relied on the ‘Me’ location at one point or another described their usage as a
“last ditch” attempt to find the poster. Very few participants (3/32) repeated
the same technique a second time for a subsequent poster. These strategies,
although well conceived and seemingly plausible, were based on a nave un-
derstanding of the localization system; the perceived relationship between
the two location predictions did not exist because the systems accuracy is
variable depending on environmental features.

In addition to the strategies described above, we also identified important find-
ings that highlight the need for presenting the estimated error of a localization
system to users dynamically. In the customizable confidence condition, partici-
pants reduced the confidence ring, commenting in their interview, that is made
the size of the prediction area more manageable. The application logs support
this observation. This was appropriate for location predictions with low true
error, however, it was detrimental in the case of high true error. A ring that dy-
namically shrinks and grows, such as the one in our optimal condition provides
a more accurate awareness of the true error. Without this awareness, users are
unable to differentiate between low and high true error.

— Experience could not allude to the level of error. The first two sce-
narios introduced participants to the fact that the error for a location pre-
dictions is variable. However, participants in the predicted location, 95"
percent confidence and customizable confidence condition did not show a
significant change in their navigation strategies for posters 3 and 4. Partici-
pants commented that they searched regions closer to the rings edge (if they
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were presented with a ring), but overall most maintained the same strategy
of searching the middle. Analysis of the GPS logs and the retrospective map
supported their comments. Participant comments reveal that their strategy
did not change because, 1) they had no awareness of the error level for the
predicted location until they found the actual location of the poster and 2)
they could not conceive a more beneficial strategy based on the information
that they had:

(P24-95th) “In one [the first scenario] it [the poster] was in the cen-
tre, in two [the second scenario] it [the poster] wasn’t. I didnt know
what to choose! I chose the centre route [referring to scenario three]
and I was lucky it was there.”

Desired reduction of the search area to a manageable size. No par-
ticipant in the customizable confidence condition maintained the 95% confi-
dence level while trying to find the posters. All participants in this condition
felt that the area defined by 95% confidence was too great to search within 15
minutes. At the default level of 95% confidence, the posters’ actual location
was always contained within the confidence ring. After participants reduced
the confidence ring, the actual location was contained within the confidence
ring 86% of the time for poster 1, 64% for poster 2, 99% for poster 3 and
43% for poster 4. For posters 2 and 4, given the high true error in the lo-
cation prediction, reducing the confidence level resulted in the poster not
being contained with the ring a substantial amount of the time.

Required awareness of true error. Participants in the optimal condition
were given a ring that provided them with an awareness of the true error for
a location prediction. The size of the ring was proportional to the predicted
locations true error: small error resulted in a small ring, large error resulted
in a large ring. For posters 1 (M = 107m) and 3 (M = 43m) the size of
the ring was significantly smaller than the ring for posters 2 (M = 228m)
and 4 (M = 266m). For predictions with low true error, as in the case of
posters 1 and 3, the participants had a much smaller region to search than
the 95% confidence and customizable confidence conditions, but had the
same confidence in the region. As such, we observed all participants in the
optimal error condition found posters 1 and 3. However, only 12/16 found
poster 1, and 10/16 found poster 3 for the 95% confidence and customizable
confidence conditions. Additionally, the dynamic changes in the ring size
afforded participants an awareness of the true error level for the current
location prediction. As such, they could perceive the difficulty of each poster
based on the size of the ring. In all the other conditions, participants did not
have this awareness. They were ignorant of the true error for a prediction
until they found the actual poster location.

(P37-Optimal) “/Referring to poster 2] I expected it to be more work,
the circle was much larger than the first one.”
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4.4 Summary

We observed a significant benefit of presenting the estimated error on partici-
pants ability to find the poster locations. The predicted location gave partici-
pants only one point to reference, as such they had difficulty defining an area
to search when the predicted location was inaccurate. The 95% confidence, cus-
tomizable confidence and optimal error conditions provided participants with a
defined area to search. However, participants in the 95% confidence and cus-
tomizable confidence condition could not identify the true error of the estimated
error, as such they could not differentiate between an accurate and inaccurate
location prediction. For the customizable confidence, participants found the de-
fault 95% presented them with an unmanageable search area. As a result, they
reduced the confidence value which in the case of the low true error was bene-
ficial, but in the case of high true error, it often resulted in the posters actual
location being outside the confidence ring. Participants in the optimal condition
had the benefit of a smaller ring provided the true error was low, but always had
a consistently high level of confidence in their error estimates. We believe given
our results that, not only is providing the localization error important, but that
the presentation should present the true error as accurately as possible. In the
next section, we address the issue of appropriately estimating the true error.

