
Adding Control-Flow to a Visual Data-Flow Representation

David Dearman
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

dearman@cs.dal.ca

Anthony Cox
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

amcox@cs.dal.ca

Maryanne Fisher
Department of Psychology

Saint Mary’s University
Halifax, Nova Scotia, Canada

mlfisher@smu.ca

Abstract

Previous studies have shown that novices do not tend
to extract or use data-flow information during program
comprehension. However, for impact analysis and simi-
lar tasks, data-flow information is necessary and highly
relevant. Visual data-flow programming languages, such
as Prograph/CPX, have been commercially successful, sug-
gesting that they provide effective data-flow representations.
To explore data-flow representations for program compre-
hension, we augment Prograph data-flow programs with
control-flow features to determine the effects on comprehen-
sion. We hypothesize that combined control/data-flow rep-
resentations will aide comprehension better than data-flow
alone. To validate this hypothesis, we present the results of
an experiment comparing three combined representations
against a data-flow only representation. While the addition
of control-flow was found to be beneficial, the complexity of
the representations plays an important role. Complex and
highly detailed control-flow, although perceived as useful,
is less effective when combined with data-flow, than less de-
tailed and less complex control-flow descriptions. This find-
ing suggests a tradeoff between a representation’s content
and complexity. We found a nested representation describ-
ing inter-method control-flow to be the most effective for
supporting program comprehension.

1 Introduction

When programmers need access to data-flow informa-
tion, program comprehension tools must be able to effec-
tively display this information. While data-flow may be
represented independently of control-flow, we believe that
merging the two flows will improve programmers’ abil-
ity to perform program comprehension tasks. To validate
this hypothesis, we experimentally examined the effects on
program comprehension of four data-flow representations
based on the visual data-flow language Prograph/CPX [12].

Compared to control-flow, there is less research on the
representation of data-flow for supporting program compre-
hension. It is likely that this lack of research stems from the
fact that data-flow information is difficult to extract from
procedural programs [11] and that it is rarely extracted by
novices [2]. Even when provided with data-flow represen-
tations, novices have difficulty using the representation to
facilitate comprehension [10].

While there is contradictory evidence as to whether data-
flow representations offer advantages over control-flow rep-
resentations [1, 5], programmers are not always free to
choose the most effective representation. Programmer
choice is necessarily restricted by the maintenance task they
are performing and the information needed to adequately
perform the task.

Green [4, 7] has shown that a notation that highlights
data-flow leads to better comprehension of data-flow infor-
mation. Hence, to successfully perform maintenance tasks,
such as impact analysis, for which accurate knowledge of
data-flow is necessary, programmers benefit from the avail-
ability of effective data-flow representations.

Research on visual programming languages [6] has
demonstrated that specific properties of visual program-
ming languages (VPLs) lead to differences in program com-
prehension. When presented with a data-flow VPL, users
tend to write program summaries that reference functional
information, and when presented with a control-flow VPL,
program summaries reference procedural information. As
data-flow VPLs, such as Prograph, have experienced some
commercial success, we believe that these languages can be
used to develop representations for aiding program compre-
hension.

During requirements analysis, data flow diagrams
(DFDs) are often used to describe the data-flow of the appli-
cation being designed. Freeman [3] documented the prob-
lems that occur during DFD creation and the difficulties ex-
perienced by analysts when working with DFDs. In par-
ticular, analysts often lack the training needed to work with
DFDs and, perhaps as a result, have difficulty understanding

data models. Millet [9] suggested that these difficulties are
reduced when the DFD is simplified by using a higher level
of abstraction for some features. Lloyd and Jankowski [8]
explored the application of cognitive information process-
ing principles for adding clarity to DFDs and demonstrated
that comprehension is related to DFD clarity. These studies
suggest that, even if used for other tasks, data-flow is a dif-
ficult concept for programmers and is easily affected by the
representation technique used.

As we are unaware of any studies that attempt to deter-
mine the optimal representation for data-flow to aide pro-
gram comprehension, the research in this paper is a first
step towards this goal. Mosemann and Wiedenbeck have
shown that control-flow views of programs facilitate pro-
gram comprehension [10]. Thus, we explore the addition of
control-flow information to data-flow representations in the
belief that this addition will create better representations for
use during program comprehension.

To explore the effectiveness of various representation
techniques, we experimentally compare the effects on com-
prehension of four representations based on Prograph/CPX.
Each representation is now detailed before the experiment
is described and its results discussed.