5 Dynamic Error Estimation

In the previous section, we showed that revealing the error of a localization sys-
tem is beneficial to the end-user. In this section, we describe and evaluate two
algorithms for dynamically estimating the true error of a location prediction as
generated by a radio-based localization system such as centroid [I0] or finger-
printing [7]. The algorithms are not tested in a similar field study as presented
in the previous sections. We have left this exploration for future work.

5.1 Multiple Regression Error Estimation

The Multiple Regression (MR) error estimation algorithm takes as input a ra-
dio measurement (a list of beacons and their associated signal strength values),
as fed into a localization system, and returns an error estimate of the location
prediction in meters. To create a mapping from radio measurements to error es-
timations, MR uses the multiple regression method [I§] to build a linear function
from features of the radio measurements to error estimations. We experimented
with a variety of features, eventually building a function that incorporates: the
strongest signal strength value; the average of the three strongest signal strength
values; the average of the five strongest signal strength values; the average of all
signal strength values; the standard deviation of all signal strength values; the
weakest signal strength value; the number of beacons observed; the number of
strong signal strength values; the number of medium signal strength values; and
the number of weak signal strength values. The strong, medium and weak signal
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strength values are device specific and need to be normalized across different
devices. Once the linear function has been generated based on a set of training
data, the error estimation can be generated in real time by extracting features
from the current radio measurements and evaluating the linear function.

5.2 Zone Based Error Estimation

The Zone Based (ZB) error estimation algorithm takes as input a location predic-
tion from a localization system (lat/lon coordinate) and returns an error estimate
in meters. The main assumption behind the ZB algorithm is that localization
systems are more or less stable. That is, if today a localization system predicts
that the user is at coordinate B when she is actually at coordinate A, then to-
morrow the localization system will still predict that the user is somewhere close
to B, when she is at A.

7ZB maintains a database of locations and errors associated with every loca-
tion. Such a database is built off-line by running a given localization system
on a set of measurements for which actual locations are known and recording
the predicted locations and their associated error in the database. For example,
predicted locations that fall around coordinate A may have a true error in the
range of 100m to 120m. This fact is recorded in the database.

Given the predicted location from a localization system, the estimated error is
generated at real time by searching for known errors near the predicted location.
Since a number of errors may have been recorded around the predicted location,
7B algorithm first sorts the errors and then chooses one of the errors based on an
additional parameter given to the algorithm. For example, ZB50 uses the 50"
percentile (a median) value, while ZB75 uses the 75" percentile value.

5.3 Evaluation

To evaluate the accuracy of the MR and ZB algorithms, we collected three sets of
GPS-stamped GSM measurements using Intel’s POLS software [4]. The data was
collected by war-walking major streets of the University of Toronto campus. For
each trace, we walked a distance of about 4.5km, covering approximate area of
590, 000m?. We evaluated MR and ZB on two localization systems: centroid and
fingerprinting. We used the first set of collected data to train each localization
system, and then tested their accuracy by feeding the two additional sets into
each localization system to generate traces of GPS-stamped GSM measurements
and corresponding location predictions.

Figures [ and [6] show our algorithms performance for the centroid and fin-
gerprinting localization systems, respectively. The figures show the 25", 50",
75t and 95" percentiles of the absolute difference between the true error and
the estimated error for six error estimation algorithms. The Stat95 algorithm
always predicts the same error, equal to the 95" percentile of the error in the
training data, while Random picks a random error estimation from the training
data. Stat95 and Random are the straw man approaches and are presented for
comparison. The numbers in parentheses represent the percentage of predictions
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Fig. 5. The absolute difference between the true error and the estimated error for the
centroid localization system using the Stat95, Random, MR and ZB algorithms
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Fig. 6. The absolute difference between the true error and the estimated error for the
fingerprinting localization system using the Stat95, Random, MR and ZB algorithms

for the respective algorithm that are greater than the true error. The percent-
age can be thought of as the confidence value for predictions generated by the
algorithm. For example, an error estimate generated by ZB75 is approximately
77% more likely to be greater than the true error than lower.