2 Data-Flow Representation

The four representations investigated in this paper are
identified as the linear, nested, hierarchical, and augmented
representations. The linear representation is identical, ex-
cept for the method ordering, to the standard Prograph data-
flow representation. The other three representations are all
created through the addition of control-flow information to
the standard Prograph representation. Each representation
is now described.

2.1 Linear Representation

The linear representation presents each Prograph/CPX
method (procedure) in a separate window. The methods are
displayed, left to right, on a single line and ordered alpha-
betically by method name. Figure 1 provides an example
of the linear representation. The program in the figure per-
forms a quicksort of a user-entered list of integers.

In Prograph, windows are arranged according to the or-
der of their creation. The switch to alphabetical ordering
provides a repeatable ordering for use during experimenta-
tion without significantly modifying the representation.

If a method has multiple windows, as occurs when the
method has multiple implementations, the two windows are
adjacent, with the most complex being the leftmost. Com-
plexity is determined by counting the number of elements
in each window and considering the window with the most
elements as the most complex. The linear representation is

intended to serve as the control case in the experiment, as
this representation is not augmented or manipulated in any
meaningful way.

2.2 Hierarchical Representation

The hierarchical representation extends the linear repre-
sentation by connecting ‘calling’ and ‘called’ methods. As
can be seen in Figure 2, every method contains two horizon-
tal bars, one at the top and one at the bottom. The top bar
represents the method’s incoming values (actual arguments)
and the bottom bar represents the method’s outgoing (re-
turned) values. In the hierarchical representation, the out-
going bar of a method is aligned and connected, with dotted
lines, to the incoming bar of another method when the first
method calls the second. Thus, this representation uses ver-
tical alignment to indicate ‘calling-called’ relationships by
placing calling methods higher than called methods. The
program in Figure 2 performs the same quicksort as in the
linear representation and differs only by the explicit indi-
cation of ‘calling-called’ relationships. The representation
gets its name from the hierarchy created by connecting the
horizontal bars of the methods. When a method has alter-
native implementations, they are placed side by side in the
hierarchy, with the most complex being the leftmost.

2.3 Nested Representation

Similar to the hierarchical representation, the nested rep-
resentation attempts to make ‘calling-called’ relationships
explicit. However, in this representation nesting is used
to indicate the call chain. The nested representation nests
methods within each other, according to their calling se-
quence. Figure 3 shows the same program as Figure 1,
but using the nested representation. So that the innermost
method is easily viewed, it is kept constant in size, with
methods increasing in size as one moves outwards. If
a method has two implementations, the most complex is
shown and the simpler is layered underneath the more com-
plex. We chose this layering because in Prograph, the sim-
plest implementation frequently corresponds to a base-case
condition of a recursive method and the base-case typically
contains only minimal information.

Early versions of Prograph supported the use of nesting,
for control-flow constructs, during program implementa-
tion, but the feature was removed because it required meth-
ods to be resized every time method calls were added or
deleted.1 While this limitation prevents nesting from form-
ing the basis of a data-flow representation during program
development, the generally static nature of program code
during comprehension tasks does not prevent nesting from
being effectively employed.

1Personal communication with Prograph designer P. Cox.

Figure 1. Example of the Linear Representation

Figure 2. Example of the Hierarchical Representation

Figure 3. Example of the Nested Representation

Figure 4. Example of the Augmented Representation

2.4 Augmented Representation

The augmented representation supplements the basic
Prograph/CPX methods with additional control-flow infor-
mation. In Figure 4, the sample quicksort program is shown
using the augmented representation.

Black dashed arrows are used to connect a method call
to the horizontal input and output bars of its implementa-
tion, and consequently, to indicate that when the method is
executed, control is transferred to that method. Conditional
elements have green and red arrows (labeled ‘T’ and ‘F’) to
identify the flow of execution when the condition evaluates
to ‘true’ or to ‘false.’ A small stop sign is used to mark the
exit point of the program. When control-flow deviates from
data-flow, soft gray dotted arrows are used to indicate intra-
method control flow (loops). If a method is recursive, its
input and output bars are connected with a soft gray dotted
arrow labeled ‘recurse.’

2.5 Hypotheses

Apart from the nested representation, the representations
all use the same windowing decomposition as the stan-
dard Prograph/CPX editor. In the nested representation, the
methods are increased in size to allow for nesting and sim-
pler versions of methods (with more than one implemen-
tation) are hidden from view. We selected Prograph since,
as one of the first successful VPLs, the language is typical
of commercial VPLs such as LabVIEW, Softwire and HP
VEE. These languages all use similar approaches for repre-
senting procedural abstraction.

The linear representation can be considered as equiva-
lent to the standard Prograph representation, while the other
three representations all provide some additional control-
flow information. The hierarchical and nested representa-
tions show inter-method control-flow (calling sequences),
and the augmented method shows both inter-method and
intra-method control-flow.

The addition of control-flow, to all but the linear repre-
sentation, was explored since control-flow has been shown
to facilitate comprehension when used with textual lan-
guages [10]. As well, participants have been found to per-
form significantly faster when creating program summaries
using a control-flow VPL than when using a data-flow VPL
[6]. These findings suggest that programmers will benefit
when control-flow information is added to a data-flow rep-
resentation.

The hierarchical and nested representations use win-
dow arrangement to explicitly provide additional informa-
tion without adding a significant amount of material to the
screen. The augmented representation adds a considerable
amount of material to the screen, but in doing so makes
intra-method control-flow very explicit. As programmers

are traditionally trained in control-flow management and
as it has been shown as the first abstraction developed by
novices during comprehension [11], it is likely to be the
most useful.

Hypothesis 1 The utility of a representation will increase
with the amount of added control-flow information. The lin-
ear representation will be the least useful, the hierarchical
and nested representations will be of intermediate utility
and the augmented representation will be the most useful
for facilitating comprehension.

As the representations have varying amounts of additional
information, we hypothesize that participants will view the
representations with more information as more complex.

Hypothesis 2 The linear representation will be rated as the
least complex, the hierarchical and nested representations
as intermediate in complexity, and the augmented represen-
tation as the most complex.

To test these hypotheses, we performed an experiment to
compare the four representations. This experiment is now
detailed.

3 Experimental Comparison

A paper-based survey was designed to explore how the
four data-flow representations affect users’ ability to com-
prehend programs. Participants were shown the four rep-
resentations and asked to identify each representation, per-
form comprehension tasks, and indicate the perceived use-
fulness and complexity of each representation.

Two applications were chosen to test the four representa-
tions: a factorial calculator and the quicksort shown in Fig-
ures 1 to 4. The factorial calculator was considered to be the
simpler of the two applications, as it has fewer nodes (9 as
opposed to 10 in the quicksort) and does not use recursion.
As well, participants were provided with a tutorial contain-
ing an example of Euclid’s GCD algorithm. As the factorial
calculator was considered to be more like the example than
the quicksort, it was potentially easier for participants to un-
derstand.

3.1 Participants

There was a total of 26 participants in the study; 17 males
(age in years,

� �������	�
�
, �� ����� ���

) and 9 females
(
��������� ���

, ��� ����� ���
). All of the participants were ei-

ther fourth year undergraduate or graduate students in com-
puter science. The use of senior undergraduate and graduate
students ensured that all participants were familiar with the
concepts of control-flow and data-flow. Eight participants
indicated that they possessed previous experience using vi-
sual languages, including Prograph, LabVIEW, Toontalk,

and Stagecast Creator; of these eight, five indicated that they
had experience using Prograph/CPX.

Participants were drawn from the Faculty of Computer
Science at Dalhousie University in Halifax, Canada. The
above average experience with visual programming occurs
since Philip Cox, the creator of Prograph, teaches a popular
course on visual programming at Dalhousie. One partici-
pant was excluded from some data analyses as he did not
fully complete the survey. Participation was voluntary and
participants were not renumerated for their involvement.

3.2 Stimuli

The survey consisted of four parts: a demographic ques-
tionnaire, an introductory tutorial on Prograph/CPX and
two program comprehension tasks. The demographic ques-
tionnaire determined the age, gender, educational back-
ground and visual language experience of the participants.

The tutorial began with a simple introduction to Pro-
graph/CPX and the representation of data-flow in Prograph.
Next, participants were shown a simple implementation of
Euclid’s algorithm to calculate the greatest common divisor
of two numbers. The implementation was represented in
both C and Prograph. The example was accompanied with a
detailed description of its elements and run-time character-
istics. The tutorial was meant to ensure that all participants
had sufficient knowledge of Prograph so that they could un-
derstand the four representations when they were presented
during the program comprehension tasks.