Both MR and ZB perform better than the straw man approaches, with MR
typically being more accurate. MR achieves 95! percentile error of 128m for
centroid and 194m for fingerprinting, with Stat95 (the best performing straw
man) trailing behind with 238m for centroid and 357m for fingerprinting. ZB75
appears to have a good balance between accuracy and achieved confidence, but
performs slightly worse in terms of accuracy than MR. Interestingly, there ap-
pears to be a high correlation between the parameters passed to the ZB algorithm
and the achieved confidence level. This suggests that ZB may be used in systems
where the confidence level may need to be adapted to the user’s requirements.



196 D. Dearman et al.

Table 3. Median of the true error and estimation error (in meters) for the ZB75 and
7ZB90 algorithm at each of the four poster locations

|Poster 1|Poster 2|Poster 3|Poster 4|
True 111 228 43 248
MR 196 208 142 124
ZB75| 122 196 266 298
7ZB90| 148 243 519 364

As described in Section Bl we collected 15 minutes worth of location predic-
tions at each for the four poster locations. To test the accuracy of our error
estimation algorithms, we supplied these locations into our MR, ZB75 and ZB90
algorithms. Table [B] shows the median of the true error and estimation error for
each poster. MR performs well for posters 1 and 2, but over estimates the error
for poster 3 and under estimates for poster 4. Both ZB75 and ZB90 perform
well for posters 1, 2 and 4, but they estimate a much larger error for poster 3.
Looking more carefully at the data reveals that the training data around poster
three contains a varied mixture of low and high error values. The nature of the
ZB75 and ZB90 is to pick the 75" and 90" percentile error around the area of
a prediction, therefore we observe high predictions of error for poster 3. We are
developing techniques that can identify problematic areas such as poster 3 and
reveal these inconsistencies to the user.

6 Conclusions and Future Work

Many localization systems exist and can be used in location-aware applications.
However, the majority of these systems do not provide easy access to an es-
timation of the prediction error, if any at all. We introduced three techniques
for presenting the estimated error to address this problem; 95% confidence, cus-
tomizable confidence and optimal error. We conducted a field study to explore the
benefits and influences of presenting the estimated error on location finding, by
comparing our three visualization techniques against simply presenting the pre-
dicted location. Our results show that presenting an estimate of the positioning
error provides a significant benefit. Fixed estimates of error (e.g., 95% confidence
and customizable confidence) provided little additional benefit, but they do help
confine the search area. The optimal error condition strongly and positively in-
fluenced participants’ search strategies. Participants found all posters where the
true error was small. When the true error was large, participants experienced
the same problems for finding the posters as the participants in the other con-
ditions. However, participants in the optimal condition could identify that the
true error was large and differentiate between high and low true error, where as
participants in all other conditions could not.

Based on the result of our field study, we designed two practical algorithms for
estimating the error of a localization system. The Multiple Regression algorithm
estimates the error based of the raw GSM measurements, by extracting features
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from the measurement and evaluating a linear function learned on the train-
ing data. The Zone Based algorithm generates an error estimate based on the
predicted locations supplied by the localization system using a mapping of the
predicted locations to errors. We evaluated the performance of our algorithms
on the centroid and fingerprinting localization systems. Our algorithms perform
well, showing a median estimation inaccuracy of up to 50m from the predicted
location’s true error.

In future work, we plan to continue with the refinement of our error estimation
algorithms. The success of our algorithms and the simplicity of their design pro-
vide encouragement for the exploration of more robust methods. Additionally,
we will explore alternate presentation of the estimated error beyond a simplis-
tic ring. We believe that a different presentation may significantly improve the
perception and understanding of the estimated error.

Acknowledgments

The authors would like that thank all the participants for their time and willing-
ness to brave the cold weather. This research is supported in part by the Natural
Science and Engineering Research Council of Canada (NSERC) and the Walter
C. Sumner Foundation.