The C and Prograph/CPX examples were contrasted so
that participants familiar with C would be able to relate the
different structural components of a textual language with
those of a visual language. In addition, a summary of all
Prograph methods that are used in the comprehension tasks
was attached to the tutorial. Participants were allowed to
retain the tutorial and method summary during the entire
study for use as a reference.

Each of the comprehension tasks, which we call ‘appli-
cations’ for simplicity, began with the random placement of
the four representations in front of each participant. The
first application presented to the participants was the fac-
torial calculator and the second was the quicksort. Each
representation was identified using a coloured sticker (red,
yellow, green, or blue) and referred to throughout the study
by its colour. Colours were kept consistent for both appli-
cations, but the order of the representations was varied.

Each application survey first asked participants to iden-
tify the content of the four representations. While it was
intended that this information be coded and analyzed, the
responses varied widely, and thus, prevented the researchers
from accurately determining whether participants under-
stood the purpose of the representations. Some participants
described the representations in general terms (e.g. “code in

flow of execution order”) while others described the repre-
sentations with respect to each application (e.g. “if input 0,
next case, else . . . ”). In many instances the responses were
very ambiguous making it difficult to determine whether
the participants understood the representations’ informa-
tion content. Examples of ambiguous responses include:
“control-flow,” “hierarchy,” “program decomposition into
methods,” “layers,” “nested methods” and “program struc-
ture.” These descriptions, while often correct, do not pro-
vide sufficient detail to indicate whether participants under-
stood the purpose of the representation. We did not identify
the role of the representations since we wanted to determine
each representation’s ability to present information in an in-
tuitive and easily grasped manner.

Next, participants were asked to rate both the usefulness
and complexity of each representation on a scale of 1 to 5.
These ratings are referred to as perceived utility and per-
ceived complexity since they are generated by participant
perceptions and not by task performance. The utility score
labels accompanying the values (from 1 to 5) were: none,
lacking, somewhat, useful, and extremely useful. The com-
plexity score labels (from 1 to 5) were: overly simple, sim-
ple, good, complex, and overly complex.

Participants were then asked to state the effects of two,
application-specific changes. The effect descriptions were
scored using a 4 point scale as follows: 1 indicated the de-
scription was completely incorrect, 2 indicated partial cor-
rectness, 3 indicated a completely correct but incomplete
description, and 4 indicated a correct and complete descrip-
tion. After each effect description, participants indicated on
a check-list which of the representations they used to de-
termine the effects. The choice of representation was con-
sidered as a measure of applied utility and given a score
of 0, not used, or 1, used. To ensure that the control-flow
information was relevant, some of the changes explicitly af-
fected control-flow. For example, in one of the changes,
participants were asked to identify the effect of changing a
Boolean expression in the guard of a conditional construct.

Finally, participants were asked to identify the purpose
of the program by generating a short, single-line program
summary. As the summaries were very short, they were
coded using the same 4 point scale as the effect descriptions.
A total comprehension score, from 3 to 12, was generated
by summing both effect description scores and the program
summary score.

3.3 Procedure

Participants were seated in a quiet room with a large
open table to work on. They were instructed that they were
under no time constraints and that they could take as much
time as needed to complete the study. The majority of par-
ticipants completed the study in about an hour.

Application 1
Linear Hierarchical Nested Augmented

Measure M SD M SD M SD M SD
Perceived Utility 2.31 1.12 2.35 1.16 3.65 0.89 3.73 1.15
Complexity 2.62 1.17 2.54 0.99 3.04 0.96 3.88 0.91

Application 2
Linear Hierarchical Nested Augmented

Measure M SD M SD M SD M SD
Perceived Utility 2.08 1.00 2.04 1.18 3.12 1.21 3.96 0.98
Complexity 2.35 1.16 2.46 0.86 2.96 0.96 3.50 1.03

Figure 5. Descriptive Statistics

Participants were first given a consent form, followed by
the demographic questionnaire. After completion of the
questionnaire, participants were given the Prograph/CPX
tutorial and method summary, and instructed to study it and
then keep it as a reference for the remainder of the study.
Once participants indicated they had reviewed the tutorial
and were ready to proceed, the first application was pre-
sented. The four different representations were placed in a
random left-to-right ordering in front of the participant. Par-
ticipants were instructed that the ordering of the representa-
tions was completely random and they should not consider
it as significant. As four representations were being tested,
it was not possible to collect a sufficient number of surveys
for all possible 24 orderings of the representations. Thus,
a randomized approach was used to avoid introducing any
ordering effects.

Participants were given scrap paper that they could use
to make notes. For the most part, later informal analysis
revealed that the scrap paper was used to generate program
execution traces for arbitrary inputs. After the representa-
tions were distributed, they were given an appropriate sur-
vey sheet for each application.

If at any point participants had questions concerning the
operation of the Prograph methods, they were directed to
the method summary sheet. After participants indicated
that they had completed the first application, the represen-
tations were removed and the second application was pre-
sented. Once again, the four different representations were
placed in front of the participants in a random left-to-right
ordering, and the participants reminded of this fact. The
order of the two applications was consistent so that par-
ticipants would encounter the easiest task first and not be
overwhelmed, as may have happened if the harder task was
presented first. Once the participants had indicated com-
pletion of the second application, they were debriefed and
encouraged to provide feedback.

3.4 Results

To minimize the chance of error, all tests are two-tailed
and use a level of significance of � ��� ���

, unless otherwise
stated. We first present the results for the first application
before proceeding to the second application.

In the experiment, we asked each participant to rate each
representation in terms of its perceived usefulness on a 1–
5 scale (useless to useful). As well, participants rated the
complexity of each representation on a 1–5 scale (simple
to complex). The descriptive statistics for these ratings are
presented in Figure 5.

To explore which representations were significantly
rated as more useful than others, we performed paired-
samples � -tests, using the level of significance � ��� ���

to
compensate for the number of comparisons. There were
no significant differences between augmented and nested
� � ����!"� �#����$&%'� � �(�

, but the comparisons of aug-
mented and linear � � ����!)�*���#+��,$-%/.�� �����

, and aug-
mented and hierarchical � � ����!0�'��� 1�1�$2%�.3� �����

were
significant, as the augmented representation was perceived
as significantly more useful than the other representations.
There was a significant difference between nested and lin-
ear, � � ����!4�5���#��1�$6%7.8� �����

, and nested and hierar-
chical, � � ����!9�'���#���,$:%;.<� �����

. Finally, the compar-
ison between linear and hierarchical was not significant,
� � ����!=���>�?��$�%@��� 1(�

.
Pearson’s A correlations were used to examine the rela-

tionship between perceived usefulness and comprehension.
These correlations were: augmented A,� ���B!C�ED6�#�,��$F%G�
� ���

, nested A,� ���(!H�4�#�,��$B%@�I� �����
, linear A,� ���(!���� ��1�$B%@�

�	�J�
, and hierarchical AB� ���B!K�LD6� �����,$%M�/� 1��

. In other
words, the nested representation is the only one where per-
ceived usefulness significantly correlates with comprehen-
sion.

We then performed correlations to examine the rela-

tionship between applied usefulness (a value from 0 to 2
formed by counting the number of times the representa-
tion was used to determine change effects) and compre-
hension. These Pearson’s A correlations revealed no signif-
icant relationship between the usefulness of the augmented
AB� ���B!N�ED6� ����$=%G�/� �(���

, linear A,� ���(!N�L� ����$%G�/�	�?�
,

or hierarchical A,� ���(!O�P�#����$Q%�� � ���
representations

and comprehension. However, there was a significant cor-
relation for the nested representation and comprehension,
AB� ���B!��� ����$�%@��� �����

.
To test the possibility of a relationship between per-

ceived usefulness and perceived complexity, we compared
the two scores. Pearson’s A correlations yielded a sig-
nificant negative correlation between the perceived use-
fulness and complexity for the augmented representation
AB� ���B!0�<D6�R+���$S%T.U� �����

. Similarly, the nested repre-
sentation produced A,� ���(!9�<D6� ����$V%W�*� �����

. The re-
maining two representations showed no significant relation-
ship between perceived usefulness and complexity: lin-
ear A,� ���(!0�<D6� ����$2%X�3� ��1

, and hierarchical A,� ���(!0�
D6� ��1�1�$B%Y�I� ���

. Therefore, as suggested by the strong neg-
ative correlation for the augmented and nested representa-
tions, there may be a trade-off between usefulness and com-
plexity. The same general pattern was revealed when we
correlated complexity and applied usefulness: augmented
AB� ���B!H�OD6� ��1�$�%Z�O� �����

, nested AB� ���B!H�OD6� �(+B$�%Z�O� ���(�
,

linear A,� ���(!Y�[� ����+B$%M�[� 1��
, and hierarchical A,� ���B!Y�

D6� �����,$,%@�I� ���
.