References

1. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of
a context-aware application. In: MobiCom ’99: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking, pp.
59-68. ACM Press, New York (1999)

2. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: MobiCom ’00: Proceedings of the 6th annual international conference
on Mobile computing and networking, pp. 32-43. ACM Press, New York (2000)

3. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.
ACM Trans. Inf. Syst. 10(1), 91-102 (1992)

4. Chen, M.Y., Sohn, T., Chmelev, D., Hahnel, D., Hightower, J., Hughes, J.,
LaMarca, A., Potter, F., Smith, I.E., Varshavsky, A.: Practical metropolitan-scale
positioning for gsm phones. In: UbiComp ’06: Proceedings of the 8th international
conference on Ubiquitous Computing, pp. 225-242. Springer, Heidelberg (2006)

5. Bahl, P., Padmanabhan, V.N.: Radar: an in-building rf-based user location and
tracking system. In: INFOCOM ’00: The 19th annual joint conference of the IEEE
Computer and Communication Societies, pp. 775—784. IEEE Computer Society
Press, Los Alamitos (2000)

6. Lamarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn,
T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G.,
Schilit, B.: Place lab: Device positioning using radio beacons in the wild. In: Per-
vasive '05: The 3rd international conference on pervasive computing, pp. 116-133.
Springer, Heidelberg (2005)

7. Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate gsm indoor lo-
calization. In: UbiComp ’05: Proceedings of the 7th International Conference on
Ubiquitous Computing, pp. 141-158. Springer, Heidelberg (2005)



198

8.

11.

12.

13.

14.

15.

16.

17.

18.

D. Dearman et al.

Patel, S.N., Truong, K.N., Abowd, G.D.: Powerline positioning: A practical sub-
room-level indoor location system for domestic use. In: UbiComp ’06: Proceed-
ings of the 8th international conference on Ubiquitous Computing, pp. 441-458.
Springer, Heidelberg (2006)

Ubisense, www.ubisense.net

Varshavsky, A., Chen, M., de Lara, E., Froehlich, J., Haechnel, D., Hightower, J.,
LaMarca, A., Potter, F., Sohn, T., Tang, K., Smith, a.l.: Are GSM phones THE
solution for localization? In: IEEE Workshop on Mobile Computing Systems and
Applications, April 2006, IEEE Computer Society Press, Los Alamitos (2006)
Smith, I., Consolvo, S., LaMarca, A., Hightower, J., Scott, J., Sohn, T., Hughes,
J., Tachello, G., Abowd, G.D.: Social disclosure of place: From location technology
to communication practices. In: Pervasive ’05: The 3rd international conference on
pervasive computing, pp. 134-151. Springer, Heidelberg (2005)

Dey, A., Mankoff, J., Abowd, G., Carter, S.: Distributed mediation of ambiguous
context in aware environments. In: UIST ’02: Proceedings of the 15th annual ACM
symposium on User interface software and technology, pp. 121-130. ACM Press,
New York (2002)

Greenberg, S.: Context as a dynamic construct. Human-Computer Interaction 16,
257-268 (2001)

Edwards, W.K., Grinter, R.E.: At home with ubiquitous computing: Seven chal-
lenges. In: UbiComp ’01: Proceedings of the 3rd international conference on Ubig-
uitous Computing, pp. 256-272. Springer, London (2001)

Benford, S., Anastasi, R., Flintham, M., Drozd, A., Crabtree, A., Greenhalgh, C.,
Tandavanitj, N., Adams, M., Row-Farr, J.: Coping with uncertainty in a location-
based game. IEEE Pervasive Computing 02(3), 34-41 (2003)

Chalmers, M., Galani, A.: Seamful interweaving: heterogeneity in the theory and
design of interactive systems. In: DIS ’04: Proceedings of the 2004 conference on
Designing interactive systems, pp. 243-252. ACM Press, New York (2004)
Antifakos, S., Schwaninger, A., Schiele, B.: Evaluating the effects of displaying
uncertainty in context-aware applications. In: UbiComp ’04: Proceedings of the 6th
international conference on Ubiquitous Computing, pp. 54—69. Springer, Heidelberg
(2004)

Krumm, J., Hinckley, K.: The nearme wireless proximity server. In: UbiComp ’04:
Proceedings of the 6th international conference on Ubiquitous Computing, Septem-
ber 2004, pp. 283-300. Springer, Heidelberg (2004)


www.ubisense.net

	Introduction
	Related Work
	Location Sensing Technologies and Error
	Expressing Uncertainty

	Field Study Examining the Effects of Revealing Error of a Localization System
	Experimental Setup and Hardware
	Participants
	Experimental Conditions: Visualizing Error
	Predicted Location.
	95% Confidence.
	Customizable Confidence.
	Optimal Error.

	Procedure

	Results of Field Study
	Time to Find a Poster
	Perceived Difficulty of the Poster
	Navigation Strategies
	Summary

	Dynamic Error Estimation
	Multiple Regression Error Estimation
	Zone Based Error Estimation
	Evaluation

	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