It should be noted that the correlation values for the
linear and hierarchical representations must be considered
with caution for the applied usefulness scores. There were
only three individuals in the linear case and two in the hi-
erarchical case who used these representations, yielding a
small number of participants with moderate to high scores
for applied usefulness.

To confirm the trends found in the first application, the
statistics were analogously and independently performed
on the data for the second application. However, due to
a partially completed survey, the statistics for the second
task vary with respect to the number of degrees of freedom.
The descriptive statistics for the second application are pre-
sented in Figure 5.

Paired samples � -tests conducted on these usefulness
scores revealed all comparisons were significant exclud-
ing the comparison of linear and hierarchical, � � ����!��
� ���,$2%W�\� ���

. The other comparisons were as follows:
augmented and nested � � ���B!M�5�,� ����$-%/�]� ���
�

, aug-
mented and linear � � ���B!^���,� ����$S%W.7� �����

, augmented
and hierarchical � � ���B!&�T+B� ����$F%M.T� �����

, nested and lin-
ear � � ����!C�;�,� 1���$=%G�E� �����

, and nested and hierarchical
� � ���(!=�G��� ����$�%@�I� ���?�

.
We also investigated the relationship between perceived

usefulness and comprehension, which revealed the follow-

ing correlations: augmented A,� ����!Z��D6� ��1���$�%_��� ���(1
,

nested A,� ���(!�I� ����$(%@�4�#���
, linear A,� ����!�I� �B�,$(%@�4� ����1

,
and hierarchical A,� ���(!`�WD6� ��1�$a%0�b� �����

. Thus, only for
the nested representation did perceived usefulness not sig-
nificantly correlate with comprehension.

We next examined applied usefulness and comprehen-
sion, again using Pearson’s A correlations. The augmented
representation yielded A,� ���(!c�dD6� ����$e%f.�� �����

, nested
A,� ���B!e�"� ����$g%h�O� ���B+

, linear A,� ���(!S�i� ��1�$�%j�i� ���B+
, and

hierarchical A,� ���(!2�k� �(��$l%^�k� �(��1
. Individuals may have

perceived the augmented representation to be the most use-
ful (by giving it the highest mean usefulness score), how-
ever, there was a strong negative relationship between its
applied usefulness and comprehension, such that as useful-
ness increased, comprehension decreased. The opposite re-
lationship was found for the nested representation, as there
was a strong positive correlation, meaning that as useful-
ness increased, so too did comprehension. The findings for
the linear and hierarchical representations are interesting,
but as with the first application are the product of very low
sample sizes. While participants perceive these representa-
tions to have some utility, these perceptions did not result in
the representations being used to determine change effects.
Thus, we are hesitant to develop meaningful interpretations
of the results for the linear and hierarchical representations.

There were no significant correlations between com-
plexity and perceived usefulness: augmented A,� ����!b�
D6� ����$m%n�o�#���

, nested A,� ���B!p�5D6�>�
+,$:%;�q� ���
, lin-

ear AB� ���(!r�8�>�?��$6%E�]�#���
, and hierarchical A,� ���(!M�

� ����$�%4�s�	�?�
. Similarly, there were no significant corre-

lations between complexity and applied usefulness: aug-
mented A,� ���B!/� D6�	�J��$t%]� � �B+

, nested AB� ���B!/�
D6� �B+B��$u%G�v�R+��

, linear AB� ���B!N�v�	�J��$=%G�v� ���
, and hier-

archical A,� ���(!���D6� ������$�%@���R+�+
.

4 Discussion

Analysis of the first application indicates that partici-
pants perceived the augmented and nested representations
to be of similar utility, as were the linear and hierarchi-
cal representations. In the second task, the similarity be-
tween the augmented and nested representation diminished
and the augmented was perceived as being the most useful.
These findings support the hypothesis (H1) that users will
perceive a representation to increase in utility as control-
flow information is added.

Participants did not perceive the hierarchical representa-
tion to have any additional value over the linear represen-
tation. It is likely that this lack of difference occurs be-
cause participants are unable to determine the purpose of
the hierarchy. When asked the purpose of the hierarchical
representation, participant comments included: “(it) made
no sense at all,” “3 separate windows that are somehow re-

lated,” “connection between methods, but only a little bit,”
“nothing really,” “don’t know,” “I don’t like this one” and
“meaningless connection between methods.” From these
comments, it appears that the hierarchical representation
lacks clarity and does not present information in an intu-
itive or easily understood manner. The participants did not
provide these sorts of comments for any of the other repre-
sentations. Instead, some participants expressed mild con-
fusion as to the purpose of the linear representation because
they were under the impression it contained some additional
information not included in the standard Prograph represen-
tation of the tutorial.

In both applications, applied usefulness significantly cor-
relates with program comprehension for the nested repre-
sentation. Thus, there is little doubt that participants find the
nested representation to be an effective aide to comprehen-
sion. For both applications, the nested representation had a
mean complexity close to 3, which had the label ‘good.’ For
the first application,

�*�M��� ���
and for the second applica-

tion,
�P�W�,� 1��

. Participants found that the nested repre-
sentation was neither too complex nor too simple; a feature
that likely leads to its ability to improve comprehension.

Although applied utility correlates with comprehension
for the augmented representation in the second application,
the correlation is negative indicating that the representation
harms comprehension. It is likely that this result is a con-
sequence of complexity. The augmented representation has
mean complexities of 3.88 and 3.50 for the two applications.
Thus, comprehension is potentially impeded because partic-
ipants are struggling to manage the amount of information
contained within the representation.

No generalizations can be drawn for the hierarchical rep-
resentation since participants had difficulty determining its
purpose and consequently very few chose to use it to deter-
mine a change effect. The lack of use prevents a meaning-
ful statistical analysis from being performed. As the hierar-
chical representation contains the same information content
as the nested representation, it can be seen that for these
sample applications, nesting is a presumably more effective
way of presenting intra-method control-flow. Of course, it
is possible that an alternative hierarchy, perhaps more tree-
like in nature, would be more easily understood by partic-
ipants and have the same effects on comprehension as the
nested representation.

It is interesting that perceived usefulness does not nec-
essarily match applied usefulness. While participants per-
ceive the augmented representation to be useful, use of the
representation does not lead to improved comprehension. It
is likely that the augmented is perceived as useful because
it is either familiar, or because its complexity suggests it
contains much useful information. In any case, the measure
of perceived usefulness demonstrates the hazards involved
in using any subjective measurement; the perception of the

participants is not necessarily accurate with respect to their
task performance.

Our hypothesis (H1) on the utility of the representations
is partly verified. In terms of perceived utility, the hypoth-
esis is found be accurate. The linear representation is the
least useful, the nested and hierarchical representations are
of intermediate utility and the augmented representation is
perceived as the most useful. For no representation does
perceived utility consistently correlate with comprehension.
In terms of applied utility, the linear and hierarchical repre-
sentations are not selected frequently enough to be consid-
ered useful, the nested representation improves comprehen-
sion and the augmented representation hinders comprehen-
sion.

For the issue of complexity our hypothesis (H2) is fully
verified. Inter-method control-flow is less complex than
combined inter/intra-method control-flow, but more com-
plex than a representation with no control-flow information.
However, there is a trade-off between complexity and utility
where, after some threshold is reached, adding complexity
decreases utility.

One potential limitation in our study is that we pro-
vided participants with all four representations simultane-
ously. This presentation can introduce a potential confound
by obscuring the source of information used when creating
change effect descriptions. While participants were asked
to identify which representations they used, they may have
extracted some information from each representation, per-
haps subconsciously. Thus, although we intended to col-
lect an objective measure of utility free of participant’s per-
ceptions, the measure of applied usefulness identifies where
participants perceive they are obtaining needed information
and may not be entirely accurate.

As well, we are measuring comprehension with respect
to two change effect descriptions and a program summary.
It is possible that the representations did increase program
understanding, but that the questions asked to determine
comprehension did not require the use of the newly gained
understanding. As in any task-oriented study on compre-
hension, we only measured comprehension with respect to
the tasks and did not necessarily measure increases in over-
all comprehension. While the use of program summaries
minimizes this possibility, there remains the likelihood that
participants gained detailed low-level understanding that
was not used to construct the summary.

5 Conclusion

It has been demonstrated that control-flow views of pro-
grams facilitate comprehension [10]. Additionally, it has
been shown that, for visual programming languages, data-
flow and control-flow representations lead to different types
of program comprehension [6]. Data-flow leads to a more

abstract/functional description while control-flow leads to
a more concrete/procedural description of the program.
Given that Prograph is a data-flow VPL, the use of control-
flow augmentation can bring the two areas of comprehen-
sion together and help programmers develop a more com-
prehensive program model.

From the experiment described here, it appears that nest-
ing strikes a balance between increased complexity and the
inclusion of additional control-flow information. While par-
ticipants found that more detailed inter-method control-flow
augmentation appeared to be useful, this amount of aug-
mentation adds excessive complexity and hinders compre-
hension, at least in the short-term. For larger applications
with considerably more methods, it is probable that the in-
creased complexity of the fully augmented representation
would be even greater.

A great deal of future work still needs to be done to
confirm the results of this study. The sample size, while
adequate, would benefit from being increased. As well, a
clearer, more intuitive hierarchical representation should be
investigated. The lack of clarity in the existing represen-
tation does not permit the hierarchical representation to be
accurately compared to the nested representation.

When pilot testing the stimulus, participants were shown
a third application. This application was approximately
twice the size of the two that were included in the final ex-
periment. While it would be beneficial to explore the effects
of the representations with a longer, more realistic program,
it was necessary to drop the third application for practical
reasons. Without some form of renumeration, we were un-
able to recruit participants who were willing to complete
the longer experiment. In future research, we intend to ex-
plore the scalability of the representations and their utility
for longer and more complex programs.

Our results suggest that there is a trade-off between com-
plexity and utility. The nested representation, which clearly
displays intra-method calling sequences, satisfies this trade-
off by adding control-flow information to a visual data-flow
language. While nested representations are not highly ef-
fective for program development environments, we believe
that they show significant promise for aiding comprehen-
sion through the merger of control-flow and data-flow in-
formation.

When programmers need access to data-flow informa-
tion, the commercial success of visual data-flow languages
suggests an effective data-flow representation can be based
on one of these languages. Our research indicates that Pro-
graph/CPX, a visual data-flow language, provides the best
support for program comprehension when augmented with
inter-method control-flow information. Additional aug-
mentation, such as intra-method control-flow, adds exces-
sive complexity and hinders comprehension. We examined
two methods for expressing inter-method control-flow and

found nesting to be an intuitively understood technique for
effectively representing method calling sequences and pos-
itively influencing program comprehension.

References

[1] K. Anjaneyulu and J. Anderson. The advantages of data-
flow diagrams for beginning programming. In C. Frasson,
G. Gauthier, and G. McCalla, editors, Second International
Conference on Intelligent Tutoring Systems, pages 585–592,
1992.

[2] C. Corritore and S. Wiedenbeck. What do novices learn
during program comprehension? International Journal of
Human-Computer Interaction, 3:199–222, 1991.

[3] L. Freeman. A refresher in data flow diagramming: An
effective aid for analysts. Communications of the ACM,
46(9):147–151, 2003.

[4] D. Gilmore and T. Green. Comprehension and recall of
miniature programs. International Journal of Man-Machine
Studies, 21:31–48, 1984.

[5] J. Good. The ‘right’ tool for the task: An investigation of ex-
ternal representions, program abstractions and task require-
ments. In W. Gray and D. Boehm-Davis, editors, Empiri-
cal Studies of Programmers: Sixth Workshop, pages 77–98,
Norwood, NJ, 1996. Ablex.

[6] J. Good. VPLs and novice program comprehension: How
do different languages compare? In Symposium on Visual
Languages, pages 262–299. IEEE, 1999.

[7] T. Green, M. Petre, and R. Bellamy. Comprehensibility
of visual and textual programs: A test of of superlativism
against the ‘match-mismatch’ conjecture. In J. Koenemann-
Belliveau, T. Moher, and S. Robertson, editors, Empirical
Studies of Programmers: Fourth Workshop, pages 121–146,
Norwood, NJ, 1991. Ablex.

[8] K. Lloyd and D. Jankowski. A cognitive information pro-
cessing and information theory approach to diagram clarity:
A synthesis and experimental investigation. The Journal of
Systems and Software, 45:203–214, 1999.

[9] I. Millet. Technical note – a proposal to simplify data flow
diagrams. IBM Systems Journal, 38(1):118–121, 1999.

[10] R. Mosemann and S. Wiedenbeck. Navigation and compre-
hension of programs by novice programmers. In Interna-
tional Workshop on Program Comprehension, Toronto, ON,
2001. IEEE.

[11] N. Pennington. Stimulus structures and mental representa-
tions in expert comprehension of computer programs. Cog-
nitive Psychology, 19:295–341, 1987.

[12] S. Steinman and K. Carver. Visual Programming with Pro-
graph CPX. Manning Publications Co., 1995.

